Plasma-Methylated SEPT9 for the Noninvasive Diagnosis of Gastric Cancer
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patient Recruitment and Ethical Consideration
2.2. Sample Collection, Processing, and Storage
2.3. cfDNA Extraction and Bisulfite Conversion
2.4. SEPT9 Gene Methylation Assay
2.5. Detection of Serum Tumor Markers
2.6. Statistical Analysis
3. Results
3.1. The Methylation Status of SEPT9 in Plasma DNA within Different Groups
3.2. The Diagnostic Value of Plasma mSEPT9 in Patients with GC
3.3. A Comparison of the Predictive Power of mSEPT9, CEA, CA19-9, and CA72-4 for GC Detection
3.4. Correlation of Pretreatment Plasma mSEPT9 with the Clinicopathological Characteristics of GC
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
GC | gastric cancer |
CSG | chronic superficial gastritis |
CAG | chronic atrophic gastritis |
GU | gastric ulcer |
GP | gastric polys |
CI | confidence interval |
CEA | carcinoembryonic antigen |
CA19-9 | carbohydrate antigen 19-9 |
CA72-4 | carbohydrate antigen 72-4 |
EGC | early gastric cancer |
cfDNA | cell-free DNA |
SEPT9 | Septin9 gene |
mSEPT9 | methylated SEPT9 |
Ct | cycle threshold |
BisDNA | bisulfite-modified DNA |
qPCR | qualitative assay for real-time polymerase chain reaction |
BGD | benign gastric diseases |
ROC | receiver operating characteristic curve |
AUC | the area under the ROC curve |
PPV | positive predictive value |
NPV | negative predictive value |
CpG | cytosine–guanine dinucleotide |
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef]
- Correa, P.; Piazuelo, M.B. The gastric precancerous cascade. J. Dig. Dis. 2012, 13, 2–9. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.; Chen, Q.; Zhao, Q.; Liu, M.; Guo, J. Value of combined detection of serum CEA, CA72-4, CA19-9, CA15-3 and CA12-5 in the diagnosis of gastric cancer. Ann. Clin. Lab. Sci. 2017, 47, 260–263. [Google Scholar]
- Feng, F.; Tian, Y.; Xu, G.; Liu, Z.; Liu, S.; Zheng, G.; Guo, M.; Lian, X.; Fan, D.; Zhang, H. Diagnostic and prognostic value of CEA, CA19-9, AFP and CA125 for early gastric cancer. BMC Cancer 2017, 17, 737. [Google Scholar] [CrossRef]
- Thierry, A.R.; El Messaoudi, S.; Gahan, P.B.; Anker, P.; Stroun, M. Origins, structures, and functions of circulating DNA in oncology. Cancer Metastasis. Rev. 2016, 35, 347–376. [Google Scholar] [CrossRef] [Green Version]
- Danese, E.; Montagnana, M.; Lippi, G. Circulating molecular biomarkers for screening or early diagnosis of colorectal cancer: Which is ready for prime time? Ann. Transl. Med. 2019, 7, 610. [Google Scholar] [CrossRef]
- Chong, Y.; Mia-jan, K.; Ryu, H.; Abdul-Ghafar, J.; Munkhdelger, J.; Lkhagvadorj, S.; Jung, S.Y.; Lee, M.; Ji, S.Y.; Choi, E.; et al. DNA meth-ylation status of a distinctively different subset of genes is associated with each histologic Lauren classification subtype in early gastric carcinogenesis. Oncol. Rep. 2014, 31, 2535–2544. [Google Scholar] [CrossRef] [Green Version]
- Matsusaka, K.; Funata, S.; Fukayama, M.; Kaneda, A. DNA methylation in gastric cancer, related to helicobacter pylori and Epstein- Barr virus. World J. Gastroenterol. 2014, 20, 3916–3926. [Google Scholar] [CrossRef]
- Spiliotis, E.T. Spatial effects-site-specific regulation of actin and microtubule organization by septin GTPases. J. Cell Sci. 2018, 131, jcs207555. [Google Scholar] [CrossRef] [Green Version]
- Song, L.; Li, Y. Progress on the clinical application of the SEPT9 gene methylation assay in the past 5 years. Biomark. Med. 2017, 11, 415–418. [Google Scholar] [CrossRef]
- Danaher, P.; Warren, S.; Ong, S.F.; Elliott, N.; Cesano, A.; Ferree, S. A gene expression assay for simultaneous measurement of microsatellite instability and anti-tumor immune activity. J. Immunother. Cancer 2019, 7, 15. [Google Scholar] [CrossRef]
- Lee, H.S.; Hwang, S.M.; Kim, T.S.; Kim, D.W.; Park, D.J.; Kang, S.B.; Kim, H.H.; Park, K.U. Circulating methylated Septin 9 nucleic acid in the plasma of patients with gastrointestinal cancer in the stomach and colon. Transl. Oncol. 2013, 6, 290–296. [Google Scholar] [CrossRef] [Green Version]
- Weber, M.; Hellmann, I.; Stadler, M.B.; Ramos, L.; Pääbo, S.; Rebhan, M.; Schübeler, D. Distribution, silencing potential and evolution- ary impact of promoter DNA methylation in the human genome. Nat. Genet. 2007, 39, 457–466. [Google Scholar] [CrossRef]
- Wasserkort, R.; Kalmár, A.; Valcz, G.; Spisak, S.; Krispin, M.; Tóth, K.; Tulassay, Z.; Sledziewski, A.Z.; Molnar, B. Aberrant septin 9 DNA methylation in colorectal cancer is restricted to a single CpG island. BMC Cancer 2013, 13, 398. [Google Scholar] [CrossRef] [Green Version]
- Connolly, D.; Abdesselam, I.; Verdier-Pinard, P.; Montagna, C. Septin roles in tumorigenesis. Biol. Chem. 2011, 392, 725–738. [Google Scholar] [CrossRef]
- Giefing, M.; Arnemann, J.; Martin-Subero, J.I.; Nieländer, I.; Bug, S.; Hartmann, S.; Arnold, N.; Tiacci, E.; Frank, M.; Hansmann, M.-L.; et al. Identification of candidate tumour suppressor gene loci for Hodgkin and Reed-Sternberg cells by characterisation of homozygous deletions in classical Hodgkin lymphoma cell lines. Br. J. Haematol. 2008, 142, 916–924. [Google Scholar] [CrossRef]
- Jiang, Y.; Liu, L.; Xiang, Q.; He, X.; Wang, Y.; Zhou, D.; Zou, C.; Chen, Q.; Peng, M.; He, J.; et al. SEPT9_v2, frequently silenced by promoter hypermethylation, exerts anti-tumor functions through inactivation of Wnt/β-catenin signaling pathway via miR92b-3p/FZD10 in nasopharyngeal carcinoma cells. Clin. Epigenetics 2020, 12, 41. [Google Scholar] [CrossRef] [Green Version]
- Verdier-Pinard, P.; Salaun, D.; Bouguenina, H.; Shimada, S.; Pophillat, M.; Audebert, S.; Agavnian, E.; Coslet, S.; Charafe-Jauffret, E.; Tachibana, T.; et al. Septin 9_i2 is downregulated in tumors, impairs cancer cell migration and alters subnuclear actin filaments. Sci. Rep. 2017, 24, 44976. [Google Scholar] [CrossRef] [Green Version]
- Bennett, K.L.; Romigh, T.; Eng, C. Disruption of transforming growth factor-beta signaling by five frequently methylated genes leads to head and neck squamous cell carcinoma pathogenesis. Cancer Res. 2009, 69, 9301–9305. [Google Scholar]
- Xu, D.; Liu, A.; Wang, X.; Chen, Y.; Shen, Y.; Tan, Z.; Qiu, M. Repression of Septin9 and Septin2 suppresses tumor growth of human glioblastoma cells. Cell Death Dis. 2018, 9, 514. [Google Scholar] [CrossRef] [Green Version]
- Diesenberg, K.; Beerbaum, M.; Fink, U.; Schmieder, P.; Krauss, M. SEPT9 negatively regulates ubiquitin-dependent downregulation of EGFR. J. Cell Sci. 2015, 128, 397–407. [Google Scholar]
- Song, L.; Chen, Y.; Gong, Y.; Wan, J.; Guo, S.; Liu, H.; Li, Y.; Zeng, Z.; Lu, Y. Opportunistic screening and survival prediction of digestive cancers by the combination of blood mSEPT9 with protein markers. Ther. Adv. Med. Oncol. 2020, 12, 1758835920962966. [Google Scholar] [CrossRef]
- Zhang, Y.; Hu, X.; Mao, X.; Zhong, G.; Wang, W.; Chen, H. septin 9 gene methylation in gastric carcinoma and its clinical significance. Chin. J. Health Lab. Tec. 2014, 24, 1987–1990. [Google Scholar]
- Fu, B.; Yan, P.; Zhang, S.; Lu, Y.; Pan, L.; Tang, W.; Chen, S.; Chen, S.; Zhang, A.; Liu, W. Cell-free circulating methylated SEPT9 for noninvasive diagnosis and monitoring of colorectal cancer. Dis. Markers 2018, 2018, 6437104. [Google Scholar] [CrossRef]
- Cao, C.; Chang, L.; Wu, Q. Circulating methylated Septin 9 and ring finger protein 180 for noninvasive diagnosis of early gastric cancer. Transl. Cancer Res. 2020, 9, 7012–7021. [Google Scholar] [CrossRef]
- Song, L.; Jia, J.; Yu, H.; Peng, X.; Xiao, W.; Gong, Y.; Zhou, G.; Han, X.; Li, Y. The performance of the mSEPT9 assay is influenced by algorithm, cancer stage and age, but not sex and cancer location. J. Cancer Res. Clin. Oncol. 2017, 143, 1093–1101. [Google Scholar] [CrossRef]
- Song, L.; Li, Y.; Jia, J.; Zhou, G.; Wang, J.; Kang, Q.; Jin, P.; Sheng, J.; Cai, G.; Cai, S.; et al. Algorithm Optimization in Methylation Detection with Multiple RT-qPCR. PLoS ONE 2016, 11, e0163333. [Google Scholar] [CrossRef] [Green Version]
- Watanabe, Y.; Kim, H.S.; Castoro, R.J.; Chung, W.; Estecio, M.R.; Kondo, K.; Guo, Y.; Ahmed, S.S.; Toyota, M.; Itoh, F.; et al. Sensitive and specific detection of early gastric cancer with DNA methylation analysis of gastric washes. Gastroenterology 2009, 136, 2149–2158. [Google Scholar] [CrossRef] [Green Version]
- Ferrini, A.; Mannoni, V.; Pontieri, E.; Pourshaban, M. Longer resistance of some DNA traits from BT176 maize to gastric juice from gastrointestinal affected patients. Int. J. Immunopathol. Pharmacol. 2007, 20, 111–118. [Google Scholar] [CrossRef]
- Hall, P.A.; Russell, S.H. Mammalian septins: Dynamic heteromers with roles in cellular morphogenesis and compartmentalization. J. Pathol. 2012, 226, 287–299. [Google Scholar] [CrossRef]
- Scott, M.; McCluggage, W.G.; Hillan, K.J.; Hall, P.A.; Russell, S.H. Altered patterns of transcription of the septin gene, SEPT9, in ovarian tumorigenesis. Int. J. Cancer 2006, 118, 1325–1329. [Google Scholar] [CrossRef]
- Marcus, J.; Bejerano-sagie, M.; Patterson, N.; Bagchi, S.; Vladislav, V.; Connolly, D.; Goldberg, G.L.; Golden, A.; Sharma, V.P.; Condeelis, J.; et al. Septin 9 isoforms promote tumorigenesis in mammary epithelial cells by increasing migration and ECM degra- dation through metalloproteinase secretion at focal adhesions. Oncogene 2020, 38, 5839–5859. [Google Scholar] [CrossRef]
- Tahara, T.; Arisawa, T. DNA methylation as a molecular biomarker in gastric cancer. Epigenomics 2015, 7, 475–486. [Google Scholar] [CrossRef]
- Zeng, Y.; Rong, H.; Xu, J.; Cao, R.; Li, S.; Gao, Y.; Cheng, B.; Zhou, T. DNA Methylation: An Important Biomarker and Therapeutic Target for Gastric Cancer. Front. Genet. 2022, 13, 823905. [Google Scholar] [CrossRef]
Groups | n | Positive (1/3) | Positive (2/3) | Mean Ct Value | |||
---|---|---|---|---|---|---|---|
Number | % | Number | % | Mean | Std. Deviation | ||
GC | 60 | 29 | 47.54 | 20 | 33.33 | 40.98 | 6.21 |
CSG | 39 | 2 | 5.13 | 0 | 0 | 44.92 | 0.36 |
CAG | 27 | 4 | 14.81 | 2 | 7.41 | 44.58 | 1.35 |
GU | 30 | 8 | 26.67 | 0 | 0 | 44.73 | 0.53 |
GP | 26 | 2 | 7.69 | 0 | 0 | 44.92 | 0.36 |
p * | <0.001 | <0.001 | <0.001 | ||||
p ** | 0.003 | 0.010 | <0.001 | ||||
p *** | 0.049 | <0.001 | <0.001 | ||||
p **** | <0.001 | <0.001 | <0.001 |
Sensitivity (95% CI) | Specificity (95% CI) | PPV (95% CI) | NPV (95% CI) | |
---|---|---|---|---|
SEPT9 (1/3) | 48.33 (35.40–61.48) | 86.89 (79.28–92.09) | 64.44 (48.73–77.71) | 77.37 (69.28–83.89) |
SEPT9 (2/3) | 33.33 (22.02–46.79) | 98.36 (93.61–99.72) | 90.91 (69.38–98.41) | 75.00 (67.43–81.35) |
CEA | 28.33 (17.82–41.64) | 95.08 (89.15–97.99) | 73.91 (51.31–88.92) | 72.96 (65.24–79.54) |
CA19-9 | 26.67 (16.45–39.89) | 93.44 (87.08–96.92) | 66.67 (44.69–83.57) | 72.15 (64.37–78.84) |
CA72-4 | 28.33 (17.82–41.64) | 88.52 (81.18–93.35) | 54.84 (36.30–72.22) | 71.52 (63.51–78.42) |
Groups | AUC (95% CI) | Std. Error | Asymptotic Sig. | Cut-off Value | Sensitivity (95% CI) | Specificity (95% CI) |
---|---|---|---|---|---|---|
SEPT9 | 0.698 (0.609–0.787) | 0.045 | <0.0001 | 43.45 | 41.67 (30.06–54.27) | 95.90 (90.76–98.24) |
CEA | 0.601 (0.507–0.695) | 0.048 | 0.0268 | 4.54 | 31.67 (21.31–44.23) | 94.26 (88.63–97.19) |
CA19-9 | 0.618 (0.529–0.708) | 0.046 | 0.0097 | 22.96 | 35.00 (24.17–47.64) | 86.07 (78.81–91.11) |
CA72-4 | 0.622 (0.531–0.713) | 0.046 | 0.0076 | 2.12 | 60.00 (47.37–71.43) | 66.39 (57.62–74.16) |
Positive Rate | p * | p ** | |
---|---|---|---|
SEPT9 (1/3) | 48.33% (29/60) | - | - |
SEPT9 (2/3) | 33.33% (20/60) | - | |
CEA | 28.33% (17/60) | 0.029 (kappa value = 0.121) | 0.664 (kappa value = 0.182) |
CA19-9 | 26.67% (16/60) | 0.007 (kappa value = 0.289) | 0.454 (kappa value = 0.368) |
CA72-4 | 28.33% (17/60) | 0.012 (kappa value = 0.324) | 0.607 (kappa value = 0.416) |
Clinicopathological Characteristics | SEPT9 | ||||||||
---|---|---|---|---|---|---|---|---|---|
n | Positive (1/3) | Negative (1/3) | p (1/3) | Positive (2/3) | Negative (2/3) | p (2/3) | Mean Ct Value | p | |
Sex | 0.185 | 0.099 | 0.107 | ||||||
Male | 44 | 19 | 25 | 12 | 32 | 41.93 | |||
Female | 16 | 10 | 6 | 8 | 8 | 38.36 | |||
Age (years) | 0.821 | 0.461 | 0.408 | ||||||
<70 | 34 | 16 | 18 | 10 | 24 | 41.57 | |||
≥70 | 26 | 13 | 13 | 10 | 16 | 40.21 | |||
Tumor location | 0.639 | 0.906 | |||||||
Upper third | 16 | 8 | 8 | 5 | 11 | NA | |||
Middle third | 20 | 12 | 8 | 7 | 13 | NA | |||
Lower third | 18 | 7 | 11 | 6 | 12 | NA | |||
>2/3 stomach | 4 | 2 | 2 | 2 | 2 | NA | |||
NA | 2 | 0 | 2 | 0 | 2 | ||||
Tumor size (cm) | 0.494 | 0.450 | 0.296 | ||||||
<6.0 | 25 | 11 | 14 | 7 | 18 | 41.82 | |||
≥6.0 | 32 | 17 | 15 | 12 | 20 | 40.04 | |||
NA | 3 | 1 | 2 | 1 | 2 | ||||
T stage | 0.041 | 0.047 | 0.179 | ||||||
Tis + T1 + T2 + T3 | 20 | 6 | 14 | 4 | 16 | 42.16 | |||
T4 | 34 | 20 | 14 | 16 | 18 | 39.70 | |||
NA | 6 | 3 | 3 | 0 | 6 | ||||
N stage | 0.018 | 0.035 | 0.002 | ||||||
N0 + N1 | 23 | 7 | 16 | 5 | 18 | 43.39 | |||
N2 + N3 | 30 | 19 | 11 | 15 | 15 | 38.33 | |||
NA | 7 | 3 | 4 | 0 | 7 | ||||
M stage | 0.019 | 0.008 | 0.002 | ||||||
M0 | 38 | 14 | 24 | 8 | 30 | 43.16 | |||
M1 | 22 | 15 | 7 | 12 | 10 | 37.21 | |||
NA | 0 | 0 | 0 | 0 | 0 | ||||
Clinical stage | 0.019 | 0.294 | 0.001 | ||||||
0 + I + II | 11 | 2 | 9 | 2 | 9 | 44.16 | |||
III + IV | 45 | 26 | 19 | 18 | 27 | 39.88 | |||
NA | 4 | 1 | 3 | 0 | 4 | ||||
Differentiation | 0.124 | 0.090 | 0.171 | ||||||
High + moderate | 12 | 4 | 8 | 2 | 10 | 42.71 | |||
low | 32 | 19 | 13 | 15 | 17 | 39.79 | |||
NA | 16 | 6 | 10 | 3 | 13 | ||||
Lauren type | 0.727 | 0.459 | 0.466 | ||||||
Intestinal | 10 | 4 | 6 | 2 | 8 | 42.26 | |||
Diffuse | 38 | 19 | 19 | 15 | 23 | 40.65 | |||
NA | 12 | 6 | 6 | 3 | 9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, L.; Li, M.; Zhang, S.; Liu, Y. Plasma-Methylated SEPT9 for the Noninvasive Diagnosis of Gastric Cancer. J. Clin. Med. 2022, 11, 6399. https://doi.org/10.3390/jcm11216399
Zhao L, Li M, Zhang S, Liu Y. Plasma-Methylated SEPT9 for the Noninvasive Diagnosis of Gastric Cancer. Journal of Clinical Medicine. 2022; 11(21):6399. https://doi.org/10.3390/jcm11216399
Chicago/Turabian StyleZhao, Luyao, Muran Li, Shiwu Zhang, and Yandi Liu. 2022. "Plasma-Methylated SEPT9 for the Noninvasive Diagnosis of Gastric Cancer" Journal of Clinical Medicine 11, no. 21: 6399. https://doi.org/10.3390/jcm11216399
APA StyleZhao, L., Li, M., Zhang, S., & Liu, Y. (2022). Plasma-Methylated SEPT9 for the Noninvasive Diagnosis of Gastric Cancer. Journal of Clinical Medicine, 11(21), 6399. https://doi.org/10.3390/jcm11216399