Dry Eye Following Femtosecond Laser-Assisted Cataract Surgery: A Meta-Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Search Strategy
2.2. Inclusion and Exclusion Criteria
2.3. Data Extraction
2.4. Definitions of Parameters
2.5. Statistical Analysis
3. Results
3.1. Search Results
3.2. Evaluation of the Quality of Included Studies
3.3. Characteristics of Included Studies
3.4. Outcome Assessment of FLACS Group
3.5. Outcome Assessment Comparing FLACS and MCS Group
3.6. Heterogeneity and Publication Bias
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zamora, M.G.; Caballero, E.F.; Maldonado, M.J. Short-term changes in ocular surface signs and symptoms after phacoemulsification. Eur. J. Ophthalmol. 2020, 30, 1301–1307. [Google Scholar] [CrossRef]
- Lu, Q.; Lu, Y.; Zhu, X. Dry eye and phacoemulsification cataract surgery: A systematic review and meta-analysis. Front. Med. 2021, 8, 649030. [Google Scholar] [CrossRef] [PubMed]
- Kasetsuwan, N.; Satitpitakul, V.; Changul, T.; Jariyakosol, S. Incidence and pattern of dry eye after cataract surgery. PLoS ONE 2013, 8, e78657. [Google Scholar] [CrossRef]
- Li, X.M.; Hu, L.; Hu, J.; Wang, W. Investigation of dry eye disease and analysis of the pathogenic factors in patients after cataract surgery. Cornea 2007, 26, S16–S20. [Google Scholar] [CrossRef] [PubMed]
- Khanal, S.; Tomlinson, A.; Esakowitz, L.; Bhatt, P.; Jones, D.; Nabili, S.; Mukerji, S. Changes in corneal sensitivity and tear physiology after phacoemulsification. Ophthalmic Physiol. Opt. J. Br. Coll. Ophthalmic Opt. Optom. 2008, 28, 127–134. [Google Scholar] [CrossRef] [PubMed]
- Oh, T.; Jung, Y.; Chang, D.; Kim, J.; Kim, H. Changes in the tear film and ocular surface after cataract surgery. Jpn. J. Ophthalmol. 2012, 56, 113–118. [Google Scholar] [CrossRef] [PubMed]
- Park, D.H.; Chung, J.K.; Seo, D.R.; Lee, S.J. Clinical effects and safety of 3% diquafosol ophthalmic solution for patients with dry eye after cataract surgery: A randomized controlled trial. Am. J. Ophthalmol. 2016, 163, 122–131.e122. [Google Scholar] [CrossRef] [PubMed]
- Igarashi, T.; Takahashi, H.; Kobayashi, M.; Kunishige, T.; Arima, T.; Fujimoto, C.; Suzuki, H.; Okuda, T.; Takahashi, H. Changes in tear osmolarity after cataract surgery. J. Nippon. Med. Sch. Nippon. Ika Daigaku Zasshi 2021, 88, 204–208. [Google Scholar] [CrossRef]
- Kolb, C.M.; Shajari, M.; Mathys, L.; Herrmann, E.; Petermann, K.; Mayer, W.J.; Priglinger, S.; Kohnen, T. Comparison of femtosecond laser-assisted cataract surgery and conventional cataract surgery: A meta-analysis and systematic review. J. Cataract. Refract. Surg. 2020, 46, 1075–1085. [Google Scholar] [CrossRef] [PubMed]
- Naderi, K.; Gormley, J.; O’Brart, D. Cataract surgery and dry eye disease: A review. Eur. J. Ophthalmol. 2020, 30, 840–855. [Google Scholar] [CrossRef]
- Chee, S.P.; Yang, Y.; Wong, M.H.Y. Randomized controlled trial comparing femtosecond laser-assisted with conventional phacoemulsification on dense cataracts. Am. J. Ophthalmol. 2021, 229, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Day, A.C.; Burr, J.M.; Bennett, K.; Bunce, C.; Doré, C.J.; Rubin, G.S.; Nanavaty, M.A.; Balaggan, K.S.; Wilkins, M.R. Femtosecond laser-assisted cataract surgery versus phacoemulsification cataract surgery (fact): A randomized noninferiority trial. Ophthalmology 2020, 127, 1012–1019. [Google Scholar] [CrossRef] [PubMed]
- Stanojcic, N.; Roberts, H.W.; Wagh, V.K.; Li, J.O.; Naderi, K.; O’Brart, D.P. A randomised controlled trial comparing femtosecond laser-assisted cataract surgery versus conventional phacoemulsification surgery: 12-month results. Br. J. Ophthalmol. 2021, 105, 631–638. [Google Scholar] [CrossRef] [PubMed]
- Popovic, M.; Campos-Möller, X.; Schlenker, M.B.; Ahmed, I.I.K. Efficacy and safety of femtosecond laser-assisted cataract surgery compared with manual cataract surgery: A meta-analysis of 14,567 eyes. Ophthalmology 2016, 123, 2113–2126. [Google Scholar] [CrossRef] [PubMed]
- Ang, R.E.T.; Quinto, M.M.S.; Cruz, E.M.; Rivera, M.C.R.; Martinez, G.H.A. Comparison of clinical outcomes between femtosecond laser-assisted versus conventional phacoemulsification. Eye Vis. 2018, 5, 8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferreira, T.B.; Ribeiro, F.J.; Pinheiro, J.; Ribeiro, P.; O’Neill, J.G. Comparison of surgically induced astigmatism and morphologic features resulting from femtosecond laser and manual clear corneal incisions for cataract surgery. J. Refract. Surg. 2018, 34, 322–329. [Google Scholar] [CrossRef]
- Schiffman, R.M.; Christianson, M.D.; Jacobsen, G.; Hirsch, J.D.; Reis, B.L. Reliability and validity of the ocular surface disease index. Arch. Ophthalmol. 2000, 118, 615–621. [Google Scholar] [CrossRef]
- Wei, A.; Le, Q.; Hong, J.; Wang, W.; Wang, F.; Xu, J. Assessment of lower tear meniscus. Optom. Vis. Sci. Off. Publ. Am. Acad. Optom. 2016, 93, 1420–1425. [Google Scholar] [CrossRef]
- Stevens, S. Schirmer’s test. Community Eye Health 2011, 24, 45. [Google Scholar] [PubMed]
- Wolffsohn, J.S.; Arita, R.; Chalmers, R.; Djalilian, A.; Dogru, M.; Dumbleton, K.; Gupta, P.K.; Karpecki, P.; Lazreg, S.; Pult, H.; et al. Tfos dews ii diagnostic methodology report. Ocul. Surf. 2017, 15, 539–574. [Google Scholar] [CrossRef]
- Hong, J.; Sun, X.; Wei, A.; Cui, X.; Li, Y.; Qian, T.; Wang, W.; Xu, J. Assessment of tear film stability in dry eye with a newly developed keratograph. Cornea 2013, 32, 716–721. [Google Scholar] [CrossRef]
- Yu, Y.; Hua, H.; Wu, M.; Yu, Y.; Yu, W.; Lai, K.; Yao, K. Evaluation of dry eye after femtosecond laser-assisted cataract surgery. J. Cataract. Refract. Surg. 2015, 41, 2614–2623. [Google Scholar] [CrossRef] [PubMed]
- Shao, D.; Zhu, X.; Sun, W.; Cheng, P.; Chen, W.; Wang, H. Effects of femtosecond laser-assisted cataract surgery on dry eye. Exp. Ther. Med. 2018, 16, 5073–5078. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schargus, M.; Ivanova, S.; Stute, G.; Dick, H.B.; Joachim, S.C. Comparable effects on tear film parameters after femtosecond laser-assisted and conventional cataract surgery. Int. Ophthalmol. 2020, 40, 3097–3104. [Google Scholar] [CrossRef] [PubMed]
- Ju, R.H.; Chen, Y.; Chen, H.S.; Zhou, W.J.; Yang, W.; Lin, Z.D.; Wu, Z.M. Changes in ocular surface status and dry eye symptoms following femtosecond laser-assisted cataract surgery. Int. J. Ophthalmol. 2019, 12, 1122–1126. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Zhang, H. Changes of tear film and corneal sensativity after femtosecond laser-assisted cataract extraction surgery. Chin. J. Exp. Ophthalmol. 2018, 36, 222–226. [Google Scholar]
- Xu, R.; Zhao, S. The effect comparison of femtosecond laser-assisted phacoemusification and microincision phacoemusification on ocualr surface. Chin. J. Exp. Ophthalmol. 2018, 37, 907–913. [Google Scholar]
- Yanai, R.; Yamada, N.; Ueda, K.; Tajiri, M.; Matsumoto, T.; Kido, K.; Nakamura, S.; Saito, F.; Nishida, T. Evaluation of povidone-iodine as a disinfectant solution for contact lenses: Antimicrobial activity and cytotoxicity for corneal epithelial cells. Contact Lens Anterior Eye J. Br. Contact Lens Assoc. 2006, 29, 85–91. [Google Scholar] [CrossRef]
- Rosenwasser, G.O. Complications of topical ocular anesthetics. Int. Ophthalmol. Clin. 1989, 29, 153–158. [Google Scholar] [CrossRef]
- Hwang, H.B.; Kim, H.S. Phototoxic effects of an operating microscope on the ocular surface and tear film. Cornea 2014, 33, 82–90. [Google Scholar] [CrossRef]
- Salomão, M.Q.; Ambrósio, R., Jr.; Wilson, S.E. Dry eye associated with laser in situ keratomileusis: Mechanical microkeratome versus femtosecond laser. J. Cataract. Refract. Surg. 2009, 35, 1756–1760. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shaheen, B.S.; Bakir, M.; Jain, S. Corneal nerves in health and disease. Surv. Ophthalmol. 2014, 59, 263–285. [Google Scholar] [CrossRef] [PubMed]
- Wu, B.M.; Williams, G.P.; Tan, A.; Mehta, J.S. A comparison of different operating systems for femtosecond lasers in cataract surgery. J. Ophthalmol. 2015, 2015, 616478. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tomlinson, A.; Khanal, S.; Ramaesh, K.; Diaper, C.; McFadyen, A. Tear film osmolarity: Determination of a referent for dry eye diagnosis. Investig. Ophthalmol. Vis. Sci. 2006, 47, 4309–4315. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chotikavanich, S.; de Paiva, C.S.; Li, D.Q.; Chen, J.J.; Bian, F.; Farley, W.J.; Pflugfelder, S.C. Production and activity of matrix metalloproteinase-9 on the ocular surface increase in dysfunctional tear syndrome. Investig. Ophthalmol. Vis. Sci. 2009, 50, 3203–3209. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Usuba, F.S.; de Medeiros-Ribeiro, A.C.; Novaes, P.; Aikawa, N.E.; Bonfiglioli, K.; Santo, R.M.; Bonfá, E.; Alves, M.R. Dry eye in rheumatoid arthritis patients under tnf-inhibitors: Conjunctival goblet cell as an early ocular biomarker. Sci. Rep. 2020, 10, 14054. [Google Scholar] [CrossRef]
- Kim, W.J.; Ahn, Y.J.; Kim, M.H.; Kim, H.S.; Kim, M.S.; Kim, E.C. Lipid layer thickness decrease due to meibomian gland dysfunction leads to tear film instability and reflex tear secretion. Ann. Med. 2022, 54, 893–899. [Google Scholar] [CrossRef]
D1 | D2 | D3 | D4 | D5 | D6 | D7 | Overall | |
---|---|---|---|---|---|---|---|---|
Yu [22] | Moderate | Low | Low | Low | Low | Moderate | Low | Moderate |
Shao [23] | Low | Low | Low | Low | Low | Moderate | Moderate | Moderate |
Schargus [24] | Low | Low | Low | Low | Low | Low | Low | Low |
Ju [25] | Moderate | Low | Low | Low | Severe | Moderate | Moderate | Severe |
Zhou [26] | Moderate | Low | Low | Low | Low | Moderate | Moderate | Moderate |
Xu [27] | Moderate | Low | Low | Low | Low | Moderate | Moderate | Moderate |
Author | Year | Type | Country | Study Population | Num of Patients | Num of Eyes | Age, Year (Mean ± SD) | Male (n, %) | Cataract Grading | Phaco Time (s) |
---|---|---|---|---|---|---|---|---|---|---|
Yu [22] | 2015 | PCS | China | FLACS | 73 | 73 | 69.0 ± 10.6 | 34 (46.6) | NS 1+ (24.7%), NS 2+ (53.4%), NS 3+ (17.8%), NS 4+ (4.1%) | 35.5 ± 18.4 |
MCS | 64 | 64 | 71.8 ± 10.1 | 27 (42.2) | NS 1+ (23.4%), NS 2+ (54.7%), NS 3+ (18.8%), NS 4+ (3.1%) | 46.7 ± 26.7 | ||||
Shao [23] | 2018 | RCT | China | FLACS | 123 | 150 | 65.7 ± 11.8 | 67 (44.7) | NR | NR |
MCS | 110 | 150 | 69.1 ± 12.6 | 62 (41.3) | NR | NR | ||||
Schargus [24] | 2020 | RCT | Germany | FLACS | 17 | 17 | 67.4 ± 9.7 | 7 (41.2) | NR | NR |
MCS | 17 | 17 | 66.0 ± 7.5 | 9 (52.9) | NR | NR | ||||
Ju [25] | 2019 | PCS | China | FLACS | 38 | 38 | 72.6 ± 8.7 | 16 (42.1) | NR | NR |
Zhou [26] | 2018 | PCS | China | FLACS | 26 | 26 | 63.2 ± 8.6 | 11 (42.3) | NS 1+ (0%), NS 2+ (38.5%), NS 3+ (61.5%), NS 4+ (0%) | NR |
MCS | 27 | 27 | 60.6 ± 6.4 | 10 (37.0) | NS 1+ (0%), NS 2+ (40.7%), NS 3+ (59.3%), NS 4+ (0%) | NR | ||||
Xu [27] | 2019 | PCS | China | FLACS | 55 | 55 | 64.5 ± 7.6 | 25 (45.5) | NS 1+ (20.0%), NS 2+ (36.4%), NS 3+ (30.9%), NS 4+ (12.7%) | 37.7 ± 10.5 |
MCS | 61 | 61 | 63.2 ± 8.6 | 27 (44.3) | NS 1+ (23.0%), NS 2+ (34.4%), NS 3+ (31.1%), NS 4+ (11.5%) | 48.0 ± 13.6 |
Study | Group | Num of Eyes | OSDI | Tear Meniscus Height | Schirmer’s Test | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Baseline | 1 Day | 1 Week | 1 Month | 3 Months | Baseline | 1 Day | 1 Week | 1 Month | 3 Month | Baseline | 1 Day | 1 Week | 1 Month | 3 Months | |||
Yu [22] | FLACS | 73 | 22.9 ± 4.2 | NR | 11.0 ± 5.5 | 9.1 ± 6.0 | NR | 0.25 ± 0.12 | 0.32 ± 0.19 | 0.27 ± 0.13 | 0.28 ± 0.16 | NR | 9.2 ± 7.0 | 10.3 ± 8.5 | 7.2 ± 6.4 | 7.6 ± 7.2 | NR |
MCS | 64 | 23.7 ± 5.8 | NR | 8.8 ± 4.9 | 8.0 ± 4.9 | NR | 0.24 ± 0.15 | 0.30 ± 0.17 | 0.25 ± 0.15 | 0.26 ± 0.14 | NR | 9.4 ± 7.4 | 11.0 ± 8.6 | 7.3 ± 6.3 | 8.6 ± 6.9 | NR | |
Shao [23] | FLACS | 150 | 0.5 ± 0.2 | 5.3 ± 0.5 | 5.0 ± 0.5 | 2.2 ± 0.7 | 0.6 ± 0.3 | 0.37 ± 0.09 | 0.41 ± 0.13 | 0.22 ± 0.07 | 0.32 ± 0.05 | 0.36 ± 0.07 | 10.9 ± 4.1 | 11.3 ± 4.9 | 7.6 ± 3.7 | 8.8 ± 2.6 | 11.2 ± 5.0 |
MCS | 150 | 0.5 ± 0.4 | 4.0 ± 0.3 | 3.5 ± 0.6 | 1.8 ± 0.7 | 0.5 ± 0.4 | 0.35 ± 0.08 | 0.44 ± 0.11 | 0.20 ± 0.06 | 0.30 ± 0.06 | 0.37 ± 0.06 | 9.4 ± 4.0 | 10.7 ± 3.7 | 7.2 ± 3.3 | 8.0 ± 2.7 | 10.1 ± 5.4 | |
Schargus [24] | FLACS | 17 | NR | NR | NR | NR | NR | NR | NR | NR | NR | NR | 13.5 ± 7.9 | NR | NR | 12.3 ± 7.9 | 12.0 ± 8.3 |
MCS | 17 | NR | NR | NR | NR | NR | NR | NR | NR | NR | NR | 12.7 ± 8.2 | NR | NR | 14.9 ± 8.2 | 17.2 ± 8.7 | |
Ju [25] | FLACS | 38 | 8.4 ± 2.1 | 17.5 ± 5.5 | 16.0 ± 6.7 | 13.5 ± 3.6 | 11.7 ± 3.0 | 0.32 ± 0.11 | 0.41 ± 0.13 | 0.31 ± 0.07 | 0.30 ± 0.09 | 0.29 ± 0.07 | 12.9 ± 3.2 | 13.4 ± 2.6 | 10.6 ±2.3 | 11.4 ± 3.0 | 11.6 ± 2.6 |
Zhou [26] | FLACS | 26 | NR | NR | NR | NR | NR | NR | NR | NR | NR | NR | 12.8 ± 1.9 | NR | 12.1 ±1.5 | 12.2 ± 2.2 | 12.2 ± 1.7 |
MCS | 27 | NR | NR | NR | NR | NR | NR | NR | NR | NR | NR | 13.5 ± 2.5 | NR | 11.9 ±1.5 | 11.3 ± 1.4 | 13.0 ± 2.1 | |
Xu [27] | FLACS | 55 | 24.5 ± 6.5 | NR | 10.4 ± 4.2 | 7.8 ± 4.4 | NR | NR | NR | NR | NR | NR | 9.4 ± 4.8 | NR | 9.4 ± 4.0 | 8.9 ± 3.7 | NR |
MCS | 61 | 24.8 ± 7.5 | NR | 11.6 ± 5.6 | 8.2 ± 4.9 | NR | NR | NR | NR | NR | NR | 8.7 ± 4.4 | NR | 8.7 ± 3.5 | 8.7 ± 3.3 | NR |
Study | Group | Num of Eyes | Fluorescein Staining | First Tear Breakup Time | Average Tear Breakup Time | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Baseline | 1 Day | 1 Week | 1 Month | 3 Months | Baseline | 1 Day | 1 Week | 1 Month | 3 Month | Baseline | 1 Day | 1 Week | 1 Month | 3 Months | |||
Yu [22] | FLACS | 73 | 0.40 ± 0.52 | 1.46 ± 0.73 | 0.84 ± 0.53 | 0.59 ± 0.55 | NR | 5.5 ± 3.5 | 4.9 ± 3.4 | 4.4 ± 2.8 | 5.6 ± 3.9 | NR | 7.4 ± 4.3 | 7.2 ± 4.2 | 6.5 ± 3.3 | 7.7 ± 4.5 | NR |
MCS | 64 | 0.36 ± 0.49 | 1.13 ± 0.70 | 0.67 ± 0.65 | 0.39 ± 0.55 | NR | 5.0 ± 2.8 | 4.7 ± 3.5 | 4.6 ± 4.0 | 4.8 ± 3.4 | NR | 6.8 ± 4.3 | 7.1 ± 4.2 | 6.3 ± 4.6 | 7.1 ± 4.6 | NR | |
Shao [23] | FLACS | 150 | 0.46 ± 0.20 | 2.34 ± 0.31 | 1.88 ± 0.29 | 0.97 ± 0.20 | 0.51 ± 0.69 | 11.8 ± 0.8 | 8.5 ± 1.4 | 8.0 ± 1.4 | 11.7 ± 2.1 | 11.8 ± 2.8 | 12.7 ± 1.1 | 10.0 ± 0.8 | 9.0 ± 0.9 | 12.6 ± 1.7 | 12.9 ± 1.6 |
MCS | 150 | 0.38 ± 0.22 | 1.22 ± 0.28 | 1.02 ± 0.21 | 0.48 ± 0.14 | 0.46 ± 0.35 | 11.0 ± 1.2 | 8.2 ± 0.0 | 8.1 ± 1.1 | 10.9 ± 1.6 | 11.0 ± 2.1 | 13.2 ± 1.3 | 10.1 ± 0.8 | 9.3 ± 0.9 | 13.2 ± 1.8 | 13.4 ± 1.4 | |
Schargus [24] | FLACS | 17 | 5.14 ± 0.39 | NR | NR | NR | NR | NR | NR | NR | NR | NR | NR | NR | NR | NR | NR |
MCS | 17 | 5.57 ± 0.17 | NR | NR | NR | NR | NR | NR | NR | NR | NR | NR | NR | NR | NR | NR | |
Ju [25] | FLACS | 38 | 0.89 ± 0.73 | 4.13 ± 1.17 | 3.21 ± 0.91 | 1.34 ± 0.71 | 1.10 ± 0.77 | 10.7 ± 1.2 | 8.1 ± 1.2 | 7.0 ± 1.7 | 10.4 ± 1.5 | 11.1 ± 2.1 | 11.6 ± 1.0 | 9.4 ± 1.0 | 8.5 ± 0.9 | 11.3 ± 0.8 | 11.3 ± 0.9 |
Zhou [26] | FLACS | 26 | NR | NR | NR | NR | NR | 14.3 ± 2.0 | NR | 10.2 ± 2.5 | 10.7 ± 2.0 | 14.2 ± 1.9 | NR | NR | NR | NR | NR |
MCS | 27 | NR | NR | NR | NR | NR | 14.4 ± 2.2 | NR | 8.8 ± 2.0 | 9.3 ± 1.9 | 14.3 ± 1.5 | NR | NR | NR | NR | NR | |
Xu [27] | FLACS | 55 | 0.55 ± 0.72 | NR | 1.38 ± 0.97 | 0.93 ± 1.02 | NR | 6.2 ± 2.0 | NR | 3.6 ± 1.6 | 4.8 ± 2.1 | NR | NR | NR | NR | NR | NR |
MCS | 61 | 0.51 ± 0.52 | NR | 1.01 ± 0.86 | 0.66 ± 0.89 | NR | 6.0 ± 1.6 | NR | 4.5 ± 2.0 | 4.8 ± 1.9 | NR | NR | NR | NR | NR | NR |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, W.-T.; Chen, Y.-Y.; Hung, M.-C. Dry Eye Following Femtosecond Laser-Assisted Cataract Surgery: A Meta-Analysis. J. Clin. Med. 2022, 11, 6228. https://doi.org/10.3390/jcm11216228
Chen W-T, Chen Y-Y, Hung M-C. Dry Eye Following Femtosecond Laser-Assisted Cataract Surgery: A Meta-Analysis. Journal of Clinical Medicine. 2022; 11(21):6228. https://doi.org/10.3390/jcm11216228
Chicago/Turabian StyleChen, Wei-Tsun, Yu-Yen Chen, and Man-Chen Hung. 2022. "Dry Eye Following Femtosecond Laser-Assisted Cataract Surgery: A Meta-Analysis" Journal of Clinical Medicine 11, no. 21: 6228. https://doi.org/10.3390/jcm11216228
APA StyleChen, W.-T., Chen, Y.-Y., & Hung, M.-C. (2022). Dry Eye Following Femtosecond Laser-Assisted Cataract Surgery: A Meta-Analysis. Journal of Clinical Medicine, 11(21), 6228. https://doi.org/10.3390/jcm11216228