Does Orthodontic Treatment Change the Preferred Chewing Side of Patients with Malocclusion?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Variables for Measurement
2.3. Outcome
2.4. Statistical Analyses
3. Results
3.1. Baseline Characteristics
3.2. Univariate Logistic Regression Analysis
3.3. Multivariate Logistic Regression Analysis
3.4. A model to Predict Changes in PCS
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Khamnei, S.; Sadat-Ebrahimi, S.R.; Salarilak, S.; Savadi Oskoee, S.; Houshyar, Y.; Shakouri, S.K.; Salekzamani, Y.; Zamanlu, M. Manifestation of hemispheric laterality in chewing side preference and handedness. BioImpacts BI 2019, 9, 189–193. [Google Scholar] [CrossRef] [Green Version]
- Khedr, E.M.; Hamed, E.; Said, A.; Basahi, J. Handedness and language cerebral lateralization. Eur. J. Appl. Physiol. 2002, 87, 469–473. [Google Scholar] [CrossRef]
- Ocklenburg, S.; Beste, C.; Güntürkün, O. Handedness: A neurogenetic shift of perspective. Neurosci. Biobehav. Rev. 2013, 37, 2788–2793. [Google Scholar] [CrossRef]
- Pihlaja, K.; Vuollo, V.; Sidlauskas, M.; Harila, V.; Sidlauskas, A.; Salomskiene, L.; Heikkinen, T. Relations of laterality and chewing sidedness in twins. Eur. J. Orthod. 2019, 41, 244–249. [Google Scholar] [CrossRef]
- Oh, S.; Yu, S.J.; Lee, K.M.; Son, S.A.; Kwon, Y.H.; Kim, Y.I. Association between brain lateralization and mixing ability of chewing side. J. Dent. Sci. 2017, 12, 133–138. [Google Scholar]
- Tran, U.S.; Stieger, S.; Voracek, M. Evidence for general right-, mixed-, and left-sidedness in self-reported handedness, footedness, eyedness, and earedness, and a primacy of footedness in a large-sample latent variable analysis. Neuropsychologia 2014, 62, 220–232. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; Lyu, Y.; Bekrater-Bodmann, R.; Flor, H.; Tong, S. Handedness change after dominant side amputation: Evaluation from a hand laterality judgment task. In Proceedings of the 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Milan, Italy, 25–29 August 2015; pp. 8002–8005. [Google Scholar]
- Gordon, J.A.; Stryker, M.P. Experience-dependent plasticity of binocular responses in the primary visual cortex of the mouse. J. Neurosci. 1996, 86, 3274–3286. [Google Scholar] [CrossRef] [Green Version]
- Pond, L.H.; Barghi, N.; Barnwell, G.M. Occlusion and chewing side preference. J. Prosthet. Dent. 1986, 55, 498–500. [Google Scholar] [CrossRef]
- Christensen, L.V.; Radue, J.T. Lateral preference in mastication: A feasibility study. J. Oral Rehabil. 1985, 12, 421–427. [Google Scholar] [CrossRef]
- Mc Donnell, S.T.; Hector, M.P.; Hannigan, A. Chewing side preferences in children. J. Oral Rehabil. 2004, 31, 855–860. [Google Scholar] [CrossRef]
- Varela, J.M.F.; Castro, N.B.; Biedma, B.M.; Da Silva Domínguez, J.L.; Quintanilla, J.S.; Muñoz, F.M.; Penín, U.S.; Bahillo, J.G. A comparison of the methods used to determine chewing preference. J. Oral Rehabil. 2003, 30, 990–994. [Google Scholar] [CrossRef]
- Nissan, J.; Gross, M.D.; Shifman, A.; Tzadok, L.; Assif, D. Chewing side preference as a type of hemispheric laterality. J. Oral Rehabil. 2004, 31, 412–416. [Google Scholar] [CrossRef]
- Paphangkorakit, J.; Thothongkam, N.; Supanont, N. Chewing-side determination of three food textures. J. Oral Rehabil. 2006, 33, 2–7. [Google Scholar] [CrossRef]
- Rovira-Lastra, B.; Flores-Orozco, E.I.; Ayuso-Montero, R.; Peraire, M.; Martinez-Gomis, J. Peripheral, functional and postural asymmetries related to the preferred chewing side in adults with natural dentition. J. Oral Rehabil. 2016, 43, 279–285. [Google Scholar] [CrossRef] [Green Version]
- Barcellos, D.C.; da Silva, M.A.; Batista, G.R.; Pleffken, P.R.; Pucci, C.R.; Borges, A.B.; Torres, C.R.G.; de Paiva Gonçalves, S.E. Absence or weak correlation between chewing side preference and lateralities in primary, mixed and permanent dentition. Arch. Oral Biol. 2012, 57, 1086–1092. [Google Scholar] [CrossRef]
- Martinez-Gomis, J.; Lujan-Climent, M.; Palau, S.; Bizar, J.; Salsench, J.; Peraire, M. Relationship between chewing side preference and handedness and lateral asymmetry of peripheral factors. Arch. Oral Biol. 2009, 54, 101–107. [Google Scholar] [CrossRef] [Green Version]
- Minato, A.; Ono, T.; Miyamoto, J.J.; Honda, E.; Kurabayashi, T.; Moriyama, K. Preferred chewing side-dependent two-point discrimination and cortical activation pattern of tactile tongue sensation. Behav. Brain Res. 2009, 203, 118–126. [Google Scholar] [CrossRef]
- Shinagawa, H.; Ono, T.; Ishiwata, Y.; Honda, E.; Sasaki, T.; Taira, M.; Iriki, A.; Kuroda, T. Hemispheric dominance of tongue control depends on the chewing-side preference. J. Dent. Res. 2003, 82, 278–283. [Google Scholar] [CrossRef]
- Diernberger, S.; Bernhardt, O.; Schwahn, C.; Kordass, B. Self-reported chewing side preference and its associations with occlusal, temporomandibular and prosthodontic factors: Results from the population-based Study of Health in Pomerania (SHIP-0). J. Oral Rehabil. 2008, 35, 613–620. [Google Scholar] [CrossRef]
- Costa, E.D.; Gomes, A.F.; Assis, A.C.S.; Ambrosano, G.M.B.; Lopes, S.L.P.C. Volumetric evaluation of temporomandibular joints in patients with a chewing-side preference: A CBCT study. Gen. Dent. 2021, 69, 38–43. [Google Scholar]
- Henrikson, T.; Ekberg, E.; Nilner, M. Can orthodontic treatment improve mastication? a controlled, prospective and longitudinal study. Swed. Dent. J. 2009, 33, 59–65. [Google Scholar] [PubMed]
- Alshammari, A.; Almotairy, N.; Kumar, A.; Grigoriadis, A. Effect of malocclusion on jaw motor function and chewing in children: A systematic review. Clin. Oral Investig. 2022, 26, 2335–2351. [Google Scholar] [CrossRef] [PubMed]
- Brin, I.; Ben-Bassat, Y.; Blustein, Y.; Ehrlich, J.; Hochman, N.; Marmary, Y.; Yaffe, A. Skeletal and functional effects of treatment for unilateral posterior crossbite. Am. J. Orthod. Dentofac. Orthop. 1996, 109, 173–179. [Google Scholar] [CrossRef]
- Piancino, M.G.; Falla, D.; Merlo, A.; Vallelonga, T.; de Biase, C.; Dalessandri, D.; Debernardi, C. Effects of therapy on masseter activity and chewing kinematics in patients with unilateral posterior crossbite. Arch. Oral Biol. 2016, 67, 61–67. [Google Scholar] [CrossRef]
- Pahkala, R.H.; Kellokoski, J.K. Surgical-orthodontic treatment and patients’ functional and psychosocial well-being. Am. J. Orthod. Dentofac. Orthop. 2007, 132, 158–164. [Google Scholar] [CrossRef]
- Heil, A.; Lazo Gonzalez, E.; Hilgenfeld, T.; Kickingereder, P.; Bendszus, M.; Heiland, S.; Ozga, A.K.; Sommer, A.; Lux, C.J.; Zingler, S. Lateral cephalometric analysis for treatment planning in orthodontics based on MRI compared with radiographs: A feasibility study in children and adolescents. PLoS ONE 2017, 12, e0174524. [Google Scholar] [CrossRef] [Green Version]
- Shastri, D.; Tandon, P.; Nagar, A.; Singh, A. Cephalometric norms for the upper airway in a healthy North Indian population. Contemp. Clin. Dent. 2015, 6, 183–188. [Google Scholar] [CrossRef]
- Gandikota, C.S.; Rayapudi, N.; Challa, P.L.; Juvvadi, S.R.; Yudhister, P.V.; Rao, G.H. A comparative study of linear measurements on facial skeleton with frontal and lateral cephalogram. Contemp. Clin. Dent. 2012, 3, 176–179. [Google Scholar]
- Zhou, S.; Yan, J.; Da, H.; Yang, Y.; Wang, N.; Wang, W.; Ding, Y.; Sun, S. A correlational study of scoliosis and trunk balance in adult patients with mandibular deviation. PLoS ONE 2013, 8, e59929. [Google Scholar] [CrossRef] [Green Version]
- Boel, T.; Sofyanti, E.; Sufarnap, E. Analyzing menton deviation in posteroanterior cephalogram in early detection of temporomandibular disorder. Int. J. Dent. 2017, 2017, 5604068. [Google Scholar] [CrossRef] [Green Version]
- Sm, S.; Tb, D.; Lb, K. Measurement and interpretation of a maxillary occlusal cant in the frontal plane. J. Oral Maxillofac. Surg. 2008, 66, 2498–2502. [Google Scholar]
- David, O.T.; Tuce, R.A.; Munteanu, O.; Neagu, A.; Panainte, I. Evaluation of the influence of patient positioning on the reliability of lateral cephalometry. Radiol. Med. 2017, 122, 520–529. [Google Scholar] [CrossRef] [PubMed]
- Rilo, B.; Fernandez, J.; Da Silva, L.; Martinez Insua, A.; Santana, U. Frontal-plane lateral border movements and chewing cycle characteristics. J. Oral Rehabil. 2001, 28, 930–936. [Google Scholar] [CrossRef] [PubMed]
- Tsolka, P.; Woelfel, J.B.; Man, W.K.; Preiskel, H.W. A laboratory assessment of recording reliability and analysis of the K6 Diagnostic System. J. Craniomandib. Disord. Facial Oral Pain 1992, 6, 273–280. [Google Scholar]
- Rovira-Lastra, B.; Flores-Orozco, E.I.; Salsench, J.; Peraire, M.; Martinez-Gomis, J. Is the side with the best masticatory performance selected for chewing? Arch. Oral Biol. 2014, 59, 1316–1320. [Google Scholar] [CrossRef]
- Balasundaram, P.; Avulakunta, I.D. Human Growth and Development. 2022. Available online: https://edisciplinas.usp.br/pluginfile.php/5565157/mod_resource/content/1/Human%20Growth%20and%20Development_Chapter.pdf (accessed on 15 December 2021).
- Shiga, H.; Kobayashi, Y.; Arakawa, I.; Shonai, Y. Selection of food and chewing side for evaluating masticatory path stability. Odontology 2003, 91, 26–30. [Google Scholar] [CrossRef]
- Boushell, L.W.; Sturdevant, J.R. Clinical Significance of Dental Anatomy, Histology, Physiology, and Occlusion; Sturdevant’s Art and Science of Operative Dentistry; Elsevier: St. Louis, MO, USA, 2019; pp. 1–39. [Google Scholar]
- Kato, C. Factors associated with eruption of the impacted maxillary third molars after second molar extraction. Am. J. Orthod. Dentofac. Orthop. 2022; in press. [Google Scholar] [CrossRef]
- Mohl, N.D.; Zarb, G.A.; Carlsson, G.E.; Rugh, J.D. A Textbook of Occlusion; Quintessence Pub. Co.: Berlin, Germany, 1988. [Google Scholar]
- Jiang, H.; Liu, H.; Liu, G.; Jin, Z.; Liu, X. The effects of chewing-side preference on human brain activity during tooth clenching: An fMRI study. J. Oral Rehabil. 2010, 37, 877–883. [Google Scholar] [CrossRef]
- Nissan, J.; Berman, O.; Gross, O.; Haim, B.; Chaushu, G. The influence of partial implant-supported restorations on chewing side preference. J. Oral Rehabil. 2011, 38, 165–169. [Google Scholar] [CrossRef]
- Sainburg, R.L. Handedness: Differential specializations for control of trajectory and position. Exerc. Sport Sci. Rev. 2005, 33, 206–213. [Google Scholar] [CrossRef]
- Klöppel, S.; Vongerichten, A.; van Eimeren, T.; Frackowiak, R.S.J.; Siebner, H.R. Can left-handedness be switched? Insights from an early switch of handwriting. J. Neurosci. 2007, 27, 7847–7853. [Google Scholar] [CrossRef] [Green Version]
- Shinagawa, H.; Ono, T.; Honda, E.; Sasaki, T.; Taira, M.; Iriki, A.; Kuroda, T.; Ohyama, K. Chewing-side preference is involved in differential cortical activation patterns during tongue movements after bilateral gum-chewing: A functional magnetic resonance imaging study. J. Dent. Res. 2004, 83, 762–766. [Google Scholar] [CrossRef] [PubMed]
- Takaki, P.; Vieira, M.; Bommarito, S. Maximum bite force analysis in different age groups. Int. Arch. Otorhinolaryngol. 2014, 18, 272–276. [Google Scholar] [PubMed] [Green Version]
- Hou, C.H.; Liu, Y.M.; Pan, C.Y.; Tsai, H.M. Surgical alteration of occlusal plane angulation followed by orthodontic application of T thodontic application of TADs and Yin-Y ADs and Yin-Yang Arch wire in hypodivergent prognathic malocclusion. Taiwan J. Orthod. 2021, 33, 4. [Google Scholar]
- Farret, M.M. Occlusal plane canting: A treatment alternative using skeletal anchorage. Dent. Press. J. Orthod. 2019, 24, 88–105. [Google Scholar] [CrossRef] [PubMed]
- Komori, R.; Deguchi, T.; Tomizuka, R.; Takano-Yamamoto, T. The use of miniscrew as orthodontic anchorage in correction of maxillary protrusion with occlusal cant, spaced arch, and midline deviation without surgery. Orthod. Art Pract. Dentofac. Enhanc. 2013, 14, 156–167. [Google Scholar] [CrossRef] [PubMed]
- Akarsu-Guven, B.; Atik, E.; Gorucu-Coskuner, H.; Aksu, M. Vertical facial skeletal asymmetry and occlusal cant relationship in patients with unilateral cleft lip and palate. Cleft Palate-Craniofacial J. 2021, 58, 943–950. [Google Scholar] [CrossRef]
- Kwon, S.M.; Baik, H.S.; Jung, H.D.; Jang, W.; Choi, Y.J. Diagnosis and surgical outcomes of facial asymmetry according to the occlusal cant and menton deviation. J. Oral Maxillofac. Surg. 2019, 77, 1261–1275. [Google Scholar] [CrossRef]
- Kokai, S.; Yabushita, T.; Zeredo, J.L.; Toda, K.; Soma, K. Functional changes of the temporomandibular joint mechanoreceptors induced by a lateral mandibular shift in rats. Angle Orthod. 2007, 77, 436–441. [Google Scholar] [CrossRef]
- Kato, C.; Fujita, K.; Kokai, S.; Ishida, T.; Shibata, M.; Naito, S.; Yabushita, T.; Ono, T. Increased occlusal vertical dimension induces cortical plasticity in the rat face primary motor cortex. Behav. Brain Res. 2012, 228, 254–260. [Google Scholar] [CrossRef]
- Yabushita, T.; Zeredo, J.L.; Fujita, K.; Toda, K.; Soma, K. Functional adaptability of jaw-muscle spindles after bite-raising. J. Dent. Res. 2006, 85, 849–853. [Google Scholar] [CrossRef] [PubMed]
- Jiang, H.; Li, C.; Wang, Z.; Cao, J.; Shi, X.; Ma, J.; Liu, H. Assessment of osseous morphology of temporomandibular joint in asymptomatic participants with chewing-side preference. J. Oral Rehabil. 2015, 42, 105–112. [Google Scholar] [CrossRef] [PubMed]
Factors | Total (n = 108) |
---|---|
Demographic | |
Age (years, mean ± SD) | 23.3 ± 8.1 |
<20 (%) | 43 (39.8) |
≥20 (%) | 65 (60.2) |
Sex | |
Male (%) | 36 (33.3) |
Female (%) | 72 (66.7) |
Clinical | |
With orthognathic surgery | |
Yes (%) | 54 (50.0) |
No (%) | 54 (50.0) |
With maxillary premolar or molar extraction | |
Yes (%) | 55 (50.9) |
No (%) | 53 (49.1) |
With mandibular premolar or molar extraction | |
Yes (%) | 28 (25.9) |
No (%) | 80 (74.1) |
Cephalometric | |
Change in ANB angle (degree, mean ± SD) | 1.8 ± 3.8 |
Change in mandibular plane angle (degree, mean ± SD) | 1.8 ± 3.4 |
Change in mandibular plane angle (mm, mean ± SD) | 0.8 ± 1.3 |
Change in mandibular plane angle | 0.4 ± 6.7 |
<1 (%) | 78 (72.2) |
≥1 (%) | 30 (27.8) |
Dental | |
Molar relationship | |
Symmetry (%) | 89 (82.4) |
Asymmetry (%) | 19 (17.6) |
Canine relationship | |
Symmetry (%) | 84 (77.8) |
Asymmetry (%) | 24 (22.2) |
Anterior cross bite | |
Yes (%) | 55 (57.8) |
No (%) | 51 (47.2) |
Anterior open bite | |
Yes (%) | 89 (82.4) |
No (%) | 19 (17.6) |
Posterior cross bite | |
Yes (%) | 36 (33.3) |
No (%) | 72 (67.7) |
Posterior open bite | |
Yes (%) | 44 (59.3) |
No (%) | 64 (40.7) |
Mandibular kinesiograph | |
Jaw movement | |
chopping type (%) | 30 (27.8) |
grinding type (%) | 78 (72.2) |
Maximum lateral movement to PCS (mm, mean ± SD) | 5.7 ± 2.9 |
<10 (%) | 101 (93.5) |
≥10 (%) | 7 (6.5) |
Exposures | uPCS (n = 75) | cPCS (n = 33) | Univariate Logistic Regression | ||
---|---|---|---|---|---|
OR | 95% CI | p Value | |||
Demographic | |||||
Age | |||||
<20 (%) | 26 (34.7) | 17 (51.5) | 2.00 | 0.87–4.60 | 0.10 |
≥20 (%) | 49 (65.3) | 16 (48.5) | 1 (reference) | ||
Sex | |||||
Male (%) | 21 (28.0) | 15 (45.5) | 2.14 | 0.91–5.02 | 0.08 |
Female (%) | 54 (72.0) | 18 (54.5) | 1 (reference) | ||
Clinical | |||||
With orthognathic surgery | |||||
Yes (%) | 38 (50.6) | 16 (49.5) | 0.92 | 0.40–2.07 | 0.84 |
No (%) | 37 (49.3) | 17 (51.5) | 1 (reference) | ||
With maxillary premolar or molar extraction | |||||
Yes (%) | 39 (52.0) | 16 (48.5) | 0.87 | 0.38–1.97 | 0.74 |
No (%) | 36 (48.0) | 17 (49.5) | 1 (reference) | ||
With mandibular premolar or molar extraction | |||||
Yes (%) | 22 (29.3) | 6 (18.2) | 0.53 | 0.19–1.47 | 0.23 |
No (%) | 53 (70.6) | 27 (81.8) | 1 (reference) | ||
Cephalometric | |||||
Change in ANB angle (degree, mean ± SD) | 1.69 ± 2.87 | 2.13 ± 5.35 | 1.03 | 0.98–1.14 | 0.57 |
Change in mandibular plane angle (degree, mean ± SD) | 1.99 ± 3.60 | 1.48 ± 3.04 | 0.95 | 0.84–1.08 | 0.48 |
Change in mandibular plane angle (mm, mean ± SD) | 0.60 ± 1.00 | 1.15 ± 1.67 | 1.39 | 1.01–1.92 | 0.05 |
Change in mandibular plane angle (degree, mean ± SD) | 0.27 ± 0.55 | 0.57 ± 0.79 | 2.01 | 1.08–3.73 | 0.03 |
<1 (%) | 59 (78.7) | 19 (57.6) | 1 (reference) | ||
≥1 (%) | 16 (21.3) | 14 (42.4) | 2.72 | 1.12–6.57 | 0.03 |
Dental | |||||
Molar relationship | |||||
Symmetry (%) | 64 (85.3) | 23 (75.8) | 1 (reference) | ||
Asymmetry (%) | 11 (14.7) | 8 (24.2) | 1.86 | 0.67–5.17 | 0.23 |
Caine relationship | |||||
Symmetry (%) | 60 (80.0) | 24 (72.7) | 1 (reference) | ||
Asymmetry (%) | 15 (20.0) | 9 (27.3) | 1.50 | 0.58–3.89 | 0.40 |
Anterior cross bite | |||||
Yes (%) | 38 (50.7) | 19 (57.6) | 1.32 | 0.58–3.02 | 0.50 |
No (%) | 37 (49.3) | 14 (42.4) | 1 (reference) | ||
Anterior open bite | |||||
Yes (%) | 64 (85.3) | 25 (75.8) | 0.54 | 0.19–1.49 | 0.23 |
No (%) | 11 (14.7) | 8 (24.4) | 1 (reference) | ||
Posterior cross bite | |||||
Yes (%) | 23 (30.7) | 13 (39.4) | 1.47 | 0.63–3.45 | 0.38 |
No (%) | 52 (69.3) | 20 (60.6) | 1 (reference) | ||
Posterior open bite | |||||
Yes (%) | 27 (36.0) | 17 (51.5) | 1.89 | 0.82–4.33 | 0.13 |
No (%) | 48 (64.0) | 16 (48.5) | 1 (reference) | ||
Mandibular kinesiograph | |||||
Jaw movement | |||||
chopping type (%) | 19 (25.3) | 11 (33.3) | 1.47 | 0.60–3.59 | 0.39 |
gridding type (%) | 56 (74.7) | 22 (66.7) | 1 (reference) | ||
Maximum lateral movement to PCS | |||||
<10 (%) | 73 (97.3) | 28 (84.9) | 1 (reference) | ||
≥10 (%) | 2 (2.7) | 5 (15.1) | 6.51 | 1.19–35.56 | 0.03 |
Multivariate Analysis | Assigned Point | |||
---|---|---|---|---|
Variables | OR | 95% CI | p Value | |
Age (years, ref ≥ 20) | ||||
<20 | 3.23 | 1.23–8.45 | 0.02 | =1 if age < 20 |
Occlusal canting change (degree, ref < 1) | ||||
≥1 | 3.55 | 1.29–9.84 | 0.01 | =1 if angle ≥ 1 |
Maximum mandibular lateral movement to PCS(mm, ref < 10) | ||||
≥10 | 5.76 | 0.99–33.4 | 0.05 | =1 if lateral movement to PCS ≥ 10 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arai, S.; Kato, C.; Watari, I.; Ono, T. Does Orthodontic Treatment Change the Preferred Chewing Side of Patients with Malocclusion? J. Clin. Med. 2022, 11, 6343. https://doi.org/10.3390/jcm11216343
Arai S, Kato C, Watari I, Ono T. Does Orthodontic Treatment Change the Preferred Chewing Side of Patients with Malocclusion? Journal of Clinical Medicine. 2022; 11(21):6343. https://doi.org/10.3390/jcm11216343
Chicago/Turabian StyleArai, Shuko, Chiho Kato, Ippei Watari, and Takashi Ono. 2022. "Does Orthodontic Treatment Change the Preferred Chewing Side of Patients with Malocclusion?" Journal of Clinical Medicine 11, no. 21: 6343. https://doi.org/10.3390/jcm11216343
APA StyleArai, S., Kato, C., Watari, I., & Ono, T. (2022). Does Orthodontic Treatment Change the Preferred Chewing Side of Patients with Malocclusion? Journal of Clinical Medicine, 11(21), 6343. https://doi.org/10.3390/jcm11216343