Blood Pressure Targets for Out-of-Hospital Cardiac Arrest: A Systematic Review and Meta-Analysis
Abstract
:1. Introduction
2. Methods
2.1. Search Strategy and Selection Criteria
2.2. Data Collection and Risk of Bias Assessment
2.3. Data Synthesis
3. Results
3.1. Study Details and Demographics
3.2. Assessment of Study Quality
3.3. Primary Meta-Analysis
3.4. Secondary Outcomes
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sasson, C.; Rogers, M.A.; Dahl, J.; Kellermann, A.L. Predictors of survival from out-of-hospital cardiac arrest: A systematic review and meta-analysis. Circ. Cardiovasc. Qual Outcomes 2010, 3, 63–81. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laver, S.; Farrow, C.; Turner, D.; Nolan, J. Mode of death after admission to an intensive care unit following cardiac arrest. Intensive Care Med. 2004, 30, 2126–2128. [Google Scholar] [CrossRef] [PubMed]
- Lim, S.L.; Lau, Y.H.; Chan, M.Y.; Chua, T.; Tan, H.C.; Foo, D.; Lim, Z.Y.; Liew, B.W.; Shahidah, N.; Mao, D.R.; et al. Early Coronary Angiography Is Associated with Improved 30-Day Outcomes among Patients with Out-of-Hospital Cardiac Arrest. J. Clin. Med. 2021, 10, 5191. [Google Scholar] [CrossRef] [PubMed]
- Bano, D.; Nicotera, P. Ca2+ signals and neuronal death in brain ischemia. Stroke 2007, 38 (Suppl. S2), 674–676. [Google Scholar] [CrossRef] [Green Version]
- Blomqvist, P.; Wieloch, T. Ischemic brain damage in rats following cardiac arrest using a long-term recovery model. J. Cereb. Blood Flow Metab. 1985, 5, 420–431. [Google Scholar] [CrossRef] [Green Version]
- Neumar, R.W. Molecular mechanisms of ischemic neuronal injury. Ann. Em. Med. 2000, 36, 483–506. [Google Scholar] [CrossRef]
- Taraszewska, A.; Zelman, I.B.; Ogonowska, W.; Chrzanowska, H. The pattern of irreversible brain changes after cardiac arrest in humans. Folia Neuropathol. 2002, 40, 133–141. [Google Scholar]
- Rhodes, A.; Evans, L.E.; Alhazzani, W.; Levy, M.M.; Antonelli, M.; Ferrer, R.; Kumar, A.; Sevransky, J.E.; Sprung, C.L.; Nunnally, M.E.; et al. Surviving Sepsis Campaign: International Guidelines for Management of Sepsis and Septic Shock: 2016. Intensive Care Med. 2017, 43, 304–377. [Google Scholar] [CrossRef] [Green Version]
- Panchal, A.R.; Bartos, J.A.; Cabañas, J.G.; Donnino, M.W.; Drennan, I.R.; Hirsch, K.G.; Kudenchuk, P.J.; Kurz, M.C.; Lavonas, E.J.; Morley, P.T.; et al. Part 3, Adult Basic and Advanced Life Support: 2020 American Heart Association Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care. Circulation 2020, 142, S366–S468. [Google Scholar] [CrossRef]
- Genbrugge, C.; Eertmans, W.; Meex, I.; Van Kerrebroeck, M.; Daems, N.; Creemers, A.; Jans, F.; Boer, W.; Dens, J.; De Deyne, C. What is the value of regional cerebral saturation in post-cardiac arrest patients? A prospective observational study. Crit. Care 2016, 20, 327. [Google Scholar] [CrossRef] [Green Version]
- Bisschops, L.L.; van der Hoeven, J.G.; Hoedemaekers, C.W. Effects of prolonged mild hypothermia on cerebral blood flow after cardiac arrest. Crit. Care Med. 2012, 40, 2362–2367. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhate, T.D.; McDonald, B.; Sekhon, M.S.; Griesdale, D.E. Association between blood pressure and outcomes in patients after cardiac arrest: A systematic review. Resuscitation 2015, 97, 1–6. [Google Scholar] [CrossRef]
- Ameloot, K.; De Deyne, C.; Eertmans, W.; Ferdinande, B.; Dupont, M.; Palmers, P.J.; Petit, T.; Nuyens, P.; Maeremans, J.; Vundelinckx, J.; et al. Early goal-directed haemodynamic optimization of cerebral oxygenation in comatose survivors after cardiac arrest: The Neuroprotect post-cardiac arrest trial. Eur. Heart J. 2019, 40, 1804–1814. [Google Scholar] [CrossRef]
- akkula, P.; Pettilä, V.; Skrifvars, M.B.; COMACARE Study Group; Hästbacka, J.; Loisa, P.; Tiainen, M.; Wilkman, E.; Toppila, J.; Koskue, T.; et al. Targeting low-normal or high-normal mean arterial pressure after cardiac arrest and resuscitation: A randomised pilot trial. Intensive Care Med. 2018, 44, 2091–20101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kjaergaard, J.; Møller, J.E.; Schmidt, H.; Grand, J.; Mølstrøm, S.; Borregaard, B.; Venø, S.; Sarkisian, L.; Mamaev, D.; Jensen, L.O.; et al. Blood-Pressure Targets in Comatose Survivors of Cardiac Arrest. N. Engl. J. Med. 2022, 387, 1456–1466. [Google Scholar] [CrossRef] [PubMed]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. Syst. Rev. 2021, 10, 89. [Google Scholar] [CrossRef] [PubMed]
- Higgins, J.; Thomas, J.; Chandler, J.; Cumpston, M.; Li, T.; Page, M.; Welch, V. Cochrane Handbook for Systematic Reviews of Interventions. 2022. Available online: www.training.cochrane.org/handbook (accessed on 11 December 2022).
- Guyatt, G.; Oxman, A.D.; Akl, E.A.; Kunz, R.; Vist, G.; Brozek, J.; Norris, S.; Falck-Ytter, Y.; Glasziou, P.; DeBeer, H.; et al. GRADE guidelines: 1. Introduction; GRADE evidence profiles and summary of findings tables. J. Clin. Epidemiol. 2011, 64, 383–394. [Google Scholar] [CrossRef]
- ElHabr, A.K.; Katz, J.M.; Wang, J.; Bastani, M.; Martinez, G.; Gribko, M.; Hughes, D.R.; Sanelli, P. Predicting 90-day modified Rankin Scale score with discharge information in acute ischaemic stroke patients following treatment. BMJ Neurol. Open 2021, 3, e000177. [Google Scholar] [CrossRef]
- Imahori, T.; Tanaka, K.; Arai, A.; Shiomi, R.; Fujiwara, D.; Mori, T.; Yokote, A.; Matsushima, K.; Matsui, D.; Kobayashi, M.; et al. Mechanical Thrombectomy for Acute Ischemic Stroke Patients Aged 80 Years or Older. J. Stroke Cerebrovasc. Dis. 2017, 26, 2793–2799. [Google Scholar] [CrossRef]
- Nolan, J.P.; Sandroni, C.; Böttiger, B.W.; Cariou, A.; Cronberg, T.; Friberg, H.; Genbrugge, C.; Haywood, K.; Lilja, G.; Moulaert, V.R.M.; et al. European Resuscitation Council and European Society of Intensive Care Medicine guidelines 2021, Post-resuscitation care. Intensive Care Med. 2021, 47, 369–421. [Google Scholar] [CrossRef]
- Clopper, C.J.; Pearson, E.S. The Use of Confidence or Fiducial Limits Illustrated in the Case of the Binomial. Biometrika 1934, 26, 404–413. [Google Scholar] [CrossRef]
- DerSimonian, R.; Laird, N. Meta-analysis in clinical trials. Control. Clin. Trials 1986, 7, 177–188. [Google Scholar] [CrossRef] [PubMed]
- Nyaga, V.N.; Arbyn, M.; Aerts, M. Metaprop: A Stata command to perform meta-analysis of binomial data. Arch. Public Health 2014, 72, 39. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schwarzer, G.; Chemaitelly, H.; Abu-Raddad, L.J.; Rücker, G. Seriously misleading results using inverse of Freeman-Tukey double arcsine transformation in meta-analysis of single proportions. Res. Synth. Methods 2019, 10, 476–483. [Google Scholar] [CrossRef] [Green Version]
- Wan, X.; Wang, W.; Liu, J.; Tong, T. Estimating the sample mean and standard deviation from the sample size, median, range and/or interquartile range. BMC Med. Res. Methodol. 2014, 14, 135. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guyatt, G.H.; Oxman, A.D.; Kunz, R.; Woodcock, J.; Brozek, J.; Helfand, M.; Alonso-Coello, P.; Glasziou, P.; Jaeschke, R.; Akl, E.A.; et al. GRADE guidelines: 7. Rating the quality of evidence; inconsistency. J. Clin. Epidemiol. 2011, 64, 1294–1302. [Google Scholar] [CrossRef]
- Ling, R.R.; Sim, J.J.L.; Tan, F.L.; Tai, B.C.; Syn, N.; Mucheli, S.S.; Fan, B.E.; Mitra, S.; Ramanathan, K. Convalescent Plasma for Patients Hospitalized with Coronavirus Disease 2019, A Meta-Analysis with Trial Sequential Analysis of Randomized Controlled Trials. Transfus. Med. Rev. 2022, 36, 16–26. [Google Scholar] [CrossRef]
- Grand, J.; Meyer, A.S.; Kjaergaard, J.; Wiberg, S.; Thomsen, J.H.; Frydland, M.; Ostrowski, S.R.; Johansson, P.I.; Hassager, C. A randomised double-blind pilot trial comparing a mean arterial pressure target of 65 mm Hg versus 72 mm Hg after out-of-hospital cardiac arrest. Eur. Heart J. Acute Cardiovasc. Care 2020, 9 (Suppl. S4), S100–S109. [Google Scholar] [CrossRef]
- Grand, J.; Hassager, C.; Winther-Jensen, M.; Rundgren, M.; Friberg, H.; Horn, J.; Wise, M.P.; Nielsen, N.; Kuiper, M.; Wiberg, S.; et al. Mean arterial pressure during targeted temperature management and renal function after out-of-hospital cardiac arrest. J. Crit. Care 2019, 50, 234–241. [Google Scholar] [CrossRef]
- Russo, J.J.; James, T.E.; Hibbert, B.; Yousef, A.; Osborne, C.; Wells, G.A.; Froeschl, M.P.; So, D.Y.; Chong, A.Y.; Labinaz, M.; et al. Impact of mean arterial pressure on clinical outcomes in comatose survivors of out-of-hospital cardiac arrest: Insights from the University of Ottawa Heart Institute Regional Cardiac Arrest Registry (CAPITAL-CARe). Resuscitation 2017, 113, 27–32. [Google Scholar] [CrossRef]
- Ameloot, K.; Meex, I.; Genbrugge, C.; Jans, F.; Boer, W.; Verhaert, D.; Mullens, W.; Ferdinande, B.; Dupont, M.; De Deyne, C.; et al. Hemodynamic targets during therapeutic hypothermia after cardiac arrest: A prospective observational study. Resuscitation 2015, 91, 56–62. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Charchaflieh, J.; Zafar, J.; Bw, R.; Kilgannon, J.H.; Hunter, B.R.; Puskarich, M.A.; Shea, L.; Donnino, M.; Jones, C.; Fuller, B.M.; et al. Association between Elevated Mean Arterial Blood Pressure and Neurologic Outcome After Resuscitation From Cardiac Arrest: Results From a Multicenter Prospective Cohort Study. Crit. Care Med. 2019, 47, 93–100. [Google Scholar]
- Bray, J.E.; Bernard, S.; Cantwell, K.; Stephenson, M.; Smith, K. The association between systolic blood pressure on arrival at hospital and outcome in adults surviving from out-of-hospital cardiac arrests of presumed cardiac aetiology. Resuscitation 2014, 85, 509–515. [Google Scholar] [CrossRef]
- Beylin, M.E.; Perman, S.M.; Abella, B.S.; Leary, M.; Shofer, F.S.; Grossestreuer, A.V.; Gaieski, D.F. Higher mean arterial pressure with or without vasoactive agents is associated with increased survival and better neurological outcomes in comatose survivors of cardiac arrest. Intensive Care Med. 2013, 39, 1981–1988. [Google Scholar] [CrossRef] [PubMed]
- Laurikkala, J.; Wilkman, E.; Pettilä, V.; Reinikainen, M.; Varpula, T.; Kurola, J.; Tallgren, M.; Pettilä, V.Y.O.; Hoppu, S.; Ala-Kokko, T.; et al. Mean arterial pressure and vasopressor load after out-of-hospital cardiac arrest: Associations with one-year neurologic outcome. Resuscitation 2016, 105, 116–122. [Google Scholar] [CrossRef] [Green Version]
- Grand, J.; Lilja, G.; Kjaergaard, J.; Bro-Jeppesen, J.; Friberg, H.; Wanscher, M.; Cronberg, T.; Nielsen, N.; Hassager, C. Arterial blood pressure during targeted temperature management after out-of-hospital cardiac arrest and association with brain injury and long-term cognitive function. Eur. Heart J. Acute Cardiovasc. Care 2020, 9 (Suppl. S4), S122–S130. [Google Scholar] [CrossRef]
- Sundgreen, C.; Larsen, F.S.; Herzog, T.M.; Knudsen, G.M.; Boesgaard, S.; Aldershvile, J. Autoregulation of cerebral blood flow in patients resuscitated from cardiac arrest. Stroke 2001, 32, 128–132. [Google Scholar] [CrossRef] [Green Version]
- Asfar, P.; Meziani, F.; Hamel, J.-F.; Grelon, F.; Megarbane, B.; Anguel, N.; Mira, J.P.; Dequin, P.F.; Gergaud, S.; Weiss, N.; et al. High versus Low Blood-Pressure Target in Patients with Septic Shock. N. Engl. J. Med. 2014, 370, 1583–1593. [Google Scholar] [CrossRef] [Green Version]
- Lamontagne, F.; Richards-Belle, A.; Thomas, K.; Harrison, D.A.; Sadique, M.Z.; Grieve, R.D.; Camsooksai, J.; Darnell, R.; Gordon, A.C.; Henry, D.; et al. Effect of Reduced Exposure to Vasopressors on 90-Day Mortality in Older Critically Ill Patients with Vasodilatory Hypotension: A Randomized Clinical Trial. JAMA 2020, 323, 938–949. [Google Scholar] [CrossRef]
- Burstein, B.; Tabi, M.; Barsness, G.W.; Bell, M.R.; Kashani, K.; Jentzer, J.C. Association between mean arterial pressure during the first 24 hours and hospital mortality in patients with cardiogenic shock. Crit. Care 2020, 24, 513. [Google Scholar] [CrossRef]
- Kilgannon, J.H.; Roberts, B.W.; Jones, A.E.; Mittal, N.; Cohen, E.; Mitchell, J.; Chansky, M.E.; Trzeciak, S. Arterial blood pressure and neurologic outcome after resuscitation from cardiac arrest. Crit. Care Med. 2014, 42, 2083–2091. [Google Scholar] [CrossRef] [PubMed]
- Nishizawa, H.; Kudoh, I. Cerebral autoregulation is impaired in patients resuscitated after cardiac arrest. Acta Anaesthesiol. Scand. 1996, 40, 1149–1153. [Google Scholar] [CrossRef] [PubMed]
- van den Brule, J.M.D.; van der Hoeven, J.G.; Hoedemaekers, C.W.E. Cerebral Perfusion and Cerebral Autoregulation after Cardiac Arrest. Biomed Res. Int. 2018, 2018, 4143636. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sandroni, C.; Cavallaro, F.; Antonelli, M. Is there still a place for vasopressors in the treatment of cardiac arrest? Crit. Care 2012, 16, 213. [Google Scholar] [CrossRef] [Green Version]
- Basir, M.B.; Lemor, A.; Gorgis, S.; Taylor, A.M.; Tehrani, B.; Truesdell, A.G.; Bharadwaj, A.; Kolski, B.; Patel, K.; Gelormini, J.; et al. Vasopressors independently associated with mortality in acute myocardial infarction and cardiogenic shock. Catheter. Cardiovasc. Interv. 2022, 99, 650–657. [Google Scholar] [CrossRef]
- Lin, C.-H.; Ng, Y.Y.; Chiang, W.-C.; Karim, S.A.; Shin, S.D.; Tanaka, H.; Nishiuchi, T.; Kajino, K.; Khunkhlai, N.; Ma, M.H.-M.; et al. Variation of current protocols for managing out-of-hospital cardiac arrest in prehospital settings among Asian countries. J. Formos. Med. Assoc. 2016, 115, 628–638. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lim, S.L.; Smith, K.; Dyson, K.; Chan, S.P.; Earnest, A.; Nair, R.; Bernard, S.; Leong, B.S.; Arulanandam, S.; Ng, Y.Y.; et al. Incidence and Outcomes of Out-of-Hospital Cardiac Arrest in Singapore and Victoria: A Collaborative Study. J. Am. Heart Assoc. 2020, 9, e015981. [Google Scholar] [CrossRef]
- Phua, J.; Joynt, G.M.; Nishimura, M.; Deng, Y.; Myatra, S.N.; Chan, Y.H.; Binh, N.G.; Tan, C.C.; Faruq, M.O.; Arabi, Y.M.; et al. Withholding and Withdrawal of Life-Sustaining Treatments in Intensive Care Units in Asia. JAMA Intern. Med. 2015, 175, 363–371. [Google Scholar] [CrossRef] [Green Version]
Study | Continent | Hospitals | Location | Sample Size | Male Patients | Age (years), Mean ± SD | Arrest Location | Bystander CPR / Defibrillation | Presenting Rhythm |
---|---|---|---|---|---|---|---|---|---|
Ameloot 2019 [13] | Europe | 2 | OHCA | 102 65 mmHg: 51 85-100 mmHg: 51 | 77 (75.5%) 38 39 | 65 ± 13 65 ± 12 | Public: 26 Witnessed: 46 Public: 22 Witnessed: 44 | 26 30 | VF: 30, VT: 2, PEA: 2, Asystole: 16 VF: 34, VT: 2 PEA: 4, Asystole: 11 |
Grand 2020 [29] | Europe | 1 | OHCA | 49 65 mmHg: 26 72 mmHg: 23 | 43 (87.8%) 24 19 | 59 ± 13 63 ± 10 | Witnessed 26 20 | CPR: 24 Defibrillatiion: 4 CPR: 20 Defibrillation: 6 | Shockable 23 22 |
Jakkula 2018 [14] | Europe | 7 | OHCA | 120 65-75 mmHg: 60 80-100 mmHg: 60 | 98 (81.7%) 48 50 | 61 ± 11 58 ± 14 | Home: 32 Public: 28 Home: 28 Public: 32 | CPR 51 47 | N/A |
Kjaergaard 2022 [15] | Europe | 2 | OHCA | 789 63 mmHg): 396 77 mmHg: 393 | 636 (80.6%) 320316 | 62 ± 14 63 ± 13 | Witnessed 333 339 | CPR: 339 Defibrillation: 84 CPR: 340 Defibrillation: 98 | Shockable: 332 PEA: 14 Shockable: 335 PEA: 21 |
Outcome | Studies | Pairwise Comparisons | Pooled Estimate | 95%-CI | p-Value | CERTAINTY OF EVIDENCE |
---|---|---|---|---|---|---|
Primary outcome | ||||||
Mortality | 4 | 4 | OR: 0.1.09 | 0.84 to 1.42 | 0.51 | Moderate |
Mortality including observational studies | 6 | 8 | OR: 0.85 | 0.60 to 1.22 | 0.39 | - |
Mortality for pooled HRs | 3 | 3 | HR: 1.09 | 0.88 to 1.35 | 0.42 | - |
Secondary outcomes | ||||||
Favourable neurological outcome | 4 | 4 | OR: 0.99 | 0.77 to 1.27 | 0.92 | Moderate |
Level of neuron-specific enolase (mcg/L) | 4 | 4 | MD: 0.55 | −1.67 to + 2.78 | 0.63 | Low |
Arrhythmias | 2 | 2 | OR: 0.67 | 0.18 to 2.50 | 0.56 | Low |
Acute kidney injury | 2 | 2 | OR: 0.74 | 0.27 to 2.03 | 0.56 | Low |
Mechanical ventilation duration (days) | 3 | 3 | MD: −0.91 | −1.51 to −0.31 | 0.0029 | High |
Intensive care unit length of stay (days) | 3 | 3 | MD: −0.78 | −1.54 to −0.021 | 0.044 | High |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lim, S.L.; Low, C.J.W.; Ling, R.R.; Sultana, R.; Yang, V.; Ong, M.E.H.; Chia, Y.W.; Sharma, V.K.; Ramanathan, K. Blood Pressure Targets for Out-of-Hospital Cardiac Arrest: A Systematic Review and Meta-Analysis. J. Clin. Med. 2023, 12, 4497. https://doi.org/10.3390/jcm12134497
Lim SL, Low CJW, Ling RR, Sultana R, Yang V, Ong MEH, Chia YW, Sharma VK, Ramanathan K. Blood Pressure Targets for Out-of-Hospital Cardiac Arrest: A Systematic Review and Meta-Analysis. Journal of Clinical Medicine. 2023; 12(13):4497. https://doi.org/10.3390/jcm12134497
Chicago/Turabian StyleLim, Shir Lynn, Christopher Jer Wei Low, Ryan Ruiyang Ling, Rehena Sultana, Victoria Yang, Marcus E. H. Ong, Yew Woon Chia, Vijay Kumar Sharma, and Kollengode Ramanathan. 2023. "Blood Pressure Targets for Out-of-Hospital Cardiac Arrest: A Systematic Review and Meta-Analysis" Journal of Clinical Medicine 12, no. 13: 4497. https://doi.org/10.3390/jcm12134497
APA StyleLim, S. L., Low, C. J. W., Ling, R. R., Sultana, R., Yang, V., Ong, M. E. H., Chia, Y. W., Sharma, V. K., & Ramanathan, K. (2023). Blood Pressure Targets for Out-of-Hospital Cardiac Arrest: A Systematic Review and Meta-Analysis. Journal of Clinical Medicine, 12(13), 4497. https://doi.org/10.3390/jcm12134497