Transseptal Puncture Guided by Three-Dimensional Electroanatomical Mapping: Early Experience Using a Simplified Approach in Adults with Congenital Heart Disease
Abstract
:1. Introduction
2. Methods
2.1. Patient Population
2.2. 3D Mapping-Guided TSP Protocol
2.3. Ethical Approval
2.4. Statistical Analysis
3. Results
3.1. Patient Characteristics
3.2. 3D Mapping Guided TSP Parameters
4. Discussion
4.1. Main Findings
4.2. Clinical Implications
4.3. Study Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bohnen, M.; Minners, J.; Eichenlaub, M.; Weber, R.; Allgeier, H.-J.; Jadidi, A.; Neumann, F.-J.; Westermann, D.; Arentz, T.; Lehrmann, H. Feasibility and safety of a three-dimensional anatomic map-guided transseptal puncture for left-sided catheter ablation procedures. Europace 2023, 25, 1126–1134. [Google Scholar] [CrossRef]
- Yu, R.; Liu, N.; Lu, J.; Zhao, X.; Hu, Y.; Zhang, J.; Xu, F.; Tang, R.; Bai, R.; Akar, J.G.; et al. 3-Dimensional Transseptal Puncture Based on Electrographic Characteristics of Fossa Ovalis: A Fluoroscopy-Free and Echocardiography-Free Method. JACC Cardiovasc. Interv. 2020, 13, 1223–1232. [Google Scholar] [CrossRef]
- Khairy, P. Arrhythmias in Adults with Congenital Heart Disease: What the Practicing Cardiologist Needs to Know. Can. J. Cardiol. 2019, 35, 1698–1707. [Google Scholar] [CrossRef]
- Griffiths, J.R.; Nussinovitch, U.; Liang, J.J.; Sims, R.; Yoneda, Z.T.; Bernstein, H.M.; Viswanathan, M.N.; Khairy, P.; Srivatsa, U.N.; Frankel, D.S.; et al. Catheter Ablation for Atrial Fibrillation in Adult Congenital Heart Disease: An International Multicenter Registry Study. Circ. Arrhythm. Electrophysiol. 2022, 15, e010954. [Google Scholar] [CrossRef]
- Krause, U.; Backhoff, D.; Klehs, S.; Schneider, H.E.; Paul, T. Transbaffle catheter ablation of atrial re-entrant tachycardia within the pulmonary venous atrium in adult patients with congenital heart disease. Europace 2016, 18, 1055–1060. [Google Scholar] [CrossRef] [Green Version]
- Gowda, S.T.; Qureshi, A.M.; Turner, D.; Madan, N.; Weigand, J.; Lorber, R.; Singh, H.R. Transseptal puncture using surgical electrocautery in children and adults with and without complex congenital heart disease. Catheter. Cardiovasc. Interv. 2017, 90, E46–E54. [Google Scholar] [CrossRef]
- Bourier, F.; Reents, T.; Ammar-Busch, S.; Semmler, V.; Telishevska, M.; Kottmaier, M.; Lennerz, C.; Grebmer, C.; Kolb, C.; Deisenhofer, I.; et al. Transseptal Puncture Guided by CT-Derived 3D-Augmented Fluoroscopy. J. Cardiovasc. Electrophysiol. 2016, 27, 369–372. [Google Scholar] [CrossRef]
- Kautzner, J.; Haskova, J.; Lehar, F. Intracardiac Echocardiography to Guide Non-fluoroscopic Electrophysiology Procedures. Card. Electrophysiol. Clin. 2021, 13, 399–408. [Google Scholar] [CrossRef] [PubMed]
- Sawhney, V.; Breitenstein, A.; Watts, T.; Garcia, J.; Finlay, M.; Lowe, M.; Hunter, R.; Earley, M.J.; Schilling, R.J.; Sporton, S.; et al. A novel technique for performing transseptal puncture guided by a non-fluoroscopic 3D mapping system. Pacing Clin. Electrophysiol. 2019, 42, 4–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zuercher, R.; Herling, A.; Schmidt, M.T.; Bachmann, M.; Winnik, S.; Duru, F.; Eriksson, U. Transesophageal Echocardiography-Guided Transseptal Left Atrial Access to Improve Safety in Patients Undergoing Pulmonary Vein Isolation. J. Clin. Med. 2022, 11, 2546. [Google Scholar] [CrossRef] [PubMed]
- Patel, H.; Hiner, E.; Naqvi, A.; Wrobel, J.; Machado, C. The safety and efficacy of electroanatomical mapping (EAM)-guided device implantation. Pacing Clin. Electrophysiol. 2019, 42, 897–903. [Google Scholar] [CrossRef] [PubMed]
- Vaidya, V.R.; Abudan, A.A.; Vasudevan, K.; Shantha, G.; Cooper, L.T.; Kapa, S.; Noseworthy, P.A.; Cha, Y.-M.; Asirvatham, S.J.; Deshmukh, A.J. The efficacy and safety of electroanatomic mapping-guided endomyocardial biopsy: A systematic review. J. Interv. Card. Electrophysiol. 2018, 53, 63–71. [Google Scholar] [CrossRef] [PubMed]
- Haanschoten, D.M.; Adiyaman, A.; ‘t Hart, N.A.; Jager, P.L.; Elvan, A. Value of 3D mapping-guided endomyocardial biopsy in cardiac sarcoidosis: Case series and narrative review on the value of electro-anatomic mapping-guided endomyocardial biopsies. Eur. J. Clin. Investig. 2021, 51, e13497. [Google Scholar] [CrossRef]
- Richter, S.; Ebert, M.; Bertagnolli, L.; Gebauer, R.; Lucas, J.; Scheller, D.; Paetsch, I.; Hindricks, G.; Döring, M. Impact of electroanatomical mapping-guided lead implantation on procedural outcome of His bundle pacing. Europace 2021, 23, 409–420. [Google Scholar] [CrossRef] [PubMed]
- Silvetti, M.S.; Favoccia, C.; Saputo, F.A.; Tamburri, I.; Mizzon, C.; Campisi, M.; Gimigliano, F.; Rinelli, G.; Rava, L.; Drago, F. Three-dimensional-mapping-guided permanent conduction system pacing in paediatric patients with congenitally corrected transposition of the great arteries. Europace 2023, 25, 1482–1490. [Google Scholar] [CrossRef]
- Khoshpouri, P.; Khoshpouri, P.; Bedayat, A.; Ansari-Gilani, K.; Chalian, H. Interatrial septum: A pictorial review of congenital and acquired pathologies and their management. Clin. Imaging 2019, 55, 53–64. [Google Scholar] [CrossRef]
- O’Byrne, M.L.; Levi, D.S. State-of-the-Art Atrial Septal Defect Closure Devices for Congenital Heart. Interv. Cardiol. Clin. 2019, 8, 11–21. [Google Scholar] [CrossRef]
- Van Praagh, R.; Papagiannis, J.; Grünenfelder, J.; Bartram, U.; Martanovic, P. Pathologic anatomy of corrected transposition of the great arteries: Medical and surgical implications. Am. Heart J. 1998, 135, 772–785. [Google Scholar] [CrossRef]
- Uhm, J.-S.; Kim, N.K.; Yu, H.T.; Yang, P.-S.; Kim, J.O.; Kim, T.-H.; Song, M.K.; Lee, S.-Y.; Joung, B.; Pak, H.-N.; et al. A stepwise approach to conduit puncture for electrophysiological procedures in patients with Fontan circulation. Europace 2018, 20, 1043–1049. [Google Scholar] [CrossRef]
- Li, X.; Wissner, E.; Kamioka, M.; Makimoto, H.; Rausch, P.; Metzner, A.; Mathew, S.; Rillig, A.; Tilz, R.R.; Fürnkranz, A.; et al. Safety and feasibility of transseptal puncture for atrial fibrillation ablation in patients with atrial septal defect closure devices. Heart Hythm. 2014, 11, 330–335. [Google Scholar] [CrossRef]
- Lakkireddy, D.; Rangisetty, U.; Prasad, S.; Verma, A.; Biria, M.; Berenbom, L.; Pimentel, R.; Emert, M.; Rosamond, T.; Fahmy, T.; et al. Intracardiac echo-guided radiofrequency catheter ablation of atrial fibrillation in patients with atrial septal defect or patent foramen ovale repair: A feasibility, safety, and efficacy study. J. Cardiovasc. Electrophysiol. 2008, 19, 1137–1142. [Google Scholar] [CrossRef]
- Knadler, J.J.; Anderson, J.B.; Chaouki, A.S.; Czosek, R.J.; Connor, C.; Knilans, T.K.; Spar, D.S. Utility and safety of the SafeSept™ transseptal guidewire for electrophysiology studies with catheter ablation in pediatric and congenital heart disease. J. Interv. Card. Electrophysiol. 2017, 48, 369–374. [Google Scholar] [CrossRef] [PubMed]
- Esch, J.J.; Triedman, J.K.; Cecchin, F.; Alexander, M.E.; Walsh, E.P. Radiofrequency-assisted transseptal perforation for electrophysiology procedures in children and adults with repaired congenital heart disease. Pacing Clin. Electrophysiol. 2013, 36, 607–611. [Google Scholar] [CrossRef] [PubMed]
- Cohen, S.; Liu, A.; Gurvitz, M.; Guo, L.; Therrien, J.; Laprise, C.; Kaufman, J.S.; Abrahamowicz, M.; Marelli, A.J. Exposure to Low-Dose Ionizing Radiation from Cardiac Procedures and Malignancy Risk in Adults with Congenital Heart Disease. Circulation 2018, 137, 1334–1345. [Google Scholar] [CrossRef] [PubMed]
Total TSP | Zero Fluoroscopy | Low Fluoroscopy | |
---|---|---|---|
Patients number | 45 | 27 | 18 |
Average age (years) | 49 ± 16 | 51 ± 15 | 47 ± 13 |
Male sex (n %) | 32 (71) | 20 (22) | 12 (67) |
Average body mass index (kg/m2) | 27.6 ± 5.0 | 28.3 ± 5.0 | 26.5 ± 8.0 |
Arterial hypertension (n %) | 9 (20) | 6 (22) | 3 (17) |
Pulmonary hypertension (n %) | 14 (31) | 9 (33) | 5 (28) |
Average LVEF (%) | |||
≥55% | 28 (62) | 20 (74) | 8 (44) |
45–55% | 14 (31) | 5 (19) | 9 (50) |
<45% | 3 (7) | 2 (7) | 1 (6) |
Arrhythmias (%) | |||
Atrial fibrillation * | 17 (38) | 11 (41) | 6 (33) |
Atrial flutter * | 3 (6) | 2 (7) | 1 (6) |
Atrial tachycardia(IART) | 23 (51) | 12 (44) | 11 (61) |
WPW | 2 (4) | 2 (7) | 0 (0) |
Congenital heart disease (%) | |||
ASD | 20 (44) | 11 (41) | 9 (50) |
AVSD | 18 (40) | 13 (48) | 5 (28) |
TA | 2 (4) | 2 (7) | 0 (0) |
d-TGA | 8 (18) | 4 (4) | 4 (22) |
ccTGA | 2 (4) | 2 (7) | 0 (0) |
Oral anticoagulants | |||
NOAC (%) | 22 (49) | 17 (63) | 5 (28) |
VKA (%) | 21 (47) | 8 (30) | 13 (72) |
Aspirin (%) | 2 (4) | 2 (7) | 0 (0) |
Total (n = 45) | Zero Fluoroscopy (n = 27) | Low Fluoroscopy (n = 18) | |
---|---|---|---|
Atrial septal parameters | |||
Pericardium IAS (%) | 5 (11) | 4 (15) | 1 (6) |
Occluder (%) | 8 (18) | 6 (22) | 2 (11) |
Gore Cardioform | 1 (2) | 1 (4) | 0 (0) |
Amplatzer | 7 (16) | 5 (19) | 2 (11) |
Synthetic IAS (%) | 21 (47) | 10 (37) | 11 (61) |
Baffle IAS (%) | |||
Senning (%) | 6 (13) | 2 (7) | 4 (22) |
Mustard (%) | 1 (2) | 1 (4) | 0 (0) |
Modified Fontan (%) | 4 (9) | 4 (15) | 0 (0) |
Previous TSP (%) | 12 (27) | 8 (30) | 4 (22) |
TSP procedural parameters | |||
TSP number | 45 | 27 | 18 |
TSP needle | 45 | 27 | 18 |
Normal needle (%) | 36 (80) | 22 (81) | 14 (78) |
RF needle (%) | 9 (20) | 4 (15) | 5 (28) |
TSP time (min) * | 25 ± 7 | 25 ± 7 | 26 ± 8 |
TSP related complications | 0 | 0 | 0 |
Variables | OR | 95% CI | p | |
---|---|---|---|---|
Age (years) | 1.013 | 0.977 | 1.051 | 0.478 |
BMI (kg/m2) | 1.087 | 0.949 | 1.245 | 0.2293 |
Hypertension | 2.105 | 0.475 | 9.338 | 0.3273 |
Previous TSP | 1.474 | 0.369 | 5.885 | 0.5831 |
LVEF (%) | 1.225 | 0.3 | 4.995 | 0.7772 |
ACHD conditions | 0.602 | 0.166 | 2.181 | 0.44 |
IAS substrates | 1.123 | 0.76 | 1.66 | 0.5605 |
Years of surgical/interventional treatment | 1.01 | 0.972 | 1.048 | 0.6205 |
TSP needle | 0.452 | 0.103 | 1.987 | 0.2933 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guan, F.; Gass, M.; Berger, F.; Akdis, D.; Duru, F.; Wolber, T. Transseptal Puncture Guided by Three-Dimensional Electroanatomical Mapping: Early Experience Using a Simplified Approach in Adults with Congenital Heart Disease. J. Clin. Med. 2023, 12, 4491. https://doi.org/10.3390/jcm12134491
Guan F, Gass M, Berger F, Akdis D, Duru F, Wolber T. Transseptal Puncture Guided by Three-Dimensional Electroanatomical Mapping: Early Experience Using a Simplified Approach in Adults with Congenital Heart Disease. Journal of Clinical Medicine. 2023; 12(13):4491. https://doi.org/10.3390/jcm12134491
Chicago/Turabian StyleGuan, Fu, Matthias Gass, Florian Berger, Deniz Akdis, Firat Duru, and Thomas Wolber. 2023. "Transseptal Puncture Guided by Three-Dimensional Electroanatomical Mapping: Early Experience Using a Simplified Approach in Adults with Congenital Heart Disease" Journal of Clinical Medicine 12, no. 13: 4491. https://doi.org/10.3390/jcm12134491
APA StyleGuan, F., Gass, M., Berger, F., Akdis, D., Duru, F., & Wolber, T. (2023). Transseptal Puncture Guided by Three-Dimensional Electroanatomical Mapping: Early Experience Using a Simplified Approach in Adults with Congenital Heart Disease. Journal of Clinical Medicine, 12(13), 4491. https://doi.org/10.3390/jcm12134491