Usefulness of Longitudinal Strain Adjusted to Regional Thickness in Hypertrophic Cardiomyopathy
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Clinical Characteristics
3.2. Echocardiographic Parameters
3.3. Myocardial Deformation
3.4. Assessment of Regional Longitudinal Strain
3.5. Analysis in Case of Hypertrophy > 20 mm
3.6. Global and Regional Longitudinal Strain and Cardiac Magnetic Resonance
3.7. Relations between Longitudinal Strain and Evaluated Risk of Sudden Death
3.8. Feasibility
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Elliott, P.M.; Anastasakis, A.; Borger, M.A.; Borggrefe, M.; Cecchi, F.; Charron, P.; Hagege, A.A.; Lafont, A.; Limongelli, G.; Mahrholdt, H.; et al. ESC Guidelines on diagnosis and management of hypertrophic cardiomyopathy: The Task Force for the Diagnosis and Management of Hypertrophic Cardiomyopathy of the European Society of Cardiology (ESC). Eur. Heart J. 2014, 35, 2733–2779. [Google Scholar] [PubMed]
- Maron, B.J.; Desai, M.Y.; Nishimura, R.A.; Spirito, P.; Rakowski, H.; Towbin, J.A.; Dearani, J.A.; Rowin, E.J.; Maron, M.S.; Sherrid, M.V. Management of Hypertrophic Cardiomyopathy: JACC State-of-the-Art Review. J. Am. Coll. Cardiol. 2022, 79, 390–414. [Google Scholar] [CrossRef] [PubMed]
- Ommen, S.R.; Mital, S.; Burke, M.A.; Day, S.M.; Deswal, A.; Elliott, P.; Evanovich, L.L.; Hung, J.; Joglar, J.A.; Kantor, P.; et al. AHA/ACC Guideline for the Diagnosis and Treatment of Patients With Hypertrophic Cardiomyopathy: Executive Summary: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation 2020, 142, e533–e557. [Google Scholar] [PubMed]
- Lannou, S.; Mansencal, N.; Couchoud, C.; Lassalle, M.; Dubourg, O.; Stengel, B.; Jacquelinet, C.; Charron, P. The Public Health Burden of Cardiomyopathies: Insights from a Nationwide Inpatient Study. J. Clin. Med. 2020, 9, 920. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maron, B.J.; Spirito, P.; Green, K.J.; Wesley, Y.E.; Bonow, R.O.; Arce, J. Noninvasive assessment of left ventricular diastolic function by pulsed doppler echocardiography in patients with hypertrophic cardiomyopathy. J. Am. Coll. Cardiol. 1987, 10, 733–742. [Google Scholar] [CrossRef] [Green Version]
- Maron, B.J.; Spirito, P. Implications of left ventricular remodeling in hypertrophic cardiomyopathy. Am. J. Cardiol. 1998, 81, 1339–1344. [Google Scholar]
- Musumeci, B.; Tini, G.; Russo, D.; Sclafani, M.; Cava, F.; Tropea, A.; Adduci, C.; Palano, F.; Francia, P.; Autore, C. Left Ventricular Remodeling in Hypertrophic Cardiomyopathy: An Overview of Current Knowledge. J. Clin. Med. 2021, 10, 1547. [Google Scholar] [CrossRef]
- Baudry, G.; Mansencal, N.; Reynaud, A.; Richard, P.; Dubourg, O.; Komajda, M.; Isnard, R.; Réant, P.; Charron, P. Global and regional echocardiographic strain to assess the early phase of hypertrophic cardiomyopathy due to sarcomeric mutations. Eur. Heart J.-Cardiovasc. Imaging 2019, 21, 291–298. [Google Scholar] [CrossRef]
- Serri, K.; Reant, P.; Lafitte, M.; Berhouet, M.; Le Bouffos, V.; Roudaut, R.; Lafitte, S. Global and Regional Myocardial Function Quantification by Two-Dimensional Strain: Application in Hypertrophic Cardiomyopathy. J. Am. Coll. Cardiol. 2006, 47, 1175–1181. [Google Scholar] [CrossRef] [Green Version]
- Saito, M.; Okayama, H.; Yoshii, T.; Higashi, H.; Morioka, H.; Hiasa, G.; Sumimoto, T.; Inaba, S.; Nishimura, K.; Inoue, K.; et al. Clinical significance of global two-dimensional strain as a surrogate parameter of myocardial fibrosis and cardiac events in patients with hypertrophic cardiomyopathy. Eur. Heart J.-Cardiovasc. Imaging 2012, 13, 617–623. [Google Scholar] [CrossRef]
- Reant, P.; Mirabel, M.; Lloyd, G.; Peyrou, J.; Lopez-Ayala, J.M.; Dickie, S.; Bulluck, H.; Captur, G.; Rosmini, S.; Guttmann, O.; et al. Global longitudinal strain is associated with heart failure outcomes in hypertrophic cardiomyopathy. Heart 2016, 102, 741–747. [Google Scholar] [CrossRef] [PubMed]
- O’Mahony, C.; Jichi, F.; Pavlou, M.; Monserrat, L.; Anastasakis, A.; Rapezzi, C.; Biagini, E.; Gimeno, J.R.; Limongelli, G.; McKenna, W.J.; et al. Hypertrophic Cardiomyopathy Outcomes Investigators. A novel clinical risk prediction model for sudden cardiac death in hypertrophic cardiomyopathy (HCM Risk-SCD). Eur. Heart J. 2013, 35, 2010–2020. [Google Scholar] [CrossRef] [PubMed]
- Lang, R.M.; Badano, L.P.; Mor-Avi, V.; Afilalo, J.; Armstrong, A.; Ernande, L.; Flachskampf, F.A.; Foster, E.; Goldstein, S.A.; Kuznetsova, T.; et al. Recommendations for Cardiac Chamber Quantification by Echocardiography in Adults: An Update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J. Am. Soc. Echocardiogr. 2015, 28, 1–39.e14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aguiar Rosa, S.; Thomas, B.; Fiarresga, A.; Papoila, A.L.; Alves, M.; Pereira, R.; Branco, G.; Cruz, I.; Rio, P.; Baquero, L.; et al. The Impact of Ischemia Assessed by Magnetic Resonance on Functional, Arrhythmic, and Imaging Features of Hypertrophic Cardiomyopathy. Front. Cardiovasc. Med. 2021, 8, 761860. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Sun, J.P.; Lever, H.M.; Popovic, Z.B.; Drinko, J.K.; Greenberg, N.L.; Shiota, T.; Thomas, J.D.; Garcia, M.J. Use of strain imaging in detecting segmental dysfunction in patients with hypertrophic cardiomyopathy. J. Am. Soc. Echocardiogr. 2003, 16, 233–239. [Google Scholar] [CrossRef]
- Kobayashi, T.; Popovic, Z.; Bhonsale, A.; Smedira, N.G.; Tan, C.; Rodriguez, E.R.; Thamilarasan, M.; Lytle, B.W.; Lever, H.M.; Desai, M.Y. Association between septal strain rate and histopathology in symptomatic hypertrophic cardiomyopathy patients undergoing septal myectomy. Am. Heart J. 2013, 166, 503–511. [Google Scholar] [CrossRef]
- Haland, T.F.; Almaas, V.M.; Hasselberg, N.E.; Saberniak, J.; Leren, I.S.; Hopp, E.; Edvardsen, T.; Haugaa, K.H. Strain echocardiography is related to fibrosis and ventricular arrhythmias in hypertrophic cardiomyopathy. Eur. Heart J.-Cardiovasc. Imaging 2016, 17, 613–621. [Google Scholar] [CrossRef] [Green Version]
- Correia, E.; Rodrigues, B.; Santos, L.F.; Moreira, D.; Gama, P.; Cabral, C.; Santos, O. Longitudinal Left Ventricular Strain in Hypertrophic Cardiomyopathy: Correlation with Nonsustained Ventricular Tachycardia. Echocardiography 2011, 28, 709–714. [Google Scholar] [CrossRef]
- Leitman, M.; Lysiansky, M.; Lysyansky, P.; Friedman, Z.; Tyomkin, V.; Fuchs, T.; Adam, D.; Krakover, R.; Vered, Z. Circumferential and Longitudinal Strain in 3 Myocardial Layers in Normal Subjects and in Patients with Regional Left Ventricular Dysfunction. J. Am. Soc. Echocardiogr. 2010, 23, 64–70. [Google Scholar] [CrossRef]
- Di Bella, G.; Minutoli, F.; Pingitore, A.; Zito, C.; Mazzeo, A.; Aquaro, G.D.; Di Leo, R.; Recupero, A.; Stancanelli, C.; Baldari, S.; et al. Endocardial and epicardial deformations in cardiac amyloidosis and hypertrophic cardiomyopathy. Circ. J. 2011, 75, 1200–1208. [Google Scholar] [CrossRef] [Green Version]
- Monda, E.; Palmiero, G.; Lioncino, M.; Rubino, M.; Cirillo, A.; Fusco, A.; Caiazza, M.; Verrillo, F.; Diana, G.; Mauriello, A.; et al. Multimodality Imaging in Cardiomyopathies with Hypertrophic Phenotypes. J. Clin. Med. 2022, 11, 868. [Google Scholar] [CrossRef] [PubMed]
- Aquaro, G.D.; Corsi, E.; Todiere, G.; Grigoratos, C.; Barison, A.; Barra, V.; Di Bella, G.; Emdin, M.; Ricci, F.; Pingitore, A. Magnetic Resonance for Differential Diagnosis of Left Ventricular Hypertrophy: Diagnostic and Prognostic Implications. J. Clin. Med. 2022, 11, 651. [Google Scholar] [CrossRef] [PubMed]
- Nakao, R.; Nagao, M.; Higuchi, S.; Minami, Y.; Shoda, M.; Ando, K.; Yamamoto, A.; Sakai, A.; Watanabe, E.; Sakai, S.; et al. Relation of Left Atrial Flow, Volume, and Strain to Paroxysmal Atrial Fibrillation in Patients With Hypertrophic Cardiomyopathy. Am. J. Cardiol. 2021, 166, 72–80. [Google Scholar] [CrossRef] [PubMed]
- Siam-Tsieu, V.; Urtado, S.; Charron, P.; Hergault, H.; Szymanski, C.; Mallet, S.; Dubourg, O.; Mansencal, N. Assessment of atrial function by myocardial deformation techniques in hypertrophic cardiomyopathy. Echocardiography 2020, 38, 230–237. [Google Scholar] [CrossRef]
- Ng, A.; Sitges, M.; Pham, P.N.; Tran, D.T.; Delgado, V.; Bertini, M.; Nucifora, G.; Vidaic, J.; Allman, C.; Holman, E.R.; et al. Incremental value of 2-dimensional speckle tracking strain imaging to wall motion analysis for detection of coronary artery disease in patients undergoing dobutamine stress echocardiography. Am. Heart J. 2009, 158, 836–844. [Google Scholar] [CrossRef]
- Mor-Avi, V.; Lang, R.M.; Badano, L.P.; Belohlavek, M.; Cardim, N.M.; Derumeaux, G.; Galderisi, M.; Marwick, T.; Nagueh, S.F.; Sengupta, P.P.; et al. Current and Evolving Echocardiographic Techniques for the Quantitative Evaluation of Cardiac Mechanics: ASE/EAE Consensus Statement on Methodology and Indications endorsed by the Japanese Society of Echocardiography. J. Am. Soc. Echocardiogr. 2011, 24, 277–313. [Google Scholar] [CrossRef]
HCM Group n = 55 | Control Group n = 55 | |
---|---|---|
Men, n (%) | 38 (69%) | 38 (69%) |
Mean age, years | 47 ± 19 | 47 ± 19 |
Previous history | ||
Syncope, n (%) | 6 (11%) | 0 (0%) |
Chest pain, n (%) | 4 (7%) | 0 (0%) |
Family history of sudden cardiac death, n (%) | 6 (11%) | 0 (0%) |
Supraventricular tachycardia, n (%): | 13 (24%) | 0 (0%) |
Atrial fibrillation | 9 (16%) | 0 (0%) |
Atrial flutter | 1 (2%) | 0 (0%) |
Wolff–Parkinson–White syndrome | 2 (4%) | 0 (0%) |
Dyspnea (NYHA classification) * | ||
Class I, n (%) | 22 (56%) | 55 (100%) |
Class II, n (%) | 18 (32%) | 0 (0%) |
Class III, n (%) | 6 (11%) | 0 (0%) |
Class IV, n (%) | 0 | 0 (0%) |
Heart rate, /min | 68 ± 13 | 75 ± 11 |
Systolic blood pressure, mmHg | 122 ± 20 | 125 ± 11 |
Diastolic blood pressure, mmHg | 73 ± 10 | 74 ± 8 |
NSVT on Holter ECG, n (%) | 5 (9%) | NA |
Hypotensive blood pressure response to exercise, n (%) | 2 (4%) | NA |
Identified gene mutation, n (%) | 23 (42%) | NA |
Myosin-binding protein C (MYBPC3), n (%) | 15 (27%) | |
Beta-myosin heavy chain (MYH7), n (%) | 6 (11%) | |
Cardiac troponin T (TNNT2), n (%) | 1 (2%) | |
Protein kinase A, gamma unit (PKRAG2), n (%) | 1 (2%) | |
Significant myocardial fibrosis on CMR, n (%) | 17 (31%) | NA |
Medication | ||
Beta-blockers, n (%) | 37 (67%) | 0 (0%) |
ACE inhibitor/ARA, n (%) | 3 (5%) | 0 (0%) |
Diuretics, n (%) | 10 (18%) | 0 (0%) |
Disopyramide, n (%) | 6 (11%) | 0 (0%) |
Amiodarone, n (%) | 2 (4%) | 0 (0%) |
Flecainide, n (%) | 2 (4%) | 0 (0%) |
Dual-chamber pacemaker implantation/ICD, n (%) | 6 (11%) | 0 (0%) |
Septal alcohol ablation, n (%) | 5 (9%) | - |
Myoto myomectomy, n (%) | 2 (4%) | - |
5-year sudden cardiac death risk score, n (%) | 3.56 ± 7.06 | NA |
HCM Group n = 55 | Control Group n = 55 | |
---|---|---|
LV diastolic diameter (mm) * | 44.6 ± 5.9 | 48.7 ± 5.2 |
Maximal septal thickness (mm) * | 19.1 ± 6.4 | 7.9 ± 1.5 |
LV ejection fraction | 60 ± 11 | 62 ± 3 |
Septum/posterior wall ratio * | 1.89 ± 0.73 | 1.05 ± 0.02 |
Maron index (mm) | 56.8 ± 14.4 | NA |
Systolic anterior motion, n (%) | 27 (49%) | 0 (0%) |
Maximal left ventricular gradient | NA | |
Mean values (mmHg) | 42 ± 20 | |
Superior to 30 mmHg, n (%) | 16 (29%) | |
Left atrial diameter (mm) * | 41.3 ± 7.8 | 35.4 ± 3.2 |
Mitral regurgitation | ||
Grade II or above, n (%) | 8 (14%) | 0 (0%) |
Mitral regurgitation related to SAM, n (%) | 6 (11%) | 0 (0%) |
HCM pattern (Maron classification) | NA | |
Type 1, n (%) | 11 (20%) | |
Type 2, n (%) | 5 (9%) | |
Type 3, n (%) | 32 (58%) | |
Type 4, n (%) | 7 (13) | |
Apical HCM, n (%) | 5 (9%) | NA |
Longitudinal Strain (%) | Standard | Adjusted | p Value |
---|---|---|---|
Basal inferoseptal segment | −10.6 ± 6.8 | −8.6 ± 6.3 | 0.0002 |
Median inferoseptal segment | −14.2 ± 6.5 | −12.3 ± 7.1 | 0.001 |
Apical inferoseptal segment | −18.1 ± 7.4 | −21.4 ± 9.6 | 0.003 |
Basal anterolateral segment | −13.8 ± 8.1 | −13.8 ± 6.2 | 0.94 |
Median anterolateral segment | −13.0 ± 6.9 | −13.2 ± 7.4 | 0.78 |
Apical anterolateral segment | −15.3 ± 7.2 | −18.6 ± 11.3 | 0.08 |
Basal anteroseptal segment | −10.7 ± 7.8 | −8.4 ± 5.8 | 0.067 |
Median anteroseptal segment | −13.7± 6.4 | −12.5 ± 6.7 | 0.02 |
Apical segment | −16.9 ± 7.1 | −18.6 ± 8.4 | 0.005 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Urtado, S.; Hergault, H.; Binsse, S.; Aidan, V.; Ouadahi, M.; Szymanski, C.; Mallet, S.; Hauguel-Moreau, M.; Carlier, R.Y.; Dubourg, O.; et al. Usefulness of Longitudinal Strain Adjusted to Regional Thickness in Hypertrophic Cardiomyopathy. J. Clin. Med. 2022, 11, 2089. https://doi.org/10.3390/jcm11082089
Urtado S, Hergault H, Binsse S, Aidan V, Ouadahi M, Szymanski C, Mallet S, Hauguel-Moreau M, Carlier RY, Dubourg O, et al. Usefulness of Longitudinal Strain Adjusted to Regional Thickness in Hypertrophic Cardiomyopathy. Journal of Clinical Medicine. 2022; 11(8):2089. https://doi.org/10.3390/jcm11082089
Chicago/Turabian StyleUrtado, Sophie, Hélène Hergault, Stephen Binsse, Vincent Aidan, Mounir Ouadahi, Catherine Szymanski, Sophie Mallet, Marie Hauguel-Moreau, Robert Yves Carlier, Olivier Dubourg, and et al. 2022. "Usefulness of Longitudinal Strain Adjusted to Regional Thickness in Hypertrophic Cardiomyopathy" Journal of Clinical Medicine 11, no. 8: 2089. https://doi.org/10.3390/jcm11082089
APA StyleUrtado, S., Hergault, H., Binsse, S., Aidan, V., Ouadahi, M., Szymanski, C., Mallet, S., Hauguel-Moreau, M., Carlier, R. Y., Dubourg, O., & Mansencal, N. (2022). Usefulness of Longitudinal Strain Adjusted to Regional Thickness in Hypertrophic Cardiomyopathy. Journal of Clinical Medicine, 11(8), 2089. https://doi.org/10.3390/jcm11082089