The Combined Effects of Television Viewing and Physical Activity on Cardiometabolic Risk Factors: The Kardiovize Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Population
2.2. Data Collection
2.3. Variables Definition
2.4. Data Analysis
3. Results
3.1. Subject’s Characteristics
3.2. Association of Television Viewing/Physical Activity and Cardiometabolic Risk Factors
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tremblay, M.S.; Aubert, S.; Barnes, J.D.; Saunders, T.J.; Carson, V.; Latimer-Cheung, A.E.; Chastin, S.F.; Altenburg, T.M.; Chinapaw, M.J. Sedentary Behavior Research Network (SBRN)—Terminology Consensus Project process and outcome. Int. J. Behav. Nutr. Phys. Act. 2017, 14, 75. [Google Scholar] [CrossRef] [Green Version]
- López-Valenciano, A.; Mayo, X.; Liguori, G.; Copeland, R.J.; Lamb, M.; Jimenez, A. Changes in sedentary behaviour in European Union adults between 2002 and 2017. BMC Public Health 2020, 20, 1206. [Google Scholar] [CrossRef] [PubMed]
- Jochem, C.; Schmid, D.; Leitzmann, M.F. Introduction to Sedentary Behaviour Epidemiology. In Sedentary Behaviour Epidemiology; Leitzmann, M.F., Jochem, C., Schmid, D., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 3–29. [Google Scholar]
- Andrade-Gómez, E.; García-Esquinas, E.; Ortolá, R.; Martínez-Gómez, D.; Rodríguez-Artalejo, F. Watching TV has a distinct sociodemographic and lifestyle profile compared with other sedentary behaviors: A nationwide population-based study. PLoS ONE 2017, 12, e0188836. [Google Scholar] [CrossRef] [Green Version]
- Grøntved, A.; Hu, F.B. Television viewing and risk of type 2 diabetes, cardiovascular disease, and all-cause mortality: A meta-analysis. JAMA 2011, 305, 2448–2455. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wansink, B. From mindless eating to mindlessly eating better. Physiol. Behav. 2010, 100, 454–463. [Google Scholar] [CrossRef]
- Hamrik, Z.; Sigmundova, D.; Kalman, M.; Pavelka, J.; Sigmund, E. Physical activity and sedentary behaviour in Czech adults: Results from the GPAQ study. Eur. J. Sport Sci. 2014, 14, 193–198. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pavlovska, I.; Polcrova, A.; Mechanick, J.I.; Brož, J.; Infante-Garcia, M.M.; Nieto-Martínez, R.; Maranhao Neto, G.A.; Kunzova, S.; Skladana, M.; Novotny, J.S.; et al. Dysglycemia and Abnormal Adiposity Drivers of Cardiometabolic-Based Chronic Disease in the Czech Population: Biological, Behavioral, and Cultural/Social Determinants of Health. Nutrients 2021, 13, 2338. [Google Scholar] [CrossRef] [PubMed]
- Directorate-General for Education, Youth, Sport and Culture, European Commission. Sport and Physical Activity Report; Publications Office of the European Union: Luxembourg, 2018. [Google Scholar]
- Junová, I. Leisure Time in Family Life. In Contemporary Family Lifestyles in Central and Western Europe: Selected Cases; Springer International Publishing: Cham, Switzerland, 2020; pp. 65–86. [Google Scholar]
- Stašová, L. Media in the Lives of Contemporary Families. In Contemporary Family Lifestyles in Central and Western Europe: Selected Cases; Springer International Publishing: Cham, Switzerland, 2020; pp. 87–109. [Google Scholar]
- Hallal, P.C.; Andersen, L.B.; Bull, F.C.; Guthold, R.; Haskell, W.; Ekelund, U. Global physical activity levels: Surveillance progress, pitfalls, and prospects. Lancet 2012, 380, 247–257. [Google Scholar] [CrossRef]
- Suminski, R.R.; Patterson, F.; Perkett, M.; Heinrich, K.M.; Carlos Poston, W.S. The association between television viewing time and percent body fat in adults varies as a function of physical activity and sex. BMC Public Health 2019, 19, 736. [Google Scholar] [CrossRef] [PubMed]
- Movsisyan, N.K.; Vinciguerra, M.; Lopez-Jimenez, F.; Kunzová, Š.; Homolka, M.; Jaresova, J.; Cífková, R.; Sochor, O. Kardiovize Brno 2030, a prospective cardiovascular health study in Central Europe: Methods, baseline findings and future directions. Eur. J. Prev. Cardiol. 2018, 25, 54–64. [Google Scholar] [CrossRef] [Green Version]
- Ling, C.H.; de Craen, A.J.; Slagboom, P.E.; Gunn, D.A.; Stokkel, M.P.; Westendorp, R.G.; Maier, A.B. Accuracy of direct segmental multi-frequency bioimpedance analysis in the assessment of total body and segmental body composition in middle-aged adult population. Clin. Nutr. 2011, 30, 610–615. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hui, D.; Dev, R.; Pimental, L.; Park, M.; Cerana, M.A.; Liu, D.; Bruera, E. Association between Multi-frequency Phase Angle and Survival in Patients with Advanced Cancer. J. Pain Symptom Manag. 2017, 53, 571–577. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McLester, C.N.; Nickerson, B.S.; Kliszczewicz, B.M.; McLester, J.R. Reliability and Agreement of Various InBody Body Composition Analyzers as Compared to Dual-Energy X-Ray Absorptiometry in Healthy Men and Women. J. Clin. Densitom. 2020, 23, 443–450. [Google Scholar] [CrossRef]
- Khan, S.; Xanthakos, S.A.; Hornung, L.; Arce-Clachar, C.; Siegel, R.; Kalkwarf, H.J. Relative Accuracy of Bioelectrical Impedance Analysis for Assessing Body Composition in Children with Severe Obesity. J. Pediatr. Gastroenterol. Nutr. 2020, 70, e129–e135. [Google Scholar] [CrossRef]
- Yodoshi, T.; Orkin, S.; Romantic, E.; Hitchcock, K.; Clachar, A.C.A.; Bramlage, K.; Sun, Q.; Fei, L.; Trout, A.T.; Xanthakos, S.A.; et al. Impedance-based measures of muscle mass can be used to predict severity of hepatic steatosis in pediatric nonalcoholic fatty liver disease. Nutrition 2021, 91–92, 111447. [Google Scholar] [CrossRef] [PubMed]
- Campos-Perez, W.; Perez-Robles, M.; Rodriguez-Echevarria, R.; Rivera-Valdés, J.J.; Rodríguez-Navarro, F.M.; Rivera-Leon, E.A.; Martinez-Lopez, E. High dietary ω-6:ω-3 PUFA ratio and simple carbohydrates as a potential risk factors for gallstone disease: A cross-sectional study. Clin. Res. Hepatol. Gastroenterol. 2021, 101802, in press. [Google Scholar] [CrossRef] [PubMed]
- Clark, B.K.; Sugiyama, T.; Healy, G.N.; Salmon, J.; Dunstan, D.W.; Shaw, J.E.; Zimmet, P.Z.; Owen, N. Socio-demographic correlates of prolonged television viewing time in Australian men and women: The AusDiab study. J. Phys. Act. Health 2010, 7, 595–601. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dunstan, D.W.; Salmon, J.; Healy, G.N.; Shaw, J.E.; Jolley, D.; Zimmet, P.Z.; Owen, N. AusDiab Steering Committee. Association of television viewing with fasting and 2-h postchallenge plasma glucose levels in adults without diagnosed diabetes. Diabetes Care 2007, 30, 516–522. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eisenmann, J.C.; Bartee, R.T.; Smith, D.T.; Welk, G.J.; Fu, Q. Combined influence of physical activity and television viewing on the risk of overweight in US youth. Int. J. Obes. 2008, 32, 613–618. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lemes, I.R.; Sui, X.; Fernandes, R.A.; Blair, S.N.; Turi-Lynch, B.C.; Codogno, J.S.; Monteiro, H.L. Association of sedentary behavior and metabolic syndrome. Public Health 2019, 167, 96–102. [Google Scholar] [CrossRef]
- Dunstan, D.W.; Salmon, J.; Owen, N.; Armstrong, T.; Zimmet, P.Z.; Welborn, T.A.; Cameron, A.J.; Dwyer, T.; Jolley, D.; Shaw, J.E. Associations of TV viewing and physical activity with the metabolic syndrome in Australian adults. Diabetologia 2005, 48, 2254–2261. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mechanick, J.I.; Hurley, D.L.; Garvey, W.T. Adiposity-Based Chronic Disease as a New Diagnostic Term: The American Association of Clinical Endocrinologists and American College of Endocrinology Position Statement. Endocr. Pract. 2017, 23, 372–378. [Google Scholar] [CrossRef] [Green Version]
- Mechanick, J.I.; Farkouh, M.E.; Newman, J.D.; Garvey, W.T. Cardiometabolic-Based Chronic Disease, Addressing Knowledge and Clinical Practice Gaps: JACC State-of-the-Art Review. J. Am. Coll. Cardiol. 2020, 75, 539–555. [Google Scholar] [CrossRef] [PubMed]
- Sperling, L.S.; Mechanick, J.I.; Neeland, I.J.; Herrick, C.J.; Després, J.P.; Ndumele, C.E.; Vijayaraghavan, K.; Handelsman, Y.; Puckrein, G.A.; Araneta, M.R.G.; et al. The CardioMetabolic Health Alliance: Working Toward a New Care Model for the Metabolic Syndrome. J. Am. Coll. Cardiol. 2015, 66, 1050–1067. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ekelund, U.; Steene-Johannessen, J.; Brown, W.J.; Fagerland, M.W.; Owen, N.; Powell, K.E.; Bauman, A.; Lee, I.M.; Series, L.P.A. Lancet Sedentary Behaviour Working Group. Does physical activity attenuate, or even eliminate, the detrimental association of sitting time with mortality? A harmonised meta-analysis of data from more than 1 million men and women. Lancet 2016, 388, 1302–1310. [Google Scholar] [CrossRef] [Green Version]
- Benatti, F.B.; Ried-Larsen, M. The Effects of Breaking up Prolonged Sitting Time: A Review of Experimental Studies. Med. Sci. Sports Exerc. 2015, 47, 2053–2061. [Google Scholar] [CrossRef] [Green Version]
- Frydenlund, G.; Jorgensen, T.; Toft, U.; Pisinger, C.; Aadahl, M. Sedentary leisure time behavior, snacking habits and cardiovascular biomarkers: The Inter99 Study. Eur. J. Prev. Cardiol. 2012, 19, 1111–1119. [Google Scholar] [CrossRef]
- Vos, T.; Lim, S.S.; Abbafati, C.; Abbas, K.M.; Abbasi, M.; Abbasifard, M.; Abbasi-Kangevari, M.; Abbastabar, H.; Abd-Allah, F.; Abdelalim, A.; et al. Global burden of 369 diseases and injuries in 204 countries and territories, 1990–2019: A systematic analysis for the Global Burden of Disease Study 2019. Lancet 2019, 396, 1204–1222. [Google Scholar] [CrossRef]
- Lavie, C.J.; Ozemek, C.; Carbone, S.; Katzmarzyk, P.T.; Blair, S.N. Sedentary Behavior, Exercise, and Cardiovascular Health. Circ. Res. 2019, 124, 799–815. [Google Scholar] [CrossRef] [PubMed]
- Pinto Pereira, S.M.; Ki, M.; Power, C. Sedentary behaviour and biomarkers for cardiovascular disease and diabetes in mid-life: The role of television-viewing and sitting at work. PLoS ONE 2012, 7, e31132. [Google Scholar] [CrossRef] [PubMed]
- O’donoghue, G.; Perchoux, C.; Mensah, K.; Lakerveld, J.; Van Der Ploeg, H.; Bernaards, C.; Chastin, S.F.; Simon, C.; O’gorman, D.; Nazare, J.A. A systematic review of correlates of sedentary behaviour in adults aged 18–65 years: A socio-ecological approach. BMC Public Health 2016, 16, 163. [Google Scholar] [CrossRef] [Green Version]
- Ofcom. Media Nations 2020. Available online: https://www.ofcom.org.uk/research-and-data/tv-radio-and-on-demand/media-nations-reports/media-nations-2020 (accessed on 17 May 2021).
- Mechanick, J.I.; Rosenson, R.S.; Pinney, S.P.; Mancini, D.M.; Narula, J.; Fuster, V. Coronavirus and Cardiometabolic Syndrome: JACC Focus Seminar. J. Am. Coll. Cardiol. 2020, 76, 2024–2035. [Google Scholar] [CrossRef]
- Movsisyan, N.K.; Sochor, O.; Kralikova, E.; Cifkova, R.; Ross, H.; Lopez-Jimenez, F. Current and past smoking patterns in a Central European urban population: A cross-sectional study in a high-burden country. BMC Public Health 2016, 16, 571. [Google Scholar] [CrossRef] [Green Version]
- City Population: Population Statistics for Countries. Available online: http://www.citypopulation.de/CzechRep-Cities.html (accessed on 30 November 2021).
- Belohlavek, R.; Sigmund, E.; Zacpal, J. Evaluation of IPAQ questionnaires supported by formal concept analysis. Inf. Sci. 2011, 181, 1774–1786. [Google Scholar] [CrossRef]
Insufficient | Moderate | High | p | |
---|---|---|---|---|
n (%) | 254 (11.8%) | 907 (42.1%) | 994 (46.1%) | |
Sex (% Men) | 48.4 | 42.8 | 46.7 | 0.128 |
Age (years) | 50 (19) | 48 (19) | 48 (20) | 0.376 |
BMI (kg/m2) | 26.0 (5.0) | 25.0 (7.0) | 25.0 (6.2) | 0.023 |
WC (cm) | 91.0 (22.0) | 88.0 (22.0) | 89.0 (20.0) | 0.006 |
Body fat percentage (%) | 28.0 (13.0) | 26.0 (14.0) | 24.0 (14.5) | <0.001 |
Systolic blood pressure (mmHg) | 120.3 (22.8) | 118.4 (20.6) | 118.4 (18.2) | 0.114 |
Diastolic blood pressure (mmHg) | 79.4 (13.0) | 80.0 (13.0) | 79.2 (12.0) | 0.217 |
Glucose (mmol/L) | 4.9 (0.7) | 4.9 (0.7) | 4.9 (0.7) | 0.764 |
Triglycerides (mmol/L) | 1.1 (0.9) | 1.0 (0.7) | 1.0 (0.7) | 0.006 |
Total Cholesterol (mmol/L) | 5.2 (1.4) | 5.1 (1.3) | 5.0 (1.2) | 0.009 |
LDL-c (mmol/L) | 3.2 (1.2) | 3.0 (1.2) | 2.9 (1.2) | 0.002 |
HDL-c (mmol/L) | 1.3 (0.5) | 1.5 (0.5) | 1.4 (0.4) | <0.001 |
Educational Level (%) | ||||
Primary | 18.1 (13.3–22.8) | 15.2 (12.8–17.5) | 24.5 (21.8–27.1) | <0.001 |
Secondary | 35.8 (29.9–41.7) | 36.9 (33.7–40.0) | 40.9 (37.8–43.9) | |
Higher | 46.1 (39.9–52.2) | 47.8 (44.5–51.0) | 34.6 (31.6–37.5) | |
Household income (Euro) (%) | ||||
Low (<1200) | 42.9 (36.8–48.9) | 40.1 (36.9–43.2) | 45.5 (42.4–48.6) | 0.006 |
Middle (1200–1800) | 29.4 (23.8–35.0) | 30.9 (27.8–33.9) | 33.0 (30.0–35.9) | |
High (>1800) | 27.7 (22.2–33.2) | 30 (27.0–32.9) | 25.5 (22.7–28.2) | |
Living as a couple (%) | 60.1 (54.0–66.1) | 64.8 (61.6–67.9) | 64.2 (61.2–67.1) | 0.085 |
Current smoker (%) | 29.9 (24.2–35.5) | 20.4 (17.7–23.0) | 24.4 (21.7–27.0) | 0.005 |
Alcohol user (%) | 87.0 (82.8–91.1) | 85.7 (83.4–87.9) | 82.1 (79.7–84.4) | 0.042 |
Medications (%) | ||||
Diuretic | 11.0 (7.1–14.8) | 6.1 (4.5–7.6) | 7.7 (6.0–9.3) | 0.025 |
Vasodilator | 26.0 (20.6–31.3) | 21.2 (18.5–23.8) | 23.2 (20.5–25.8) | 0.23 |
Hypoglycemic | 6.3 (3.3–9.2) | 3.9 (2.6–5.1) | 3.3 (2.1–4.4) | 0.088 |
Hypolipidemic | 9.4 (5.8–12.9) | 9.0 (7.1–10.8) | 11.6 (9.6–13.5) | 0.161 |
Low | Moderate | High | p | |
---|---|---|---|---|
n (%) | 918 (42.6%) | 855 (39.7) | 382 (17.7) | |
Sex (% Men) | 44.1 | 44.7 | 49.7 | 0.158 |
Age (years) | 44.0 (19) | 49.0 (20) | 52.0 (17) | <0.001 |
BMI (kg/m2) | 25.0 (6.0) | 26.0 (6.0) | 27.0 (7.0) | <0.001 |
Waist circumference (cm) | 86.0 (19.0) | 90.0 (20.0) | 95.0 (20.0) | <0.001 |
Body fat percentage (%) | 24.0 (12.0) | 26.0 (14.0) | 29.0 (15.0) | <0.001 |
Systolic blood pressure (mmHg) | 115.8 (18.4) | 119.4 (16.6) | 123.5 (20.2) | <0.001 |
Diastolic blood pressure (mmHg) | 78.6 (12.4) | 80.0 (12.8) | 80.7 (12.0) | <0.001 |
Glucose (mmol/L) | 4.8 (0.7) | 5.0 (0.7) | 5.0 (0.8) | <0.001 |
Triglycerides (mmol/L) | 0.9 (0.7) | 1.0 (0.7) | 1.3 (0.9) | <0.001 |
Total cholesterol (mmol/L) | 5.0 (1.2) | 5.1 (1.3) | 5.2 (1.5) | <0.001 |
LDL-c (mmol/L) | 2.9 (1.1) | 3.0 (1.2) | 3.2 (1.3) | <0.001 |
HDL-c (mmol/L) | 1.5 (0.5) | 1.4 (0.5) | 1.4 (0.4) | <0.001 |
Educational Level (%) | ||||
Primary | 13.5 (11.2–15.7) | 20.7 (17.9–23.4) | 33.0 (28.2–37.7) | <0.001 |
Secondary | 37.4 (34.2–40.5) | 37.7 (34.4–40.9) | 43.5 (38.5–48.4) | |
Higher | 49.0 (45.7–52.2) | 41.6 (38.3–44.9) | 23.6 (19.3–27.8) | |
Household income (Euro) (%) | ||||
Low (<1200) | 38.1 (34.9–41.2) | 42.5 (39.1–45.8) | 55.4 (50.4–60.3) | <0.001 |
Middle (1200–1800) | 32.4 (29.3–35.4) | 32.9 (29.7–36.0) | 27.3 (22.8–31.7) | |
High (>1800) | 20.5 (17.8–23.1) | 24.6 (21.7–27.4) | 17.3 (13.5–21.0) | |
Living as a couple (%) | 61.7 (58.5–64.8) | 64.9 (61.7–68.1) | 59.4 (54.4–64.3) | 0.139 |
Physical activity level (%) | ||||
Insufficient | 8.9 (7.0–10.7) | 12.6 (10.3–14.8) | 16.7 (12.9–20.4) | <0.001 |
Moderate | 42.4 (39.2–45.6) | 43.3 (39.9–46.6) | 38.7 (33.8–43.5) | |
High | 48.7 (45.4–51.9) | 44.1 (40.7–47.4) | 44.5 (39.5–49.4) | |
Smokers (%) | 19.5 (16.9–22.0) | 22.2 (19.4–24.9) | 35.6 (30.8–40.4) | <0.001 |
Alcohol user (%) | 84.2 (81.8–86.5) | 84.7 (82.2–87.1) | 82.7 (78.9–86.4) | 0.683 |
Medications (%) | ||||
Diuretic | 4.8 (3.4–6.1) | 8.1 (6.2–9.9) | 11.3 (8.1–14.4) | <0.001 |
Vasodilator | 16.0 (13.6–18.3) | 24.2 (21.3–27.0) | 34.5 (29.7–39.2) | <0.001 |
Hypoglycemic | 2.8 (1.7–3.8) | 4.6 (3.2–6.0) | 5.0 (2.8–7.1) | 0.083 |
Hypolipidemic | 7.7 (5.9–9.4) | 11.5 (9.3–13.6) | 12.8 (9.4–16.1) | 0.005 |
Cardiometabolic Factors | Classification | Model 1 β (SE) | Model 2 β (SE) |
---|---|---|---|
BMI (kg/m2) | Low TVV/Insufficient PA | −0.04 (0.57) | 0.30 (0.57) |
Low TVV/Moderate PA | −0.17 (0.33) | −0.24 (0.56) | |
Moderate TVV/Insufficient PA | 0.83 (0.51) | 0.93 (0.50) | |
Moderate TVV/Moderate PA | 0.27 (0.33) | 0.40 (0.33) | |
Moderate TVV/High PA | 0.73 (0.33) a | 0.53 (0.33) | |
High TVV/Insufficient PA | 2.93 (0.64) b | 2.61 (0.63) b | |
High TVV/Moderate PA | 2.10 (0.45) b | 1.98 (0.45) b | |
High TVV/High PA | 1.49 (0.43) b | 1.03 (0.43) a | |
WC (cm) | Low TVV/Insufficient PA | 0.84 (1.42) | 1.65 (1.41) |
Low TVV/Moderate PA | −0.56 (0.82) | −0.10 (0.82) | |
Moderate TVV/Insufficient PA | 2.42 (1.27) | 2.68 (1.26) a | |
Moderate TVV/Moderate PA | 1.35 (0.84) | 1.67 (0.83) a | |
Moderate TVV/High PA | 0.77(1.44) | −0.47 (1.44) | |
High TVV/Insufficient PA | 8.32 (1.60) b | 7.52 (1.58) b | |
High TVV/Moderate PA | 5.74 (1.12) b | 5.43 (1.12) b | |
High TVV/High PA | 3.58 (1.07) b | 2.42 (1.07) a | |
Body fat percentage (%) | Low TVV/Insufficient PA | 2.04 (0.92) a | 2.69 (0.91) b |
Low TVV/Moderate PA | 1.07 (0.53) a | 1.44 (0.52) b | |
Moderate TVV/Insufficient PA | 3.64 (0.82) b | 3.80 (0.81) b | |
Moderate TVV/Moderate PA | 1.71 (0.54) b | 1.95 (0.53) b | |
Moderate TVV/High PA | 1.41 (0.54) b | 1.08 (0.54) a | |
High TVV/Insufficient PA | 6.82 (1.04) b | 6.24 (1.02) b | |
High TVV/Moderate PA | 5.37 (0.73) b | 5.15 (0.72) b | |
High TVV/High PA | 3.29 (0.69) b | 2.40 (0.69) b | |
Systolic blood pressure (mmHg) | Low TVV/Insufficient PA | −0.98 (1.69) | −0.64 (1.62) |
Low TVV/Moderate PA | −1.34 (0.98) | −0.93 (0.94) | |
Moderate TVV/Insufficient PA | 1.19 (1.51) | 0.61 (1.41) | |
Moderate TVV/Moderate PA | −0.05 (0.99) | −0.29 (0.95) | |
Moderate TVV/High PA | −0.01 (0.99) | −0.87 (0.95) | |
High TVV/Insufficient PA | 4.47 (1.88) a | 2.26 (1.83) | |
High TVV/Moderate PA | 2.82 (1.34) a | 0.85 (1.29) | |
High TVV/High PA | 0.27 (1.27) | −1.41 (1.23) | |
Diastolic blood pressure (mmHg) | Low TVV/Insufficient PA | −0.16 (1.06) | −0.20 (1.03) |
Low TVV/Moderate PA | −0.13 (0.62) | −0.02 (0.16) | |
Moderate TVV/Insufficient PA | 1.18 (0.95) | 0.72 (0.92) | |
Moderate TVV/Moderate PA | 0.85 (0.62) | 0.57 (0.61) | |
Moderate TVV/High PA | −0.24 (0.62) | −0.73 (0.61) | |
High TVV/Insufficient PA | 1.78 (1.19) | 0.72 (1.17) | |
High TVV/Moderate PA | 1.86 (0.84) a | 0.82 (0.82) | |
High TVV/High PA | −0.25 (0.80) | −1.07 (0.79) | |
Glucose (mmol/L) | Low TVV/Insufficient PA | −0.16 (0.11) | −0.13 (0.11) |
Low TVV/Moderate PA | −0.04 (0.06) | −0.01 (0.06) | |
Moderate TVV/Insufficient PA | 0.06 (0.10) | 0.03 (0.09) | |
Moderate TVV/Moderate PA | 0.04 (0.06) | 0.04 (0.06) | |
Moderate TVV/High PA | 0.09 (0.06) | 0.04 (0.06) | |
High TVV/Insufficient PA | 0.37 (0.12) b | 0.25 (0.12) a | |
High TVV/Moderate PA | 0.20 (0.09) a | 0.12 (0.08) | |
High TVV/High PA | 0.13 (0.08) | 0.04 (0.08) | |
Triglycerides (mmol/L) | Low TVV/Insufficient PA | 0.005 (0.05) | 0.01 (0.05) |
Low TVV/Moderate PA | 0.02 (0.03) | 0.03 (0.03) | |
Moderate TVV/Insufficient PA | 0.05 (0.04) | 0.04 (0.04) | |
Moderate TVV/Moderate PA | 0.04 (0.03) | 0.04 (0.03) | |
Moderate TVV/High PA | 0.03 (0.03) | 0.009 (0.03) | |
High TVV/Insufficient PA | 0.23 (0.05) b | 0.18 (0.05) b | |
High TVV/Moderate PA | 0.11 (0.04) b | 0.08 (0.04) a | |
High TVV/High PA | 0.08 (0.04) a | 0.04 (0.03) | |
Total cholesterol (mmol/L) | Low TVV/Insufficient PA | 0.07 (0.13) | 0.06 (0.12) |
Low TVV/Moderate PA | 0.11 (0.07) | 0.13 (0.07) | |
Moderate TVV/Insufficient PA | 0.19 (0.11) | 0.14 (0.11) | |
Moderate TVV/Moderate PA | 0.21 (0.01) b | 0.18 (0.07) a | |
Moderate TVV/High PA | 0.01 (0.07) | 0.02 (0.07) | |
High TVV/Insufficient PA | 0.16 (0.14) | 0.17 (0.14) | |
High TVV/Moderate PA | 0.25 (0.10) a | 0.21 (0.10) a | |
High TVV/High PA | 0.04 (0.09) | 0.03 (0.09) | |
LDL-c (mmol/L) | Low TVV/Insufficient PA | 0.16 (0.10) | 0.14 (0.10) |
Low TVV/Moderate PA | 0.10 (0.06) | 0.12 (0.06) a | |
Moderate TVV/Insufficient PA | 0.22 (0.09) a | 0.18 (0.09) a | |
Moderate TVV/Moderate PA | 0.13 (0.06) a | 0.11 (0.06) | |
Moderate TVV/High PA | 0.005 (0.06) | 0.02 (0.06) | |
High TVV/Insufficient PA | 0.19 (0.12) | 0.19(0.11) | |
High TVV/Moderate PA | 0.22 (0.08) b | 0.19(0.08) a | |
High TVV/High PA | 0.05 (0.08) | 0.05 (0.07) | |
HDL-c (mmol/L) | Low TVV/Insufficient PA | −0.09 (0.04) a | −0.09 (0.04) a |
Low TVV/Moderate PA | −0.01 (0.02) | −0.01 (0.02) | |
Moderate TVV/Insufficient PA | −0.07 (0.03) a | −0.07 (0.03) a | |
Moderate TVV/Moderate PA | −0.03 (0.02) | −0.03 (0.02) | |
Moderate TVV/High PA | −0.004 (0.02) | −0.006 (0.02) | |
High TVV/Insufficient PA | −0.10 (0.04) a | −0.10 (0.04) a | |
High TVV/Moderate PA | −0.04 (0.03) | −0.03 (0.03) | |
High TVV/High PA | −0.04 (0.03) | −0.04 (0.03) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maranhao Neto, G.A.; Pavlovska, I.; Polcrova, A.; Mechanick, J.I.; Infante-Garcia, M.M.; Medina-Inojosa, J.; Nieto-Martinez, R.; Lopez-Jimenez, F.; Gonzalez-Rivas, J.P. The Combined Effects of Television Viewing and Physical Activity on Cardiometabolic Risk Factors: The Kardiovize Study. J. Clin. Med. 2022, 11, 545. https://doi.org/10.3390/jcm11030545
Maranhao Neto GA, Pavlovska I, Polcrova A, Mechanick JI, Infante-Garcia MM, Medina-Inojosa J, Nieto-Martinez R, Lopez-Jimenez F, Gonzalez-Rivas JP. The Combined Effects of Television Viewing and Physical Activity on Cardiometabolic Risk Factors: The Kardiovize Study. Journal of Clinical Medicine. 2022; 11(3):545. https://doi.org/10.3390/jcm11030545
Chicago/Turabian StyleMaranhao Neto, Geraldo A., Iuliia Pavlovska, Anna Polcrova, Jeffrey I. Mechanick, Maria M. Infante-Garcia, Jose Medina-Inojosa, Ramfis Nieto-Martinez, Francisco Lopez-Jimenez, and Juan P. Gonzalez-Rivas. 2022. "The Combined Effects of Television Viewing and Physical Activity on Cardiometabolic Risk Factors: The Kardiovize Study" Journal of Clinical Medicine 11, no. 3: 545. https://doi.org/10.3390/jcm11030545