Vertebral Body Tethering: Indications, Surgical Technique, and a Systematic Review of Published Results
Abstract
:1. Introduction
2. Methods
2.1. Identification and Selection of Studies
2.2. Inclusion and Exclusion Criteria
2.3. Data Extraction and Analysis
2.4. Statistical Analysis
3. Anterior Vertebral Body Tethering
3.1. Indications for Main Thoracic Curves
3.2. Timing of the Procedure
3.3. Technical Considerations for Vertebral Body Tethering
3.4. Indications for Thoracolumbar and Lumbar Curves
4. Results
4.1. Curve Correction after AVBT in Thoracic Curves
4.2. Outcomes of Lumbar Curves and Double Curves
4.3. Reported Complications
4.4. Comparison between Spinal Fusion and Vertebral Body Tethering
4.5. Spinal Mobility after AVBT
4.6. Pulmonary Function after AVBT
4.7. Health-Related Quality of Life
4.8. Cost-Utility Analysis
5. Discussion
5.1. Advantages
5.2. Disadvantages
5.3. Limitations
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Weinstein, L.S.; Zavala, D.C.; Ponseti, I.V. Idiopathic scoliosis: Long-term follow-up and prognosis in untreated patients. J. Bone Jt. Surg. Am. 1981, 63, 702–712. [Google Scholar] [CrossRef] [Green Version]
- Newton, O.P.; Faro, F.D.; Gollogly, S.; Betz, R.R.; Lenke, L.G.; Lowe, T.G. Results of preoperative pulmonary function testing of adolescents with idiopathic scoliosis. A study of six hundred and thirty-one patients. J. Bone Jt. Surg. Am. 2005, 87, 1937–1946. [Google Scholar] [CrossRef] [PubMed]
- Akbarnia, B.A. Management themes in early onset scoliosis. J. Bone Jt. Surg. Am. 2007, 89, 42–54. [Google Scholar] [CrossRef]
- Suk, I.S.; Lee, S.M.; Chung, E.R.; Kim, J.H.; Kim, S.S. Selective thoracic fusion with segmental pedicle screw fixation in the treatment of thoracic idiopathic scoliosis: More than 5-year follow-up. Spine 2005, 30, 1602–1609. [Google Scholar] [CrossRef] [PubMed]
- Karol, A.L.; Johnston, C.; Mladenov, K.; Schochet, P.; Walters, P.; Browne, R.H. Pulmonary function following early thoracic fusion in non-neuromuscular scoliosis. J. Bone Jt. Surg. Am. 2008, 90, 1272–1281. [Google Scholar] [CrossRef] [PubMed]
- Karol, L.A. Early definitive spinal fusion in young children: What we have learned. Clin. Orthop. Relat. Res. 2011, 469, 1323–1329. [Google Scholar] [CrossRef] [Green Version]
- Sponseller, D.P.; Jain, A.; Newton, P.O.; Lonner, B.S.; Shah, S.A.; Shufflebarger, H.; Bastrom, T.P.; Marks, M.C.; Betz, R.R. Posterior Spinal Fusion With Pedicle Screws in Patients With Idiopathic Scoliosis and Open Triradiate Cartilage: Does Deformity Progression Occur? J. Pediatr. Orthop. 2016, 36, 95–700. [Google Scholar] [CrossRef]
- Oksanen, H.; Lastikka, M.; Helenius, L.; Pajulo, O.; Helenius, I. Posterior Spinal Fusion Extended to Stable Vertebra Provides Similar Outcome in Juvenile Idiopathic Scoliosis Patients Compared with Adolescents with Fusion to the Touched Vertebra. Scand. J. Surg. 2019, 108, 83–89. [Google Scholar] [CrossRef] [Green Version]
- Spencer, T.H.; Gold, M.E.; Karlin, L.I.; Hedequist, D.J.; Hresko, M.T. Gain in spinal height from surgical correction of idiopathic scoliosis. J. Bone Jt. Surg. Am. 2014, 96, 59–65. [Google Scholar] [CrossRef]
- Helenius, I.; Remes, V.; Yrjonen, T.; Ylikoski, M.; Schlenzka, D.; Helenius, M.; Poussa, M. Harrington and Cotrel-Dubousset instrumentation in adolescent idiopathic scoliosis. Long-term functional and radiographic outcomes. J. Bone Jt. Surg. Am. 2003, 85, 2303–2309. [Google Scholar] [CrossRef]
- Helenius, L.; Diarbakerli, E.; Grauers, A.; Lastikka, M.; Oksanen, H.; Pajulo, O.; Löyttyniemi, E.; Manner, T.; Gerdhem, P.; Helenius, I. Back Pain and Quality of Life After Surgical Treatment for Adolescent Idiopathic Scoliosis at 5-Year Follow-up: Comparison with Healthy Controls and Patients with Untreated Idiopathic Scoliosis. J. Bone Jt. Surg. Am. 2019, 101, 1460–1466. [Google Scholar] [CrossRef] [PubMed]
- Marks, C.M.; Bastrom, T.P.; Petcharaporn, M.; Shah, S.A.; Betz, R.R.; Samdani, A.; Lonner, B.; Miyanji, F.; Newton, P.O. The Effect of Time and Fusion Length on Motion of the Unfused Lumbar Segments in Adolescent Idiopathic Scoliosis. Spine Deform. 2015, 3, 549–553. [Google Scholar] [CrossRef] [PubMed]
- Parsch, D.; Gaertner, V.; Brocai, D.R.; Carstens, C. The effect of spinal fusion on the long-term outcome of idiopathic scoliosis. A case-control study. J. Bone Jt. Surg. Br. 2001, 83, 1133–1136. [Google Scholar] [CrossRef]
- Roaf, R. Vertebral growth and its mechanical control. J. Bone Jt. Surg. Br. 1960, 42, 40–59. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Newton, O.P.; Upasani, V.V.; Farnsworth, C.L.; Oka, R.; Chambers, R.C.; Dwek, J.; Kim, J.R.; Perry, A.; Mahar, A.T. Spinal growth modulation with use of a tether in an immature porcine model. J. Bone Jt. Surg. Am. 2008, 90, 2695–2706. [Google Scholar] [CrossRef]
- Roaf, R. The Treatment of Progressive Scoliosis by Unilateral Growth-Arrest. J. Bone Jt. Surg. Br. 1963, 45, 637–651. [Google Scholar] [CrossRef] [Green Version]
- Bouchard, M. Guided Growth: Novel Applications in the Hip, Knee, and Ankle. J. Pediatr. Orthop. 2017, 37, S32–S36. [Google Scholar] [CrossRef]
- Betz, R.R.; Ranade, A.; Samdani, A.F.; Chafetz, R.; D’Andrea, L.P.; Gaughan, J.P.; Asghar, J.; Grewal, H.; Mulcahey, M.J. Vertebral body stapling: A fusionless treatment option for a growing child with moderate idiopathic scoliosis. Spine 2010, 35, 169–176. [Google Scholar] [CrossRef]
- Newton, P.O. Spinal growth tethering: Indications and limits. Ann. Transl. Med. 2020, 8, 27. [Google Scholar] [CrossRef]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; Group, P. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. BMJ 2009, 339, b2535. [Google Scholar] [CrossRef] [Green Version]
- Crawford, H.C., 3rd; Lenke, L.G. Growth modulation by means of anterior tethering resulting in progressive correction of juvenile idiopathic scoliosis: A case report. J. Bone Jt. Surg. Am. 2010, 92, 202–209. [Google Scholar] [CrossRef] [PubMed]
- Samdani, F.A.; Ames, R.J.; Kimball, J.S.; Pahys, J.M.; Grewal, H.; Pelletier, G.J.; Betz, R.R. Anterior vertebral body tethering for idiopathic scoliosis: Two-year results. Spine 2014, 39, 1688–1693. [Google Scholar] [CrossRef] [PubMed]
- Newton, O.P.; Kluck, D.G.; Saito, W.; Yaszay, B.; Bartley, C.E.; Bastrom, T.P. Anterior Spinal Growth Tethering for Skeletally Immature Patients with Scoliosis: A Retrospective Look Two to Four Years Postoperatively. J. Bone Jt. Surg. Am. 2018, 100, 1691–1697. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, Y.; Saito, W.; Yaszay, B.; Bartley, C.E.; Bastrom, T.P.; Newton, P.O. Rate of Scoliosis Correction After Anterior Spinal Growth Tethering for Idiopathic Scoliosis. J. Bone Jt. Surg. Am. 2021, 103, 1718–1723. [Google Scholar] [CrossRef] [PubMed]
- Krakow, R.A.; Magee, L.C.; Cahill, P.J.; Flynn, J.M. Could have tethered: Predicting the proportion of scoliosis patients most appropriate for thoracic anterior spinal tethering. Spine Deform. 2021, 9, 1005–1012. [Google Scholar] [CrossRef]
- Sanders, O.J.; Khoury, J.G.; Kishan, S.; Browne, R.H.; Mooney, J.F., 3rd; Arnold, K.D.; McConnell, S.J.; Bauman, J.A.; Finegold, D.N. Predicting scoliosis progression from skeletal maturity: A simplified classification during adolescence. J. Bone Jt. Surg. Am. 2008, 90, 540–553. [Google Scholar] [CrossRef]
- Miyanji, F.; Pawelek, J.; Nasto, L.A.; Rushton, P.; Simmonds, A.; Parent, S. Safety and efficacy of anterior vertebral body tethering in the treatment of idiopathic scoliosis. Bone Jt. J. 2020, 102, 1703–1708. [Google Scholar] [CrossRef]
- Alanay, A.; Yucekul, A.; Abul, K.; Ergene, G.; Senay, S.; Ay, B.; Cebeci, B.O.; Dikmen, P.Y.; Zulemyan, T.; Yavuz, Y.; et al. Thoracoscopic Vertebral Body Tethering for Adolescent Idiopathic Scoliosis: Follow-up Curve Behavior According to Sanders Skeletal Maturity Staging. Spine 2020, 45, E1483–E1492. [Google Scholar] [CrossRef]
- Mathew, S.; Larson, A.N.; Potter, D.D.; Milbrandt, T.A. Defining the learning curve in CT-guided navigated thoracoscopic vertebral body tethering. Spine Deform. 2021, 9, 1581–1589. [Google Scholar] [CrossRef]
- Hegde, K.S.; Venkatesan, M.; Akbari, K.K.; Badikillaya, V.M. Efficacy of Anterior Vertebral Body Tethering in Skeletally Mature Children with Adolescent Idiopathic Scoliosis: A Preliminary Report. Int. J. Spine Surg. 2021, 15, 995–1003. [Google Scholar] [CrossRef]
- Baroncini, A.; Courvoisier, A.; Berjano, P.; Migliorini, F.; Eschweiler, J.; Kobbe, P.; Hildebrand, F.; Trobisch, P.D. The effects of vertebral body tethering on sagittal parameters: Evaluations from a 2-years follow-up. Eur. Spine J. 2022, 31, 1060–1066. [Google Scholar] [CrossRef] [PubMed]
- Parent, S.; Shen, J. Anterior Vertebral Body Growth-Modulation Tethering in Idiopathic Scoliosis: Surgical Technique. J. Am. Acad. Orthop. Surg 2020, 28, 693–699. [Google Scholar] [CrossRef] [PubMed]
- Trobisch, D.P.; Baroncini, A. Preliminary outcomes after vertebral body tethering (VBT) for lumbar curves and subanalysis of a 1- versus 2-tether construct. Eur. Spine J. 2021, 30, 3570–3576. [Google Scholar] [CrossRef] [PubMed]
- Pehlivanoglu, T.; Oltulu, I.; Erdag, Y.; Korkmaz, E.; Sarioglu, E.; Ofluoglu, E.; Aydogan, M. Double-sided vertebral body tethering of double adolescent idiopathic scoliosis curves: Radiographic outcomes of the first 13 patients with 2 years of follow-up. Eur. Spine J. 2021, 30, 1896–1904. [Google Scholar] [CrossRef]
- Abdullah, A.; Parent, S.; Miyanji, F.; Smit, K.; Murphy, J.; Skaggs, D.; Gupta, P.; Vitale, M.; Ouellet, J.; Saran, N.; et al. Spine Study, Risk of early complication following anterior vertebral body tethering for idiopathic scoliosis. Spine Deform. 2021, 9, 1419–1431. [Google Scholar] [CrossRef]
- Baker, E.C.; Kiebzak, G.M.; Neal, K.M. Anterior vertebral body tethering shows mixed results at 2-year follow-up. Spine Deform. 2021, 9, 481–489. [Google Scholar] [CrossRef] [PubMed]
- Bernard, J.; Bishop, T.; Herzog, J.; Haleem, S.; Lupu, C.; Ajayi, B.; Lui, D.F. Dual modality of vertebral body tethering: Anterior scoliosis correction versus growth modulation with mean follow-up of five years. Bone Jt. Open. 2022, 3, 123–129. [Google Scholar] [CrossRef]
- Betz, R.; Bassett, W.P.; Cuddihy, L.; Cerrone, J.; Haas, A.; Antonacci, M.D. Non-fusion anterior scoliosis correction (asc): Comparison of outcomes in skeletally immature vs. skeletally mature patients with adolescent idiopathic scoliosis. Eur. Spine J. 2019, 28, 2856. [Google Scholar] [CrossRef]
- Buyuk, F.A.; Milbrandt, T.A.; Mathew, S.E.; Larson, A.N. Measurable Thoracic Motion Remains at 1 Year Following Anterior Vertebral Body Tethering, with Sagittal Motion Greater Than Coronal Motion. J. Bone Jt. Surg. Am. 2021, 103, 2299–2305. [Google Scholar] [CrossRef]
- Cebeci, O.B.; Sogunmez, N.; Ergene, G.; Ay, B.; Yilgor, C.; Alanay, A. Non-fusion growth modulation with anterior vertebral body tethering for adolescent idiopathic scoliosis: A promising minimal invasive alternative to traditional treatment. Eur. Spine J. 2017, 26, S291. [Google Scholar] [CrossRef]
- Costanzo, S.; Pansini, A.; Colombo, L.; Caretti, V.; Popovic, P.; Lanfranchi, G.; Camporesi, A.; Pelizzo, G. Video-Assisted Thoracoscopy for Vertebral Body Tethering of Juvenile and Adolescent Idiopathic Scoliosis: Tips and Tricks of Surgical Multidisciplinary Management. Children 2022, 9, 74. [Google Scholar] [CrossRef] [PubMed]
- Mackey, C.; Hanstein, R.; Lo, Y.; Vaughan, M.; Hilaire, T.S.; Luhmann, S.J.; Vitale, M.G.; Glotzbecker, M.P.; Samdani, A.; Parent, S.; et al. Magnetically Controlled Growing Rods (MCGR) Versus Single Posterior Spinal Fusion (PSF) Versus Vertebral Body Tether (VBT) in Older Early Onset Scoliosis (EOS) Patients: How Do Early Outcomes Compare? Spine 2022, 47, 295–302. [Google Scholar] [CrossRef] [PubMed]
- Mladenov, K.; Stucker, R. Anterior Vertebral Body Tethering (VBT) for Idiopathic Scoliosis. Eur. Spine J. 2021, 30, 3349. [Google Scholar] [CrossRef]
- Newton, O.P.; Bartley, C.E.; Bastrom, T.P.; Kluck, D.G.; Saito, W.; Yaszay, B. Anterior Spinal Growth Modulation in Skeletally Immature Patients with Idiopathic Scoliosis: A Comparison with Posterior Spinal Fusion at 2 to 5 Years Postoperatively. J. Bone Jt. Surg. Am. 2020, 102, 769–777. [Google Scholar] [CrossRef] [PubMed]
- Pehlivanoglu, T.; Oltulu, I.; Ofluoglu, E.; Sarioglu, E.; Altun, G.; Korkmaz, M.; Yildirim, K.; Aydogan, M. Thoracoscopic Vertebral Body Tethering for Adolescent Idiopathic Scoliosis: A Minimum of 2 Years’ Results of 21 Patients. J. Pediatr. Orthop. 2020, 40, 575–580. [Google Scholar] [CrossRef]
- Rushton, P.P.R.; Nasto, L.; Parent, S.; Turgeon, I.; Aldebeyan, S.; Miyanji, F. Anterior Vertebral Body Tethering for Treatment of Idiopathic Scoliosis in the Skeletally Immature: Results of 112 Cases. Spine 2021, 46, 1461–1467. [Google Scholar] [CrossRef]
- Samdani, F.A.; Pahys, J.M.; Ames, R.J.; Grewal, H.; Pelletier, G.J.; Hwang, S.W.; Betz, R.R. Prospective Follow-up Report on Anterior Vertebral Body Tethering for Idiopathic Scoliosis: Interim Results from an FDA IDE Study. J. Bone Jt. Surg. Am. 2021, 103, 1611–1619. [Google Scholar] [CrossRef]
- Wong, K.H.; Ruiz, J.N.M.; Newton, P.O.; Liu, K.P.G. Non-Fusion Surgical Correction of Thoracic Idiopathic Scoliosis Using a Novel, Braided Vertebral Body Tethering Device: Minimum Follow-up of 4 Years. JB JS Open Access 2019, 4, e0026. [Google Scholar] [CrossRef] [Green Version]
- Yucekul, A.; Akpunarli, B.; Durbas, A.; Zulemyan, T.; Havlucu, I.; Ergene, G.; Senay, S.; Dikmen, P.Y.; Balci, S.T.; Karaarslan, E.; et al. Does vertebral body tethering cause disc and facet joint degeneration? A preliminary MRI study with minimum two years follow-up. Spine J. 2021, 21, 1793–1801. [Google Scholar] [CrossRef]
- Newton, O.P.; Takahashi, Y.; Yang, Y.; Yaszay, B.; Bartley, C.E.; Bastrom, T.P.; Munar, C. Anterior vertebral body tethering for thoracic idiopathic scoliosis leads to asymmetric growth of the periapical vertebrae. Spine Deform. 2022, 10, 553–561. [Google Scholar] [CrossRef]
- Yucekul, A.; Karaman, I.; Zulemyan, T.; Ergene, G.; Senay, S.; Balci, S.; Yavuz, Y.; Yilgor, C.; Alanay, A. Thoracoscopic and Mini-open Lumbotomy Vertebral Body Tethering for Thoracolumbar/Lumbar Curves: Two to Three Years Follow-up. In Proceedings of the 28th International Meeting on Advanced Spine Techniques, Virtual Meeting, 23–25 April 2021. [Google Scholar]
- Baroncini, A.; Trobisch, P.; Blau, C.; Golias, C.; Kobbe, P.; Eschweiler, J.; Tingart, M.; Migliorini, F. Analysis of the pulmonary function in patients undergoing vertebral body tethering for adolescent idiopathic scoliosis. Eur. Spine J. 2022, 31, 1022–1027. [Google Scholar] [CrossRef] [PubMed]
- Alanay, A.; Yucekul, A.; Abul, K.; Karaman, I.; Durbas, A.; Zulemyan, T.; Ergene, G.; Senay, S.; Balci, S.T.; Dikmen, P.Y.; et al. Two to five years follow up results after thoracoscopic VBT: A single surgeon’s experience. Spine J. 2021, 21, S86–S87. [Google Scholar] [CrossRef]
- Qiu, C.; Talwar, D.; Gordon, J.; Capraro, A.; Lott, C.; Cahill, P.J. Patient-Reported Outcomes Are Equivalent in Patients Who Receive Vertebral Body Tethering Versus Posterior Spinal Fusion in Adolescent Idiopathic Scoliosis. Orthopedics 2021, 44, 24–28. [Google Scholar] [CrossRef] [PubMed]
- Polly, W.D.; Larson, A.N.; Samdani, A.F.; Rawlinson, W.; Brechka, H.; Porteous, A.; Marsh, W.; Ditto, R. Cost-Utility Analysis of Anterior Vertebral Body Tethering versus Spinal Fusion in Idiopathic Scoliosis from a US Integrated Healthcare Delivery System Perspective. Clin. Outcomes Res. 2021, 13, 175–190. [Google Scholar] [CrossRef]
- Newton, O.P.; Farnsworth, C.L.; Faro, F.D.; Mahar, A.T.; Odell, T.R.; Mohamad, F.; Breisch, E.; Fricka, K.; Upasani, V.V.; Amiel, D. Spinal growth modulation with an anterolateral flexible tether in an immature bovine model: Disc health and motion preservation. Spine 2008, 33, 724–733. [Google Scholar] [CrossRef]
- Newton, O.P.; Fricka, K.B.; Lee, S.S.; Farnsworth, C.L.; Cox, T.G.; Mahar, A.T. Asymmetrical flexible tethering of spine growth in an immature bovine model. Spine 2002, 27, 689–693. [Google Scholar] [CrossRef]
- Braun, T.J.; Ogilvie, J.W.; Akyuz, E.; Brodke, D.S.; Bachus, K.N. Fusionless scoliosis correction using a shape memory alloy staple in the anterior thoracic spine of the immature goat. Spine 2004, 29, 1980–1989. [Google Scholar] [CrossRef]
- Moal, B.; Schwab, F.; Demakakos, J.; Lafage, R.; Riviere, P.; Patel, A.; Lafage, V. The impact of a corrective tether on a scoliosis porcine model: A detailed 3D analysis with a 20 weeks follow-up. Eur. Spine J. 2013, 22, 1800–1809. [Google Scholar] [CrossRef] [Green Version]
- Newton, O.P.; Faro, F.D.; Farnsworth, C.L.; Shapiro, G.S.; Mohamad, F.; Parent, S.; Fricka, K. Multilevel spinal growth modulation with an anterolateral flexible tether in an immature bovine model. Spine 2005, 30, 2608–2613. [Google Scholar] [CrossRef]
- Jain, V.; Lykissas, M.; Trobisch, P.; Wall, E.J.; Newton, P.O.; Sturm, P.F.; Cahill, P.J.; Bylski-Austrow, D.I. Surgical aspects of spinal growth modulation in scoliosis correction. Instr. Course Lect. 2014, 63, 335–344. [Google Scholar]
- Aubin, E.C.; Clin, J.; Rawlinson, J. Biomechanical simulations of costo-vertebral and anterior vertebral body tethers for the fusionless treatment of pediatric scoliosis. J. Orthop. Res. 2018, 36, 254–264. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cobetto, N.; Parent, S.; Aubin, C.E. 3D correction over 2years with anterior vertebral body growth modulation: A finite element analysis of screw positioning, cable tensioning and postoperative functional activities. Clin. Biomech. 2018, 51, 26–33. [Google Scholar] [CrossRef] [PubMed]
- Baroncini, A.; Trobisch, P.D.; Berrer, A.; Kobbe, P.; Tingart, M.; Eschweiler, J.; da Paz, S.; Migliorini, F. Return to sport and daily life activities after vertebral body tethering for AIS: Analysis of the sport activity questionnaire. Eur. Spine J. 2021, 30, 1998–2006. [Google Scholar] [CrossRef] [PubMed]
- Samdani, F.A.; Ames, R.J.; Kimball, J.S.; Pahys, J.M.; Grewal, H.; Pelletier, G.J.; Betz, R.R. Anterior vertebral body tethering for immature adolescent idiopathic scoliosis: One-year results on the first 32 patients. Eur. Spine J. 2015, 24, 1533–1539. [Google Scholar] [CrossRef] [PubMed]
- Pekmezci, M.; Yilmaz, G.; Daglioglu, K.; Gulsen, M.; Alanay, A.; Acaroglu, E.; Yazici, M. The effect of anterior spinal fusion on spinal canal development in an immature porcine model. Spine 2009, 34, E501–E506. [Google Scholar] [CrossRef]
- Hoernschemeyer, G.D.; Boeyer, M.E.; Tweedy, N.M.; Worley, J.R.; Crim, J.R. A preliminary assessment of intervertebral disc health and pathoanatomy changes observed two years following anterior vertebral body tethering. Eur. Spine J. 2021, 30, 3442–3449. [Google Scholar] [CrossRef]
Author/Setting/Year | Number of Patients (% Women) | Age (Years) | Preoperative Curve | Final Curve | Length of Follow-Up (Years) | Complications (%) | Main Findings/Conclusion |
---|---|---|---|---|---|---|---|
Abdullah [35]/Multi-center register study/2021 | 120 (84.2%) | 12.6 (8.2–15.7) | 51.2 (40–70) | 27.5 (−5–52) | 2 | 15.8 | Higher than expected complication rate during learning curve. |
Alanay [28]/Single-center/2020 | 42 (95.2) | 12.1 (SD 1.5) | 47 (35–68) | 17 (−6–28) | 2.8 | 7.1 | Curve behavior after VBT varied according to Sanders stage. |
Baker [36]/Single-center/2021 | 17 (70.6) | 12.9 (SD 1.4) | 45 (35–60) | 20 (−40–25) | 2 | 23.5 | The majority of patients (53%) were successful despite four revisions and nine broken tethers. |
Baroncini [31]/2 centers/2021 | 86 (83.7) | 13.2 (SD 2.4) | 52.4 (SD 13.9) | 26.6 (SD 12.7) | 2 | 8.1 | The majority of the patients had a physiologic sagittal profile after surgery. |
Bernard [37]/Single center/2022 | 20 (95.0) | 13.8 (9–17) | 56.5 (40–79) | 19.4 (−17–56) | 5.4 | 15 | High success rate (95%) in helping children avoid fusion at five years post-surgery. |
Betz [38]/Single center/2019 | 71 (83.1) | 14.5 | N/A | N/A | 2 | 4.2 | Results of showed clinical success in 93% of immature patients, 81% of maturing, and 86% of mature patients. |
Buyuk [39]/ Single center/2021 | 32 (93.8) | 13 (11–15) | 51 (42–70) | 26 (7–43) | 1 | 9.4 | Particularly, sagittal plane motion was preserved postoperatively after anterior vertebral body tethering. |
Cebeci [40]/ Single center/2017 | 12 (100) | 12.2 (11–13) | 46 (35–59) | 18 (6–26) | 2 | 0 | VBT resulted in a significant correction in both major and compensatory curves. |
Costanzo [41]/Single center/2022 | 23 (82.6) | 12 (9–14) | 56.5 (33–79) | 37 (15–58) | 2 | 8.7 | Initial results were encouraging. |
Hegde [30]/Single center/2021 | 10 (100) | 14.9 (12–17) | 52 (42–80) | 15.3 (3–28) | 2 | 0 | Preliminary experience was promising. |
Mackey [42]/Multicenter/2022 | 37 (97.3) | 11.3 (IQR 10.9–11.8) | 50 (IQR 43.5–58) | 28 (IQR 21–35) | 3 | 27 | Satisfactory curve control and improved thoracic and spinal height. |
Miyanji [27]/Multicenter/2020 | 57 (94.7) | 12.7 (8.2–16.7) | 51 (31–81) | 23 (−18–57) | 3.4 | 28.1 | Satisfactory curve correction and an acceptable complication rate in skeletally immature patients. |
Mladenov [43]/Single center/2021 | 20 (70.0) | 13.4 (11.5–14.5) | 46.5 (29–64) | 23 (8–38) | 1.6 | 5 | Anticipated curve correction averaged 50%. |
Newton [44]/Single center/2020 | 23 (69.6) | 12 (9–15) | 53 (41–67) | 33 (−5–62) | 3.4 | 39.1 | AVBT resulted in less deformity correction and more revision procedures than PSF, but resulted in the delay or prevention of PSF in the majority of patients. |
Pehlivanoglu [45]/Single center/2020 | 21 (71.4) | 11.1 (9–14) | 48.2 (IQR 44–52.1) | 10.1 (IQR 7.7–11.2) | 2.3 | 9.5 | AVBT was a safe and effective option in skeletally immature patients with AIS. |
Rushton [46]/2 centers/2021 | 112 (92.9) | 12.7 (8.2–16.7) | 50.8 (31–81) | 25.7 (−32–58) | 3.1 | 22 | Satisfactory deformity correction in majority of cases. |
Samdani [47]/Single center / 2021 | 57 (86.0) | 12.4 (10.1–15.0) | 40.4 (SD 6.8) | 18.7 (SD 13.4) | 4.6 | 12.3 | Our current study suggested VBT as a viable option for skeletally immature children with scoliosis. |
Takahashi [24]/ Single center / 2021 | 23 (69.6) | 12.2 (SD 1.6) | 53 (SD 8) | N/A | 3.4 | 30.4 | Correction occurred primarily within 2 to 3 years after surgery. |
Wong [48]/Single center/2019 | 5 (100) | 12 (9–12) | 40.1 (37.2–44.0) | 25 (−12.4–58) | 4 | 40 | Of all patients, 60% avoided spinal fusion. |
Yucekul [49]/Single center/2021 | 28 (82.1) | 12.2 (10–14) | 46 (SD 7.7) | 12 (SD 11.5) | 3.2 | 28.6 | Intermediate discs and facet joints were preserved after growth modulation with VBT surgery. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Raitio, A.; Syvänen, J.; Helenius, I. Vertebral Body Tethering: Indications, Surgical Technique, and a Systematic Review of Published Results. J. Clin. Med. 2022, 11, 2576. https://doi.org/10.3390/jcm11092576
Raitio A, Syvänen J, Helenius I. Vertebral Body Tethering: Indications, Surgical Technique, and a Systematic Review of Published Results. Journal of Clinical Medicine. 2022; 11(9):2576. https://doi.org/10.3390/jcm11092576
Chicago/Turabian StyleRaitio, Arimatias, Johanna Syvänen, and Ilkka Helenius. 2022. "Vertebral Body Tethering: Indications, Surgical Technique, and a Systematic Review of Published Results" Journal of Clinical Medicine 11, no. 9: 2576. https://doi.org/10.3390/jcm11092576
APA StyleRaitio, A., Syvänen, J., & Helenius, I. (2022). Vertebral Body Tethering: Indications, Surgical Technique, and a Systematic Review of Published Results. Journal of Clinical Medicine, 11(9), 2576. https://doi.org/10.3390/jcm11092576