The Correlation of Arterial Stiffness Parameters with Aging and Comorbidity Burden
Abstract
:1. Introduction
2. Materials and Methods
2.1. Anthropometric Variables
2.2. Blood Pressure and Arterial Stiffness Measurements
2.3. Pulse Wave Velocity
Biochemical Analysis
2.4. Statistical Analyses
3. Results
3.1. Univariate Analysis
3.2. Subgroup Analysis: Cardiovascular Comorbidities and Risk Factors
3.3. Regression Analysis: Arterial Stiffness Predictors
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Vlachopoulos, C.; Xaplanteris, P.; Aboyans, V.; Brodmann, M.; Cífková, R.; Cosentino, F.; De Carlo, M.; Gallino, A.; Landmesser, U.; Laurent, S.; et al. The role of vascular biomarkers for primary and secondary prevention. A position paper from the European Society of Cardiology Working Group on peripheral circulation. Endorsed by the Association for Research into Arterial Structure and Physiology (ARTERY) Society. Atherosclerosis 2015, 241, 507–532. [Google Scholar] [CrossRef] [PubMed]
- Shirai, K.; Song, M.; Suzuki, J.; Kurosu, T.; Oyama, T.; Nagayama, D.; Miyashita, Y.; Yamamura, S.; Takahashi, M. Contradictory Effects of β1- and α1-Aderenergic Receptor Blockers on Cardio-Ankle Vascular Stiffness Index (CAVI). J. Atheroscler. Thromb. 2011, 18, 49–55. [Google Scholar] [CrossRef] [PubMed]
- Asmar, R. Principles and usefulness of the cardio-ankle vascular index (CAVI): A new global arterial stiffness index. Eur. Heart J. Suppl. 2017, 19, B4–B10. [Google Scholar] [CrossRef]
- Van Popele, N.M.; Grobbee, D.E.; Bots, M.L.; Asmar, R.; Topouchian, J.; Reneman, R.S.; Hoeks, A.P.G.; Van Der Kuip, D.A.M.; Hofman, A.; Witteman, J.C.M. Association between arterial stiffness and atherosclerosis: The Rotterdam study. Stroke 2001, 32, 454–460. [Google Scholar] [CrossRef]
- Asmar, R.; Benetos, A.; Topouchian, J.; Laurent, P.; Pannier, B.; Brisac, A.M.; Target, R.; Levy, B.I. Assessment of arterial distensibility by automatic pulse wave velocity measurement: Validation and clinical application studies. Hypertension 1995, 26, 485–490. [Google Scholar] [CrossRef]
- Takahashi, K.; Yamamoto, T.; Tsuda, S.; Okabe, F.; Shimose, T.; Tsuji, Y.; Suzuki, K.; Otsuka, K.; Takata, M.; Shimizu, K.; et al. Coefficients in the CAVI Equation and the Comparison between CAVI with and without the Coefficients Using Clinical Data. J. Atheroscler. Thromb. 2019, 26, 465–475. [Google Scholar] [CrossRef] [PubMed]
- Spronck, B.; Avolio, A.P.; Tan, I.; Butlin, M.; Reesink, K.D.; Delhaas, T. Arterial stiffness index beta and cardio-ankle vascular index inherently depend on blood pressure but can be readily corrected. J. Hypertens. 2017, 35, 98–104. [Google Scholar] [CrossRef] [PubMed]
- Spronck, B.; Mestanik, M.; Tonhajzerova, I.; Jurko, A.; Jurko, T.; Avolio, A.P.; Butlin, M. Direct means of obtaining CAVI 0—A corrected cardio-ankle vascular stiffness index (CAVI)—from conventional CAVI measurements or their underlying variables. Physiol. Meas. 2017, 38, N128–N137. [Google Scholar] [CrossRef]
- Shirai, K.; Suzuki, K.; Tsuda, S.; Shimizu, K.; Takata, M.; Yamamoto, T.; Maruyama, M.; Takahashi, K. Comparison of Cardio–Ankle Vascular Index (CAVI) and CAVI0 in Large Healthy and Hypertensive Populations. J. Atheroscler. Thromb. 2019, 26, 603–615. [Google Scholar] [CrossRef]
- Saiki, A.; Ohira, M.; Yamaguchi, T.; Nagayama, D.; Shimizu, N.; Shirai, K.; Tatsuno, I. New Horizons of Arterial Stiffness Developed Using Cardio-Ankle Vascular Index (CAVI). J. Atheroscler. Thromb. 2020, 27, 732–748. [Google Scholar] [CrossRef]
- Fantin, F.; Disegna, E.; Manzato, G.; Comellato, G.; Zoico, E.; Rossi, A.P.; Mazzali, G. Adipokines and Arterial Stiffness in the Elderly. Vasc. Health Risk Manag. 2020, 16, 535–543. [Google Scholar] [CrossRef] [PubMed]
- Fantin, F.; Giani, A.; Gasparini, L.; Rossi, A.P.; Zoico, E.; Mazzali, G.; Zamboni, M. Impaired subendocardial perfusion in patients with metabolic syndrome. Diabetes Vasc. Dis. Res. 2021, 18, 147916412110471. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, K.; Tomaru, T.; Yamamura, S.; Miyashita, Y.; Shirai, K.; Noike, H. Cardio-Ankle Vascular Index is a Candidate Predictor of Coronary Atherosclerosis. Circ. J. 2007, 72, 598–604. [Google Scholar] [CrossRef]
- Namekata, T.; Suzuki, K.; Ishizuka, N.; Shirai, K. Establishing baseline criteria of cardio-ankle vascular index as a new indicator of arteriosclerosis: A cross-sectional study. BMC Cardiovasc. Disord. 2011, 11, 51. [Google Scholar] [CrossRef]
- Kiuchi, S.; Kawasaki, M.; Hirashima, O.; Hisatake, S.; Kabuki, T.; Yamazaki, J.; Ikeda, T. Addition of a renin-angiotensin-aldosterone system inhibitor to a calcium channel blocker ameliorates arterial stiffness. Clin. Pharmacol. Adv. Appl. 2015, 7, 97. [Google Scholar] [CrossRef] [PubMed]
- Nagayama, D.; Watanabe, Y.; Saiki, A.; Shirai, K.; Tatsuno, I. Difference in positive relation between cardio-ankle vascular index (CAVI) and each of four blood pressure indices in real-world Japanese population. J. Hum. Hypertens. 2019, 33, 210–217. [Google Scholar] [CrossRef] [PubMed]
- Uzui, H.; Morishita, T.; Nakano, A.; Amaya, N.; Fukuoka, Y.; Ishida, K.; Arakawa, K.; Lee, J.-D.; Tada, H. Effects of Combination Therapy with Olmesartan and Azelnidipine on Serum Osteoprotegerin in Patients with Hypertension. J. Cardiovasc. Pharmacol. Ther. 2014, 19, 304–309. [Google Scholar] [CrossRef]
- Ibata, J.; Sasaki, H.; Hanabusa, T.; Wakasaki, H.; Furuta, H.; Nishi, M.; Akamizu, T.; Nanjo, K. Increased arterial stiffness is closely associated with hyperglycemia and improved by glycemic control in diabetic patients. J. Diabetes Investig. 2013, 4, 82–87. [Google Scholar] [CrossRef]
- Tsuboi, A.; Ito, C.; Fujikawa, R.; Yamamoto, H.; Kihara, Y. Association between the Postprandial Glucose Levels and Arterial Stiffness Measured According to the Cardio-ankle Vascular Index in Non-diabetic Subjects. Intern. Med. 2015, 54, 1961–1969. [Google Scholar] [CrossRef]
- Dobsak, P.; Soska, V.; Sochor, O.; Jarkovsky, J.; Novakova, M.; Homolka, M.; Soucek, M.; Palanova, P.; Lopez-Jimenez, F.; Shirai, K. Increased Cardio-ankle Vascular Index in Hyperlipidemic Patients without Diabetes or Hypertension. J. Atheroscler. Thromb. 2015, 22, 272–283. [Google Scholar] [CrossRef]
- Nagayama, D.; Watanabe, Y.; Saiki, A.; Shirai, K.; Tatsuno, I. Lipid Parameters are Independently Associated with Cardio–Ankle Vascular Index (CAVI) in Healthy Japanese Subjects. J. Atheroscler. Thromb. 2018, 25, 621–633. [Google Scholar] [CrossRef] [PubMed]
- Satoh, N.; Shimatsu, A.; Kato, Y.; Araki, R.; Koyama, K.; Okajima, T.; Tanabe, M.; Ooishi, M.; Kotani, K.; Ogawa, Y. Evaluation of the Cardio-Ankle Vascular Index, a New Indicator of Arterial Stiffness Independent of Blood Pressure, in Obesity and Metabolic Syndrome. Hypertens. Res. 2008, 31, 1921–1930. [Google Scholar] [CrossRef] [PubMed]
- Kawada, T.; Andou, T.; Fukumitsu, M. Relationship between cardio-ankle vascular index and components of metabolic syndrome in combination with sex and age. Diabetes Metab. Syndr. Clin. Res. Rev. 2014, 8, 242–244. [Google Scholar] [CrossRef]
- Kirigaya, J.; Iwahashi, N.; Tahakashi, H.; Minamimoto, Y.; Gohbara, M.; Abe, T.; Akiyama, E.; Okada, K.; Matsuzawa, Y.; Maejima, N.; et al. Impact of Cardio-Ankle Vascular Index on Long-Term Outcome in Patients with Acute Coronary Syndrome. J. Atheroscler. Thromb. 2020, 27, 657–668. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, J.; Sakakibara, R.; Tomaru, T.; Tateno, F.; Kishi, M.; Ogawa, E.; Kurosu, T.; Shirai, K. Stroke and Cardio-ankle Vascular Stiffness Index. J. Stroke Cerebrovasc. Dis. 2013, 22, 171–175. [Google Scholar] [CrossRef]
- Kim, K.J.; Lee, B.-W.; Kim, H.; Shin, J.Y.; Kang, E.S.; Cha, B.S.; Lee, E.J.; Lim, S.-K.; Lee, H.C. Associations between Cardio-Ankle Vascular Index and Microvascular Complications in Type 2 Diabetes Mellitus Patients. J. Atheroscler. Thromb. 2011, 18, 328–336. [Google Scholar] [CrossRef] [PubMed]
- Bramwell, J.C.; Hill, A. Velocity of transmission of the pulse-wave. Lancet 1922, 199, 891–892. [Google Scholar] [CrossRef]
- Saiki, A.; Sato, Y.; Watanabe, R.; Watanabe, Y.; Imamura, H.; Yamaguchi, T.; Ban, N.; Kawana, H.; Nagumo, A.; Nagayama, D.; et al. The Role of a Novel Arterial Stiffness Parameter, Cardio-Ankle Vascular Index (CAVI), as a Surrogate Marker for Cardiovascular Diseases. J. Atheroscler. Thromb. 2016, 23, 155–168. [Google Scholar] [CrossRef]
- Hayashi, K.; Yamamoto, T.; Takahara, A.; Shirai, K. Clinical assessment of arterial stiffness with cardio-ankle vascular index. J. Hypertens. 2015, 33, 1742–1757. [Google Scholar] [CrossRef]
- Spronck, B.; Mestanik, M.; Tonhajzerova, I.; Jurko, A.; Tan, I.; Butlin, M.; Avolio, A.P. Easy conversion of cardio-ankle vascular index into CAVI. J. Hypertens. 2019, 37, 1913–1914. [Google Scholar] [CrossRef]
- Salvi, P.; Lio, G.; Labat, C.; Ricci, E.; Pannier, B.; Benetos, A. Validation of a new non-invasive portable tonometer for determining arterial pressure wave and pulse wave velocity: The PulsePen device. J. Hypertens. 2004, 22, 2285–2293. [Google Scholar] [CrossRef] [PubMed]
- Fantin, F.; Giani, A.; Macchi, F.; Amadio, G.; Rossi, A.P.; Zoico, E.; Mazzali, G.; Zamboni, M. Relationships between subendocardial perfusion impairment, arterial stiffness and orthostatic hypotension in hospitalized elderly individuals. J. Hypertens. 2021, 39, 2379–2387. [Google Scholar] [CrossRef] [PubMed]
- McVeigh, G.E.; Bratteli, C.W.; Morgan, D.J.; Alinder, C.M.; Glasser, S.P.; Finkelstein, S.M.; Cohn, J.N. Age-related abnormalities in arterial compliance identified by pressure pulse contour analysis: Aging and arterial compliance. Hypertension 1999, 33, 1392–1398. [Google Scholar] [CrossRef] [PubMed]
- Van Bortel, L.M.; Laurent, S.; Boutouyrie, P.; Chowienczyk, P.; Cruickshank, J.K.; De Backer, T.; Filipovsky, J.; Huybrechts, S.; Mattace-Raso, F.U.S.; Protogerou, A.D.; et al. Expert consensus document on the measurement of aortic stiffness in daily practice using carotid-femoral pulse wave velocity. J. Hypertens. 2012, 30, 445–448. [Google Scholar] [CrossRef]
- Friedewald, W.T.; Levy, R.I.; Fredrickson, D.S. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin. Chem. 1972, 18, 499–502. [Google Scholar] [CrossRef]
- Wang, H.; Liu, J.; Zhao, H.; Fu, X.; Shang, G.; Zhou, Y.; Yu, X.; Zhao, X.; Wang, G.; Shi, H. Arterial stiffness evaluation by cardio-ankle vascular index in hypertension and diabetes mellitus subjects. J. Am. Soc. Hypertens. 2013, 7, 426–431. [Google Scholar] [CrossRef]
- Choi, S.-Y.; Oh, B.-H.; Bae Park, J.; Choi, D.-J.; Rhee, M.-Y.; Park, S. Age-Associated Increase in Arterial Stiffness Measured According to the Cardio-Ankle Vascular Index without Blood Pressure Changes in Healthy Adults. J. Atheroscler. Thromb. 2013, 20, 911–923. [Google Scholar] [CrossRef]
- Gómez-Marcos, M.Á.; Recio-Rodríguez, J.I.; Patino-Alonso, M.C.; Agudo-Conde, C.; Gómez-Sánchez, L.; Gomez-Sanchez, M.; Rodríguez-Sanchez, E.; Maderuelo-Fernandez, J.A.; García-Ortiz, L. Cardio-ankle vascular index is associated with cardiovascular target organ damage and vascular structure and function in patients with diabetes or metabolic syndrome, LOD-DIABETES study: A case series report. Cardiovasc. Diabetol. 2015, 14, 7. [Google Scholar] [CrossRef]
- Di Pino, A.; Alagona, C.; Piro, S.; Calanna, S.; Spadaro, L.; Palermo, F.; Urbano, F.; Purrello, F.; Rabuazzo, A.M. Separate impact of metabolic syndrome and altered glucose tolerance on early markers of vascular injuries. Atherosclerosis 2012, 223, 458–462. [Google Scholar] [CrossRef]
- Topouchian, J.; Labat, C.; Gautier, S.; Bäck, M.; Achimastos, A.; Blacher, J.; Cwynar, M.; De La Sierra, A.; Pall, D.; Fantin, F.; et al. Effects of metabolic syndrome on arterial function in different age groups: The Advanced Approach to Arterial Stiffness study. J. Hypertens. 2018, 36, 824–833. [Google Scholar] [CrossRef] [Green Version]
- Tabara, Y.; Setoh, K.; Kawaguchi, T.; Takahashi, Y.; Kosugi, S.; Nakayama, T.; Matsuda, F. Factors affecting longitudinal changes in cardio–ankle vascular index in a large general population. J. Hypertens. 2018, 36, 1147–1153. [Google Scholar] [CrossRef] [PubMed]
- Tonhajzerova, I.; Mestanikova, A.; Jurko, A.; Grendar, M.; Langer, P.; Ondrejka, I.; Jurko, T.; Hrtanek, I.; Cesnekova, D.; Mestanik, M. Arterial stiffness and haemodynamic regulation in adolescent anorexia nervosa versus obesity. Appl. Physiol. Nutr. Metab. 2020, 45, 81–90. [Google Scholar] [CrossRef] [PubMed]
- Izuhara, M.; Shioji, K.; Kadota, S.; Baba, O.; Takeuchi, Y.; Uegaito, T.; Mutsuo, S.; Matsuda, M. Relationship of Cardio-Ankle Vascular Index (CAVI) to Carotid and Coronary Arteriosclerosis. Circ. J. 2008, 72, 1762–1767. [Google Scholar] [CrossRef] [PubMed]
- Xue, Q.; Qin, M.; Jia, J.; Liu, J.; Wang, Y. Association between frailty and the cardio-ankle vascular index. Clin. Interv. Aging 2019, 14, 735–742. [Google Scholar] [CrossRef] [PubMed]
- Vallée, A. Arterial Stiffness Determinants for Primary Cardiovascular Prevention among Healthy Participants. J. Clin. Med. 2022, 11, 2512. [Google Scholar] [CrossRef] [PubMed]
- Shirai, K. Analysis of vascular function using the cardio–ankle vascular index (CAVI). Hypertens. Res. 2011, 34, 684–685. [Google Scholar] [CrossRef]
- Spronck, B.; Obeid, M.J.; Paravathaneni, M.; Gadela, N.V.; Singh, G.; Magro, C.A.; Kulkarni, V.; Kondaveety, S.; Gade, K.C.; Bhuva, R.; et al. Predictive Ability of Pressure-Corrected Arterial Stiffness Indices: Comparison of Pulse Wave Velocity, Cardio-Ankle Vascular Index (CAVI), and CAVI0. Am. J. Hypertens. 2022, 35, 272–280. [Google Scholar] [CrossRef]
- Shirai, K.; Utino, J.; Otsuka, K.; Takata, M. A Novel Blood Pressure-independent Arterial Wall Stiffness Parameter; Cardio-Ankle Vascular Index (CAVI). J. Atheroscler. Thromb. 2006, 13, 101–107. [Google Scholar] [CrossRef] [Green Version]
Total (n = 183) | Male (n = 64) | Female (n = 119) | p Value | |
---|---|---|---|---|
Age (years) | 67.54 ± 14.25 | 70.13 ± 14.43 | 66.14 ± 14.02 | 0.075 |
Body weight (kg) | 77.06 ± 18.01 | 81.30 ± 18.90 | 74.78 ± 17.17 | 0.023 |
BMI (kg/m2) | 28.92 ± 5.85 | 27.77 ± 5.65 | 29.54 ± 5.88 | 0.048 |
Glucose level (mg/dL) | 100.08 ± 26.26 | 104.74 ± 30.95 | 97.41 ± 22.89 | 0.104 |
Total Cholesterol (mg/dL) | 179.43 ± 46.92 | 164.16 ± 46.19 | 187.74 ± 45.39 | 0.001 |
HDL Cholesterol (mg/dL) | 50.81 ± 17.02 | 46.75 ± 16.18 | 52.95 ± 17.14 | 0.02 |
LDL Cholesterol (mg/dL) | 105.23 ± 40.80 | 93.38 ± 40.26 | 111.43 ± 39.88 | 0.007 |
Triglycerides (mg/dL) | 132.35 ± 67.13 | 132.84 ± 71.81 | 132.07 ± 64.68 | 0.944 |
Creatinine (mg/dL) | 0.95 ± 0.44 | 1.09 ± 0.52 | 0.87 ± 0.36 | 0.001 |
GFR (mL/min/1.73 m2) | 83.59 ± 36.90 | 85.15 ± 44.14 | 82.74 ± 32.52 | 0.675 |
SBP (mmHg) | 138.84 ± 17.09 | 134.83 ± 16.40 | 140.99 ± 17.13 | 0.018 |
DBP (mmHg) | 81.22 ± 10.85 | 80.81 ± 12.83 | 81.44 ± 9.67 | 0.711 |
PP (mmHg) | 57.72 ± 13.940 | 53.86 ± 11.48 | 59.79 ± 14.73 | 0.003 |
MAP (mmHg) | 110.03 ± 12.58 | 107.82 ± 13.54 | 111.21 ± 11.93 | 0.095 |
CAVI | 8.92 ± 2.09 | 9.58 ± 2.23 | 8.56 ± 1.94 | 0.003 |
CAVI 0 | 14.93 ±6.16 | 16.20 ± 6.48 | 14.24 ± 5.89 | 0.047 |
PWV-cf (m/s) | 9.58 ± 4.36 | 9.39 ± 3.45 | 9.69 ± 4.79 | 0.636 |
Number of diseases | 5.42 ± 2.41 | 5.45 ± 2.34 | 5.39 ± 2.45 | 0.875 |
CCI | 3.30 ± 2.24 | 3.72 ± 2.31 | 3.07 ± 2.18 | 0.066 |
CAVI | CAVI 0 | PWV-cf | |
---|---|---|---|
Age | 0.698 *** | 0.717 *** | 0.410 ** |
Glucose level | 0.166 * | 0.166 * | 0.152 |
Total Cholesterol | −0.446 *** | −0.430 *** | −0.203 ** |
HDL Cholesterol | −0.187 * | −0.213 ** | −0.173 * |
LDL Cholesterol | −0.474 *** | −0.479 *** | −0.237 ** |
Triglycerides | 0.036 | 0.070 | 0.139 |
GFR | −0.535 *** | −0.521 *** | −0.213 ** |
CCI | 0.654 *** | 0.658 *** | 0.448 *** |
SBP | −0.060 | −0.074 | −0.017 |
DBP | −0.296 *** | −0.389 *** | −0.146 ** |
MAP | −0.209 ** | −0.274 *** | −0.097 |
PP | 0.165 * | 0.219 ** | 0.108 |
CAVI | 1 | 0.955 *** | 0.430 *** |
CAVI 0 | 0.955 *** | 1 | 0.438 *** |
PWV-cf | 0.430 *** | 0.438 *** | 1 |
Dependent Variables | Independent Variables | β ± Standard Error | p Value | R2 |
---|---|---|---|---|
PWV-cf | ||||
CCI | 0.924 ± 0.144 | <0.001 | 0.205 | |
CAVI | ||||
Age | 0.076 ± 0.014 | <0.001 | ||
CCI | 0.238 ± 0.094 | 0.012 | 0.528 | |
CAVI 0 | ||||
Age | 0.226 ± 0.039 | <0.001 | ||
CCI | 0.680 ± 0.259 | 0.010 | 0.558 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fantin, F.; Giani, A.; Trentin, M.; Rossi, A.P.; Zoico, E.; Mazzali, G.; Micciolo, R.; Zamboni, M. The Correlation of Arterial Stiffness Parameters with Aging and Comorbidity Burden. J. Clin. Med. 2022, 11, 5761. https://doi.org/10.3390/jcm11195761
Fantin F, Giani A, Trentin M, Rossi AP, Zoico E, Mazzali G, Micciolo R, Zamboni M. The Correlation of Arterial Stiffness Parameters with Aging and Comorbidity Burden. Journal of Clinical Medicine. 2022; 11(19):5761. https://doi.org/10.3390/jcm11195761
Chicago/Turabian StyleFantin, Francesco, Anna Giani, Monica Trentin, Andrea P. Rossi, Elena Zoico, Gloria Mazzali, Rocco Micciolo, and Mauro Zamboni. 2022. "The Correlation of Arterial Stiffness Parameters with Aging and Comorbidity Burden" Journal of Clinical Medicine 11, no. 19: 5761. https://doi.org/10.3390/jcm11195761
APA StyleFantin, F., Giani, A., Trentin, M., Rossi, A. P., Zoico, E., Mazzali, G., Micciolo, R., & Zamboni, M. (2022). The Correlation of Arterial Stiffness Parameters with Aging and Comorbidity Burden. Journal of Clinical Medicine, 11(19), 5761. https://doi.org/10.3390/jcm11195761