Differential Cytokine Levels during Normothermic Kidney Perfusion with Whole Blood- or Red Blood Cell-Based Perfusates—Results of a Scoping Review and Experimental Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Scoping Review
2.1.1. Systematic Literature Search Strategy
2.1.2. Study Selection, Eligibility Criteria, and Study Outcomes
2.1.3. Data Extraction
2.2. Experiments
2.2.1. Animal Experiments
2.2.2. Experimental Groups
2.2.3. Porcine Normothermic Kidney Perfusion Model
2.2.4. Sample Collection
2.2.5. Perfusate Analyses
2.2.6. Quantitative Real-Time Quantitative Polymerase Chain Reaction
2.2.7. Statistical Analysis
3. Results
3.1. Results of the Systematic Literature Search
3.1.1. Perfusate Cytokines
3.1.2. Urinary Cytokines
3.1.3. Gene Expression Changes
3.2. Experimental Study
3.2.1. Ischemically Injured Kidneys Behave Similarly during Normothermic Perfusion with Whole Blood Compared to Concentrated Red Blood Cells
3.2.2. Cytokines Changes during Perfusion with WB and RBC Perfusate
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- De Beule, J.; Jochmans, I. Kidney Perfusion as an Organ Quality Assessment Tool-Are We Counting Our Chickens Before They Have Hatched? J. Clin. Med. 2020, 9, 879. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jochmans, I.; Akhtar, M.Z.; Nasralla, D.; Kocabayoglu, P.; Boffa, C.; Kaisar, M.; Brat, A.; O’Callaghan, J.; Pengel, L.H.; Knight, S.; et al. Past, Present, and Future of Dynamic Kidney and Liver Preservation and Resuscitation. Am. J. Transplant. 2016, 16, 2545–2555. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hamelink, T.L.; Ogurlu, B.; De Beule, J.; Lantinga, V.A.; Pool, M.B.F.; Venema, L.H.; Leuvenink, H.G.D.; Jochmans, I.; Moers, C. Renal Normothermic Machine Perfusion: The Road Toward Clinical Implementation of a Promising Pretransplant Organ Assessment Tool. Transplantation 2022, 106, 268–279. [Google Scholar] [CrossRef] [PubMed]
- Fard, A.; Pearson, R.; Lathan, R.; Mark, P.B.; Clancy, M.J. Perfusate Composition and Duration of Ex-Vivo Normothermic Perfusion in Kidney Transplantation: A Systematic Review. Transpl. Int. 2022, 35, 10236. [Google Scholar] [CrossRef] [PubMed]
- Stewart, B.J.; Ferdinand, J.R.; Young, M.D.; Mitchell, T.J.; Loudon, K.W.; Riding, A.M.; Richoz, N.; Frazer, G.L.; Staniforth, J.U.L.; Vieira Braga, F.A.; et al. Spatiotemporal immune zonation of the human kidney. Science 2019, 365, 1461–1466. [Google Scholar] [CrossRef] [PubMed]
- Stone, J.P.; Ball, A.L.; Critchley, W.R.; Major, T.; Edge, R.J.; Amin, K.; Clancy, M.; Fildes, J.E. Ex Vivo Normothermic Perfusion Induces Donor-Derived Leukocyte Mobilization and Removal Prior to Renal Transplantation. Kidney Int. Rep. 2016, 1, 230–239. [Google Scholar] [CrossRef] [Green Version]
- Ferdinand, J.R.; Hosgood, S.A.; Moore, T.; Ferro, A.; Ward, C.J.; Castro-Dopico, T.; Nicholson, M.L.; Clatworthy, M.R. Cytokine absorption during human kidney perfusion reduces delayed graft function-associated inflammatory gene signature. Am. J. Transplant. 2021, 21, 2188–2199. [Google Scholar] [CrossRef]
- De Beule, J.; Jochmans, I. Cytokine release during normothermic kidney perfusion—A scoping review. Open Sci. Framew. 2022. [Google Scholar] [CrossRef]
- Ouzzani, M.; Hammady, H.; Fedorowicz, Z.; Elmagarmid, A. Rayyan-a web and mobile app for systematic reviews. Syst. Rev. 2016, 5, 210. [Google Scholar] [CrossRef] [Green Version]
- De Beule, J.; Jochmans, I. Replication Data for: Cytokine Release during Normothermic Kidney Perfusion—A Scoping Review. 2022. Available online: https://rdr.kuleuven.be/dataset.xhtml?persistentId=doi:10.48804/AELRQL (accessed on 5 October 2022).
- Directive 2010/63/EU of the European Parliament and of the Council of 22 September 2010 on the Protection of Animals Used for Scientific Purposes. Available online: http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A32010L0063 (accessed on 5 October 2022).
- Jochmans, I.; Lerut, E.; van Pelt, J.; Monbaliu, D.; Pirenne, J. Circulating AST, H-FABP, and NGAL are early and accurate biomarkers of graft injury and dysfunction in a preclinical model of kidney transplantation. Ann. Surg. 2011, 254, 784–791. [Google Scholar] [CrossRef]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Yang, B.; Hosgood, S.A.; Harper, S.J.; Nicholson, M.L. Leucocyte depletion improves renal function in porcine kidney hemoreperfusion through reduction of myeloperoxidase+ cells, caspase-3, IL-1β, and tubular apoptosis. J. Surg. Res. 2010, 164, e315–e324. [Google Scholar] [CrossRef]
- Hosgood, S.A.; Mohamed, I.H.; Bagul, A.; Nicholson, M.L. Hypothermic machine perfusion after static cold storage does not improve the preservation condition in an experimental porcine kidney model. Br. J. Surg. 2011, 98, 943–950. [Google Scholar] [CrossRef]
- Yang, B.; Hosgood, S.A.; Bagul, A.; Waller, H.L.; Nicholson, M.L. Erythropoietin regulates apoptosis, inflammation and tissue remodelling via caspase-3 and IL-1β in isolated hemoperfused kidneys. Eur. J. Pharmacol. 2011, 660, 420–430. [Google Scholar] [CrossRef]
- Hosgood, S.A.; Hunter, J.P.; Nicholson, M.L. Early urinary biomarkers of warm and cold ischemic injury in an experimental kidney model. J. Surg. Res. 2012, 174, e85–e90. [Google Scholar] [CrossRef]
- Hosgood, S.A.; Patel, M.; Nicholson, M.L. The conditioning effect of ex vivo normothermic perfusion in an experimental kidney model. J. Surg. Res. 2013, 182, 153–160. [Google Scholar] [CrossRef]
- Hosgood, S.A.; Moore, T.; Kleverlaan, T.; Adams, T.; Nicholson, M.L. Haemoadsorption reduces the inflammatory response and improves blood flow during ex vivo renal perfusion in an experimental model. J. Transl. Med. 2017, 15, 216. [Google Scholar] [CrossRef]
- Smith, S.F.; Adams, T.; Hosgood, S.A.; Nicholson, M.L. The administration of argon during ex vivo normothermic perfusion in an experimental model of kidney ischemia–reperfusion injury. J. Surg. Res. 2017, 218, 202–208. [Google Scholar] [CrossRef]
- Hosgood, S.A.; Moore, T.; Qurashi, M.; Adams, T.; Nicholson, M.L. Hydrogen Gas Does Not Ameliorate Renal Ischemia Reperfusion Injury in a Preclinical Model. Artif. Organs 2018, 42, 723–727. [Google Scholar] [CrossRef]
- Bhattacharjee, R.N.; Ruthirakanthan, A.; Sun, Q.Z.; Richard-Mohamed, M.; Luke, S.; Jiang, L.; Aquil, S.; Sharma, H.; Tun-Abraham, M.E.; Alharbi, B.; et al. Subnormothermic Oxygenated Perfusion Optimally Preserves Donor Kidneys Ex Vivo. Kidney Int. Rep. 2019, 4, 1323–1333. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bleilevens, C.; Doorschodt, B.M.; Fechter, T.; Grzanna, T.; Theißen, A.; Liehn, E.A.; Breuer, T.; Tolba, R.H.; Rossaint, R.; Stoppe, C.; et al. Influence of vitamin C on antioxidant capacity of in vitro perfused porcine kidneys. Nutrients 2019, 11, 1774. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhattacharjee, R.N.; Patel, S.V.B.; Sun, Q.Z.; Jiang, L.; Richard-Mohamed, M.; Ruthirakanthan, A.; Aquil, S.; Al-Ogaili, R.; Juriasingani, S.; Sener, A.; et al. Renal Protection Against Ischemia Reperfusion Injury: Hemoglobin-based Oxygen Carrier-201 Versus Blood as an Oxygen Carrier in Ex Vivo Subnormothermic Machine Perfusion. Transplantation 2020, 104, 482–489. [Google Scholar] [CrossRef] [PubMed]
- Pool, M.B.F.; Vos, J.; Eijken, M.; van Pel, M.; Reinders, M.E.J.; Ploeg, R.J.; Hoogduijn, M.J.; Jespersen, B.; Leuvenink, H.G.D.; Moers, C. Treating Ischemically Damaged Porcine Kidneys with Human Bone Marrow-and Adipose Tissue-Derived Mesenchymal Stromal Cells During Ex Vivo Normothermic Machine Perfusion. Stem Cells Dev. 2020, 29, 1320–1330. [Google Scholar] [CrossRef] [PubMed]
- Lohmann, S.; Pool, M.B.F.; Rozenberg, K.M.; Keller, A.K.; Moers, C.; Møldrup, U.; Møller, B.K.; Lignell, S.J.M.; Krag, S.; Sierra-Parraga, J.M.; et al. Mesenchymal stromal cell treatment of donor kidneys during ex vivo normothermic machine perfusion: A porcine renal autotransplantation study. Am. J. Transplant. 2021, 21, 2348–2359. [Google Scholar] [CrossRef]
- Thompson, E.R.; Bates, L.; Ibrahim, I.K.; Sewpaul, A.; Stenberg, B.; McNeill, A.; Figureueiredo, R.; Girdlestone, T.; Wilkins, G.C.; Wang, L.; et al. Novel delivery of cellular therapy to reduce ischemia reperfusion injury in kidney transplantation. Am. J. Transplant. 2021, 21, 1402–1414. [Google Scholar] [CrossRef]
- Hosgood, S.A.; Elliott, T.R.; Jordan, N.P.; Nicholson, M.L. The Effects of Free Heme on Functional and Molecular Changes During Ex Vivo Normothermic Machine Perfusion of Human Kidneys. Front. Immunol. 2022, 13, 11. [Google Scholar] [CrossRef]
- Mellati, A.; Lo Faro, L.; Dumbill, R.; Meertens, P.; Rozenberg, K.; Shaheed, S.; Snashall, C.; McGivern, H.; Ploeg, R.; Hunter, J. Kidney Normothermic Machine Perfusion Can Be Used as a Preservation Technique and a Model of Reperfusion to Deliver Novel Therapies and Assess Inflammation and Immune Activation. Front. Immunol. 2022, 13, 10. [Google Scholar] [CrossRef]
- Weissenbacher, A.; Stone, J.P.; Lo Faro, M.L.; Hunter, J.P.; Ploeg, R.J.; Coussios, C.C.; Fildes, J.E.; Friend, P.J. Hemodynamics and Metabolic Parameters in Normothermic Kidney Preservation Are Linked with Donor Factors, Perfusate Cells, and Cytokines. Front. Med. 2022, 8, 14. [Google Scholar] [CrossRef]
- Simpson, S.; Kaislasuo, J.; Guller, S.; Pal, L. Thermal stability of cytokines: A review. Cytokine 2020, 125, 154829. [Google Scholar] [CrossRef]
- Parkitny, L.; McAuley, J.H.; Kelly, P.J.; Di Pietro, F.; Cameron, B.; Moseley, G.L. Multiplex Cytokine Concentration Measurement: How Much Do the Medium and Handling Matter? Mediat. Inflamm. 2013, 2013, 890706. [Google Scholar] [CrossRef] [Green Version]
- Hozo, S.P.; Djulbegovic, B.; Hozo, I. Estimating the mean and variance from the median, range, and the size of a sample. BMC Med. Res. Methodol. 2005, 5, 13. [Google Scholar] [CrossRef] [Green Version]
- Karangwa, S.A.; Dutkowski, P.; Fontes, P.; Friend, P.J.; Guarrera, J.V.; Markmann, J.F.; Mergental, H.; Minor, T.; Quintini, C.; Selzner, M.; et al. Machine Perfusion of Donor Livers for Transplantation: A Proposal for Standardized Nomenclature and Reporting Guidelines. Am. J. Transplant. 2016, 16, 2932–2942. [Google Scholar] [CrossRef]
- Haddaway, N.R.; Page, M.J.; Pritchard, C.C.; McGuinness, L.A. PRISMA2020: An R package and Shiny app for producing PRISMA 2020-compliant flow diagrams, with interactivity for optimised digital transparency and Open Synthesis. Campbell Syst. Rev. 2022, 18, e1230. [Google Scholar] [CrossRef]
- De Beule, J.; Keppens, D.; Jochmans, I. Replication Data for: Inflammatory Profile during Normothermic Kidney Perfusion with Whole Blood versus Red Blood Cell Perfusion Fluid. 2022. Available online: https://rdr.kuleuven.be/dataset.xhtml?persistentId=doi:10.48804/RJNDZA (accessed on 5 October 2022).
Reference | Species | Kidney Condition | Perfusate | Timepoints | Analysing Technique | Analysed Cytokines | Findings |
---|---|---|---|---|---|---|---|
Perfusate studies | |||||||
Stone 2016 [6] | Pig (n = 10) | WI + CI | RBC + filter | 0 h, 1 h, 6 h | Luminex | IL-1α, IL-1β, IL-2, IL-4, IL-6, IL-10, IL-12, IL-18, TNF-α, CXCL-8 | Cytokines are undetectable at 0 h with virtually none (Il-1α, IL-4) or increase (IL-1β, IL-2, IL-6, IL-10, IL-12, ILI-18, TNF-α, CXCL-8) at 6 h |
Hosgood 2017 1 [20] | Pig (n = 5) | CI | WB | 0 h, 1 h, 3 h, 6 h | ELISA | IL-1α, IL-1β, IL-6, IL-8, IL-10, TNF-α | IL-1α mostly undetectable (one outlier), the other cytokines increase (some) over time. |
Hosgood 2018 [22] | Pig (n = 5) | W + CII | WB | 0 h, 3 h, 6 h | ELISA | IL-1β, IL-6, IL-8 | Significant increase at 3 h (IL-1β, IL-6) and 6 h (all cytokines) compared to baseline. |
Bleilevens 2019 2 [24] | Pig (n = 5) | WI | WB | 0 h, 0.5 h, 1 h, 1.5 h, 2 h, 5 h, 6 h | ELISA | IL-6, IL-10, TNF-α | Significant increase of IL-6, no change in IL-8, and TNF-α increases until 2 h after which there is a seeming decrease. |
Pool 2020 [26] | Pig (n = 5) | WI + CI | RBC + filter | 0 h, 1 h, 2 h, 3 h, 4 h, 5 h, 6 h, 7 h | Luminex | IL-6, IL-8, IL-10, IL-17, TNF-α, CCL2, CCL4, CXCL10 | IL-6, IL-8 increase over time with no change in IL-10, TNF-α, CCL2, and CCL4. IL-17 and CXCL10 are undetectable (not all cytokines have been measured at all time points). |
Ferdinand 2021 1 [7] | Human (discards) (n = 5) | DBD (n = 1), DCD (n = 4) | RBC | 4 h | ELISA | IL-1β, IL-6, IL-8, IL-10, TNF-α | Cytokines are detectable at 4 h. |
Lohmann 2021 [27] | Pig (n = 7) | WI + CI | RBC | 0 h, 1 h, 2 h, 4 h | ELISA | IL-6, IL-10 | Increase over time. |
Thomson 2021 [28] | Human (discards) (n = 5) | DBD (n = 3), DCD (n = 2) | RBC | 0 h, 1 h, 2 h, 4 h, 7 h | ELISA | IL-1α, IL-1β, IL-2, IL-6, IL-8, IL-10, IL-17,TNF-α | All cytokines increase over time. |
Mellati 2022 [30] | Pig (n = 5) | WI + CI | WB | 0 h, 1.5 h, 3 h | Luminex | IL-1α, IL-1ra, IL-1β, IL-6, IL-8, IL-12 | IL-1α, IL-1β, IL-12 decrease over time while IL-1ra, IL-6, and IL-8 increase over time. |
Weissenbacher 2022 [31] | Human (discards) (n = 12) | DBD (n = 7), DCD (n = 5) | RBC | 1 h, 6 h | Luminex | IL-1α, IL-1β, IL-2, IL-4, IL-6, IL-8, IL-10, IL-12p40, IL-12p70, TNF-α | Concentrations of IL-1α, IL-1β, IL-2, IL-4, IL-12p40, IL-12p70 are probably over the detection limit (their concentrations are all 10.000 pg/mL); IL-6, IL-8, TNF-α increase over time; IL-10 decreases over time. |
Urine studies | |||||||
Hosgood 2011 [16] | Pig (n = 6) | WI + CI | WB | 3 h | ELISA | IL-6 | IL-6 is detectable in urine at 3 h of perfusion. |
Hosgood 2012 [18] | Pig (n = 5) | CI | WB | 3 h | ELISA | IL-6, TNF-α | All are detectable in the perfusate after 2 h or 18 h of cold storage. |
(n = 6) | WI + CI | WB | 3 h | ELISA | IL-6, TNF-α | All are detectable in the perfusate after 2 h or 18 h of cold storage. | |
Hosgood 2013 [19] | Pig (n = 6) | WI + CI | WB | 3 h | ELISA | IL-1β, IL-6, IL-8, TNF-α | All are detectable in urine at 3 h of perfusion. |
Smith 2017 [21] | Pig (n = 6) | WI + CI | WB + filter | 3 h | ELISA | IL-6, IL-8, IL-10 | Cytokines are detectable in urine at 3 h of perfusion, with large standard deviation. |
Bhattacharjee 2019 [23] | Pig (n = 5) | WI + CI | WB | 4 h | ELISA | IL-6 | IL-6 is detectable in urine at 4 h of perfusion. |
Bhattacharjee 2020 [25] | Pig (n = 5) | WI + CI | WB | 4 h | ELISA | IL-6 | IL-6 is detectable in urine at 4 h of perfusion. |
Tissue studies | |||||||
Yang 2010 [15] | Pig (n = 6) | WI + CI | WB | Pre-perfusion, 6 h | Western Blot | IL-1β | Significant increase of IL-1β precursor and IL-1β subunit at 6 h compared to pre-reperfusion. |
Yang 2011 [17] | Pig (n = 3) | WI + CI | WB + filter | Pre cold storage, post cold storage, 2 h | Western Blot | IL-1β | Significant increase of IL-1β precursor and IL-1β subunit at 6 h compared to pre-reperfusion. |
Hosgood 2017 1 [20] | Pig (n = 5) | CI | WB | In situ, 6 h | qPCR | IL-1β, IL-6, IL-8 | No information on change compared to baseline. |
Ferdinand 2021 1 [7] | Human (transplants) (n = 5) | DBD (n = 1), DCD (n = 4) | RBC | 0 h, 2 h | RNA sequencing | IL1B, IL8, TNF | Upregulation of these genes at 2 h compared to baseline. |
Human (discards) (n = 5) | DBD (n = 1), DCD (n = 4) | RBC | 0 h, 2 h, 4 h | RNA sequencing | IL6, TNF | Upregulation of these genes over time. | |
Hosgood 2022 [29] | Human (discards) (n = 15) | DBD (n = 10), DCD (n = 5) | RBC | 0 h, 1 h | qPCR | IL6 | Upregulation of IL6 gene compared to baseline. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
De Beule, J.; Keppens, D.; Korf, H.; Jochmans, I. Differential Cytokine Levels during Normothermic Kidney Perfusion with Whole Blood- or Red Blood Cell-Based Perfusates—Results of a Scoping Review and Experimental Study. J. Clin. Med. 2022, 11, 6618. https://doi.org/10.3390/jcm11226618
De Beule J, Keppens D, Korf H, Jochmans I. Differential Cytokine Levels during Normothermic Kidney Perfusion with Whole Blood- or Red Blood Cell-Based Perfusates—Results of a Scoping Review and Experimental Study. Journal of Clinical Medicine. 2022; 11(22):6618. https://doi.org/10.3390/jcm11226618
Chicago/Turabian StyleDe Beule, Julie, Delphine Keppens, Hannelie Korf, and Ina Jochmans. 2022. "Differential Cytokine Levels during Normothermic Kidney Perfusion with Whole Blood- or Red Blood Cell-Based Perfusates—Results of a Scoping Review and Experimental Study" Journal of Clinical Medicine 11, no. 22: 6618. https://doi.org/10.3390/jcm11226618
APA StyleDe Beule, J., Keppens, D., Korf, H., & Jochmans, I. (2022). Differential Cytokine Levels during Normothermic Kidney Perfusion with Whole Blood- or Red Blood Cell-Based Perfusates—Results of a Scoping Review and Experimental Study. Journal of Clinical Medicine, 11(22), 6618. https://doi.org/10.3390/jcm11226618