Evolution of Cardiovascular Risk Factors in Post-COVID Patients
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. Patient Evaluation
2.3. Ethical Approval
2.4. Statistical Data
3. Results
- -
- Patients with a mild form required more drugs to control cardiovascular symptoms.
- -
- Those with a medium form were the category where beta-blockers and calcium channel blockers were most supplemented.
- -
- In the case of those with a severe form, a slight increase was observed in those who required beta-blocker medication and a decrease in the use of sartans.
4. Discussion
5. Limitations of the Study
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- World Health Organization. Coronavirus Disease (COVID-19). Available online: https://www.who.int/health-topics/coronavirus#tab=tab_1 (accessed on 11 July 2023).
- Nishiga, M.; Wang, D.W.; Han, Y.; Lewis, D.B.; Wu, J.C. COVID-19 and cardiovascular disease: From basic mechanisms to clinical perspectives. Nat. Rev. Cardiol. 2020, 17, 543–558. [Google Scholar] [CrossRef]
- Luo, L.; Fu, M.; Li, Y.; Hu, S.; Luo, J.; Chen, Z.; Yu, J.; Li, W.; Dong, R.; Yang, Y.; et al. The potential association between common comorbidities and severity and mortality of coronavirus disease 2019: A pooled analysis. Clin. Cardiol. 2020, 43, 1478–1493. [Google Scholar] [CrossRef] [PubMed]
- Su, Y.; Yuan, D.; Chen, D.; Ng, R.; Wang, K.; Choi, J.; Li, S.; Hong, S.; Zhang, R.; Xie, J.; et al. Multiple early factors anticipate post-acute COVID-19 sequelae. Cell 2022, 185, 881–895.e20. [Google Scholar] [CrossRef] [PubMed]
- Shibata, S.; Kobayashi, K.; Tanaka, M.; Asayama, K.; Yamamoto, E.; Nakagami, H.; Hoshide, S.; Kishi, T.; Matsumoto, C.; Mogi, M.; et al. COVID-19 pandemic and hypertension: An updated report from the Japanese Society of Hypertension project team on COVID-19. Hypertens. Res. 2023, 46, 589–600. [Google Scholar] [CrossRef] [PubMed]
- Cohen, K.; Ren, S.; Heath, K.; Dasmariñas, M.C.; Jubilo, K.G.; Guo, Y.; Lipsitch, M.; Daugherty, S.E. Risk of persistent and new clinical sequelae among adults aged 65 years and older during the post-acute phase of SARS-CoV-2 infection: Retrospective cohort study. BMJ 2022, 376, e068414. [Google Scholar] [CrossRef]
- Matsumoto, C.; Shibata, S.; Kishi, T.; Morimoto, S.; Mogi, M.; Yamamoto, K.; Kobayashi, K.; Tanaka, M.; Asayama, K.; Yamamoto, E.; et al. Long COVID and hypertension-related disorders: A report from the Japanese Society of Hypertension Project Team on COVID-19. Hypertens. Res. 2023, 46, 601–619. [Google Scholar] [CrossRef] [PubMed]
- Saeed, S.; Tadic, M.; Larsen, T.H.; Grassi, G.; Mancia, G. Coronavirus disease 2019 and cardiovascular complications: Focused clinical review. J. Hypertens. 2021, 39, 1282–1292. [Google Scholar] [CrossRef]
- Al-Aly, Z.; Xie, Y.; Bowe, B. High-dimensional characterization of post-acute sequelae of COVID-19. Nature 2021, 594, 259–264. [Google Scholar] [CrossRef]
- Daugherty, S.E.; Guo, Y.; Heath, K.; Dasmariñas, M.C.; Jubilo, K.G.; Samranvedhya, J.; Lipsitch, M.; Cohen, K. Risk of clinical sequelae after the acute phase of SARS-CoV-2 infection: Retrospective cohort study. BMJ 2021, 373, n1098. [Google Scholar] [CrossRef]
- Raman, B.; Bluemke, D.A.; Lüscher, T.F.; Neubauer, S. Long COVID: Post-acute sequelae of COVID-19 with a cardiovascular focus. Eur. Heart J. 2022, 43, 1157–1172. [Google Scholar] [CrossRef]
- Medetalibeyoglu, A.; Emet, S.; Kose, M.; Akpinar, T.S.; Senkal, N.; Catma, Y.; Kaytaz, A.M.; Genc, S.; Omer, B.; Tukek, T. Serum Endocan Levels on Admission Are Associated With Worse Clinical Outcomes in COVID-19 Patients: A Pilot Study. Angiology 2021, 72, 187–193. [Google Scholar] [CrossRef]
- Akpek, M. Does COVID-19 Cause Hypertension? Angiology 2022, 73, 682–687. [Google Scholar] [CrossRef]
- Shibata, S.; Arima, H.; Asayama, K.; Hoshide, S.; Ichihara, A.; Ishimitsu, T.; Kario, K.; Kishi, T.; Mogi, M.; Nishiyama, A.; et al. Hypertension and related diseases in the era of COVID-19: A report from the Japanese Society of Hypertension Task Force on COVID-19. Hypertens. Res. 2020, 43, 1028–1046. [Google Scholar] [CrossRef]
- Zuin, M.; Rigatelli, G.; Bilato, C.; Pasquetto, G.; Mazza, A. Risk of Incident New-Onset Arterial Hypertension After COVID-19 Recovery: A Systematic Review and Meta-analysis. High Blood Press. Cardiovasc. Prev. 2023, 30, 227–233. [Google Scholar] [CrossRef] [PubMed]
- Colangelo, L.A.; Yano, Y.; Jacobs, D.R., Jr.; Lloyd-Jones, D.M. Association of Resting Heart Rate With Blood Pressure and Incident Hypertension over 30 Years in Black and White Adults: The CARDIA Study. Hypertension 2020, 76, 692–698. [Google Scholar] [CrossRef] [PubMed]
- Aladin, A.I.; Al Rifai, M.; Rasool, S.H.; Keteyian, S.J.; Brawner, C.A.; Michos, E.D.; Blaha, M.J.; Al-Mallah, M.H.; McEvoy, J.W. The Association of Resting Heart Rate and Incident Hypertension: The Henry Ford Hospital Exercise Testing (FIT) Project. Am. J. Hypertens. 2016, 29, 251–257. [Google Scholar] [CrossRef]
- Delalić, Đ.; Jug, J.; Prkačin, I. Arterial hypertension following COVID-19: A retrospective study of patients in a central european tertiary care center. Acta Clin. Croat. 2022, 61, 23–27. [Google Scholar] [CrossRef] [PubMed]
- Mehandru, S.; Merad, M. Pathological sequelae of long-haul COVID. Nat. Immunol. 2022, 23, 194–202. [Google Scholar] [CrossRef]
- Al-Kuraishy, H.M.; Al-Gareeb, A.I.; Mostafa-Hedeab, G.; Kasozi, K.I.; Zirintunda, G.; Aslam, A.; Allahyani, M.; Welburn, S.C.; Batiha, G.E. Effects of β-Blockers on the Sympathetic and Cytokines Storms in COVID-19. Front. Immunol. 2021, 12, 749291. [Google Scholar] [CrossRef]
- Heriansyah, T.; Nur Chomsy, I.; Febrianda, L.; Farahiya Hadi, T.; Andri Wihastuti, T. The Potential Benefit of Beta-Blockers for the Management of COVID-19 Protocol Therapy-Induced QT Prolongation: A Literature Review. Sci. Pharm. 2020, 88, 55. [Google Scholar] [CrossRef]
- Solaimanzadeh, I. Nifedipine and Amlodipine Are Associated With Improved Mortality and Decreased Risk for Intubation and Mechanical Ventilation in Elderly Patients Hospitalized for COVID-19. Cureus 2020, 12, e8069. [Google Scholar] [CrossRef]
- Alsagaff, M.Y.; Mulia, E.P.B.; Maghfirah, I.; Luke, K.; Nugraha, D.; Rachmi, D.A.; Septianda, I.; A’yun, M.Q. Association of calcium channel blocker use with clinical outcome of COVID-19: A meta-analysis. Diabetes Metab. Syndr. 2021, 15, 102210. [Google Scholar] [CrossRef] [PubMed]
- Fang, L.; Karakiulakis, G.; Roth, M. Are patients with hypertension and diabetes mellitus at increased risk for COVID-19 infection? Lancet Respir. Med. 2020, 8, e21. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Nikravesh, M.; Chukwuemeka, U.; Randazzo, M.; Flores, P.; Choday, P.; Raja, A.; Aseri, M.; Shivang, S.; Chaudhuri, S.; et al. Safety of ACEi and ARB in COVID-19 management: A retrospective analysis. Clin. Cardiol. 2022, 45, 759–766. [Google Scholar] [CrossRef]
- Gnanenthiran, S.R.; Borghi, C.; Burger, D.; Caramelli, B.; Charchar, F.; Chirinos, J.A.; Cohen, J.B.; Cremer, A.; Di Tanna, G.L.; Duvignaud, A.; et al. Renin-Angiotensin System Inhibitors in Patients With COVID-19: A Meta-Analysis of Randomized Controlled Trials Led by the International Society of Hypertension. J. Am. Heart Assoc. 2022, 11, e026143. [Google Scholar] [CrossRef]
- Liu, Q.; Fu, W.; Zhu, C.J.; Ding, Z.H.; Dong, B.B.; Sun, B.Q.; Chen, R.C. Effect of continuing the use of renin–angiotensin system inhibitors on mortality in patients hospitalized for coronavirus disease 2019: A systematic review, meta-analysis, and meta-regression analysis. BMC Infect Dis. 2023, 23, 53. [Google Scholar] [CrossRef]
- World Health Organization (WHO). Obesity and Overweight. 2017. Available online: https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight (accessed on 10 August 2023).
- Steenblock, C.; Hassanein, M.; Khan, E.G.; Yaman, M.; Kamel, M.; Barbir, M.; Lorke, D.E.; Everett, D.; Bejtullah, S.; Lohmann, T.; et al. Obesity and COVID-19: What are the Consequences? Horm. Metab. Res. 2022, 54, 496–502. [Google Scholar] [CrossRef]
- O’Hearn, M.; Liu, J.; Cudhea, F.; Micha, R.; Mozaffarian, D. Coronavirus Disease 2019 Hospitalizations Attributable to Cardiometabolic Conditions in the United States: A Comparative Risk Assessment Analysis. J. Am. Heart Assoc. 2021, 10, e019259. [Google Scholar] [CrossRef] [PubMed]
- Nour, T.Y.; Altintaş, K.H. Effect of the COVID-19 pandemic on obesity and its risk factors: A systematic review. BMC Public Health 2023, 23, 1018. [Google Scholar] [CrossRef]
- Xu, E.; Xie, Y.; Al-Aly, Z. Risks and burdens of incident dyslipidaemia in long COVID: A cohort study. Lancet Diabetes Endocrinol. 2023, 11, 120–128. [Google Scholar] [CrossRef]
- Zhang, S.; Luo, P.; Xu, J.; Yang, L.; Ma, P.; Tan, X.; Chen, Q.; Zhou, M.; Song, S.; Xia, H.; et al. Plasma Metabolomic Profiles in Recovered COVID-19 Patients without Previous Underlying Diseases 3 Months after Discharge. J. Inflamm. Res. 2021, 14, 4485–4501. [Google Scholar] [CrossRef]
- Sorokin, A.V.; Karathanasis, S.K.; Yang, Z.H.; Freeman, L.; Kotani, K.; Remaley, A.T. COVID-19-Associated dyslipidemia: Implications for mechanism of impaired resolution and novel therapeutic approaches. FASEB J. 2020, 34, 9843–9853. [Google Scholar] [CrossRef] [PubMed]
- Roccaforte, V.; Daves, M.; Lippi, G.; Spreafico, M.; Bonato, C. Altered lipid profile in patients with COVID-19 infection. J. Lab. Precis. Med. 2020, 6, 2. [Google Scholar] [CrossRef]
- Ren, Z.; Wang, H.; Cui, G.; Lu, H.; Wang, L.; Luo, H.; Chen, X.; Ren, H.; Sun, R.; Liu, W.; et al. Alterations in the human oral and gut microbiomes and lipidomics in COVID-19. Gut 2021, 70, 1253–1265. [Google Scholar] [CrossRef]
- Chen, Y.; Yao, H.; Zhang, N.; Wu, J.; Gao, S.; Guo, J.; Lu, X.; Cheng, L.; Luo, R.; Liang, X.; et al. Proteomic Analysis Identifies Prolonged Disturbances in Pathways Related to Cholesterol Metabolism and Myocardium Function in the COVID-19 Recovery Stage. J. Proteome Res. 2021, 20, 3463–3474. [Google Scholar] [CrossRef]
- Schiffl, H.; Lang, S.M. Long-term interplay between COVID-19 and chronic kidney disease. Int. Urol. Nephrol. 2023, 55, 1977–1984. [Google Scholar] [CrossRef]
- Xu, K.; Wang, Z.; Qin, M.; Gao, Y.; Luo, N.; Xie, W.; Zou, Y.; Wang, J.; Ma, X. A systematic review and meta-analysis of the effectiveness and safety of COVID-19 vaccination in older adults. Front. Immunol. 2023, 14, 1113156. [Google Scholar] [CrossRef] [PubMed]
- Available online: https://covid19.who.int/table (accessed on 29 September 2023).
- Buso, G.; Agabiti-Rosei, C.; Muiesan, M.L. The relationship between COVID-19 vaccines and increased blood pressure: A word of caution. Eur. J. Intern. Med. 2023, 111, 27–29. [Google Scholar] [CrossRef]
- Angeli, F.; Reboldi, G.; Trapasso, M.; Santilli, G.; Zappa, M.; Verdecchia, P. Blood Pressure Increase following COVID-19 Vaccination: A Systematic Overview and Meta-Analysis. J. Cardiovasc. Dev. Dis. 2022, 9, 150. [Google Scholar] [CrossRef] [PubMed]
- Angeli, F.; Zappa, M.; Reboldi, G.; Gentile, G.; Trapasso, M.; Spanevello, A.; Verdecchia, P. The spike effect of acute respiratory syndrome coronavirus 2 and coronavirus disease 2019 vaccines on blood pressure. Eur. J. Intern. Med. 2023, 109, 12–21. [Google Scholar] [CrossRef]
- Zappa, M.; Verdecchia, P.; Spanevello, A.; Visca, D.; Angeli, F. Blood pressure increase after Pfizer/BioNTech SARS-CoV-2 vaccine. Eur. J. Intern. Med. 2021, 90, 111–113. [Google Scholar] [CrossRef] [PubMed]
- Tran, V.N.; Nguyen, H.A.; Le, T.T.A.; Truong, T.T.; Nguyen, P.T.; Nguyen, T.T.H. Factors influencing adverse events following immunization with AZD1222 in Vietnamese adults during first half of 2021. Vaccine 2021, 39, 6485–6491. [Google Scholar] [CrossRef] [PubMed]
- Jeet Kaur, R.; Dutta, S.; Charan, J.; Bhardwaj, P.; Tandon, A.; Yadav, D.; Islam, S.; Haque, M. Cardiovascular Adverse Events Reported from COVID-19 Vaccines: A Study Based on WHO Database. Int. J. Gen. Med. 2021, 14, 3909–3927. [Google Scholar] [CrossRef]
- Bouhanick, B.; Montastruc, F.; Tessier, S.; Brusq, C.; Bongard, V.; Senard, J.M.; Montastruc, J.L.; Herin, F. Hypertension and COVID-19 vaccines: Are there any differences between the different vaccines? A safety signal. Eur. J. Clin. Pharmacol. 2021, 77, 1937–1938. [Google Scholar] [CrossRef] [PubMed]
General Characteristics | Total (n = 70) | Mild (n = 19) | Medium (n = 39) | Severe (n = 12) | p-Value | |
---|---|---|---|---|---|---|
Age, years (mean ± SD) | 60.84 ± 12.32 | 62.52 ± 12.29 | 59.69 ± 10.95 | 61.91 ± 16.72 | 0.681 | |
Gender, n (%) | 0.866 | |||||
Male | 26 (37.1) | 8 (42.1) | 14 (35.9) | 4 (33.3) | ||
Female | 44 (62.9) | 11 (57.9) | 25 (64.1) | 8 (66.7) | ||
BMI, kg/m2 (mean ± SD) | 29.39 ± 5.05 | 29.35 ± 3.79 | 29.35 ± 5.68 | 29.59 ± 4.99 | 0.989 | |
Smoking | 14 (20%) | 4 (21.1) | 8 (20.5) | 2 (16.7) | 0.791 | |
Place of origin | ||||||
Rural | 27 (38.6) | 6 (31.6) | 18 (46.2) | 3 (25.0) | 0.912 | |
Urban | 43 (61.4) | 13 (68.4) | 21 (53.8) | 9 (75.0) |
Comorbidities | Pre-COVID (n = 70) | Post-COVID (n = 70) | p-Value |
---|---|---|---|
Hypertension, n (%) | 48 (68.57) | 63 (90) | 0.005 |
Chronic ischemic heart disease, n (%) | 10 (14.28) | 17 (24.3) | 0.198 |
Tricuspid regurgitation, n (%) | 3 (4.28) | 9 (12.85) | 0.128 |
Mitral regurgitation, n (%) | 7 (10) | 18 (25.71) | 0.037 |
Chronic cardiac failure, n (%) | 10 (14.28) | 15 (21.42) | 0.378 |
By-pass, n (%) | 5 (7.14) | 5 (7.14) | 1.000 |
Atrial fibrillation, n (%) | 6 (8.57) | 5 (7.1) | 1.000 |
Transient ischemic attack, n (%) | 7 (10) | 7 (10) | 1.000 |
Arteriosclerosis obliterans, n (%) | 2 (2.85) | 8 (11.42) | 0.166 |
Chronic venous insufficiency, n (%) | 9 (12.85) | 21 (30) | 0.022 |
Dyslipidemia, n (%) | 16 (22.85) | 33 (47.14) | 0.004 |
Obesity, n (%) | 13 (18.57) | 46 (65.71) | <0.001 |
Diabetes mellitus, n (%) | 13 (18.57) | 13 (18.57) | 1.000 |
Asthma, n (%) | 2 (2.85) | 2 (2.85) | 1.000 |
Chronic obstructive pulmonary disease, n (%) | 4 (5.51) | 4 (5.51) | 1.000 |
Chronic kidney disease, n (%) | 4 (5.71) | 69 (98.57) | <0.001 |
Mild | Medium | Severe | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Pre- COVID | Post- COVID | p-Value | Pre- COVID | Post- COVID | p-Value | Pre- COVID | Post- COVID | p-Value | ||
HBP, n (%) | 0.138 | 0.033 | 0.590 | |||||||
1 | 3 (15.8) | 4 (21.1) | 3 (7.7) | 8 (20.5) | 2 (16.7) | 3 (25) | ||||
2 | 6 (31.6) | 5 (26.3) | 13 (33.3) | 14 (35.9) | 2 (16.7) | 3 (25) | ||||
3 | 5 (26.3) | 9 (47.4) | 9 (23.1) | 12 (30.8) | 5 (41.7) | 5 (41.7) | ||||
CHD, n (%) | 2 (10.5) | 6 (31.6) | 0.232 | 8 (20.5) | 10 (25.6) | 0.789 | 0 (0) | 1 (8.3) | 1.000 | |
TR, n (%) | 1.000 | 0.021 | 1.000 | |||||||
Mild | 1 (5.3) | 1 (5.3) | 0 (0) | 4 (10.3) | 1 (8.3) | 2 (16.7) | ||||
Moderate | 0 (0) | 0 (0) | 0 (0) | 1 (2.6) | 1 (8.3) | 1 (8.3) | ||||
MR, n (%) | 0.660 | 0.138 | 0.246 | |||||||
Mild | 2 (10.5) | 4 (21.1) | 4 (10.3) | 10 (25.6) | 1 (8.3) | 2 (16.7) | ||||
Moderate | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 2 (16.7) | ||||
CHF, n (%) | 0.660 | 0.347 | 1.000 | |||||||
NYHA I | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 1 (8.3) | 1 (8.3) | ||||
NYHA II | 1 (5.3) | 3 (15.8) | 3 (7.7) | 5 (12.8) | 2 (16.7) | 1 (8.3) | ||||
NYHA III | 1 (5.3) | 1 (5.3) | 0 (0) | 2 (5.1) | 1 (8.3) | 1 (8.3) | ||||
NYHA IV | 0 (0) | 0 (0) | 1 (2.6) | 0 (0) | 0 (0) | 0 (0) | ||||
By-pass, n (%) | 1.000 | 1.000 | - | |||||||
1 | 0 (0) | 0 (0) | 2 (5.1) | 1 (2.6) | 0 (0) | 0 (0) | ||||
3 | 1 (5.3) | 1 (5.3) | 2 (5.1) | 2 (5.2) | 0 (0) | 0 (0) | ||||
4 | 0 (0) | 0 (0) | 0 (0) | 1 (2.6) | 0 (0) | 0 (0) | ||||
AF, n (%) | 1 (5.3) | 0 (0) | - | 3 (7.7) | 4 (10.3) | 1.000 | 2 (16.7) | 1 (8.3) | 1.000 | |
TIA, n (%) | 1 (5.3) | 1 (5.3) | 1.000 | 3 (7.7) | 3 (7.7) | 1.000 | 3 (25) | 3 (25) | 1.000 | |
AO, n (%) | - | 0.313 | 0.478 | |||||||
I | 0 (0) | 0 (0) | 0 (0) | 3 (7.7) | 0 (0) | 0 (0) | ||||
II | 0 (0) | 0 (0) | 1 (2.6) | 2 (5.1) | 0 (0) | 2 (16.7) | ||||
IV | 0 (0) | 0 (0) | 1 (2.6) | 1 (2.6) | 0 (0) | 0 (0) | ||||
CVI, n (%) | 0.447 | 0.160 | - | |||||||
CEAP 1 | 0 (0) | 0 (0) | 0 (0) | 1 (1) | 1 (8.3) | 0 (0) | ||||
CEAP 2 | 2 (10.5) | 3 (15.8) | 1 (2.6) | 3 (7.7) | 0 (0) | 1 (8.3) | ||||
CEAP 3 | 1 (5.3) | 2 (10.5) | 0 (0) | 4 (10.3) | 0 (0) | 3 (25) | ||||
CEAP 4 | 0 (0) | 1 (5.3) | 3 (7.7) | 3 (7.7) | 0 (0) | 0 (0) | ||||
CEAP 6 | 0 (0) | 0 (0) | 1 (2.6) | 0 (0) | 0 (0) | 0 (0) | ||||
HC, n (%) | 5 (26.3) | 10 (52.6) | 0.184 | 7 (17.9) | 17 (43.6) | 0.026 | 4 (33.3) | 6 (50) | 0.680 | |
BMI, n (%) | 0.012 | <0.001 | 0.012 | |||||||
Overweight | 2 (10.5) | 6 (31.6) | 1 (2.6) | 7 (17.9) | 0 (0) | 3 (25) | ||||
I | 2 (10.5) | 7 (36.8) | 4 (10.3) | 11 (28.2) | 0 (0) | 3 (25) | ||||
II | 0 (0) | 1 (5.3) | 1 (2.6) | 4 (10.3) | 0 (0) | 1 (8.3) | ||||
III | 1 (5.3) | 0 (0) | 1 (2.6) | 2 (5.1) | 1 (8.3) | 1 (8.3) | ||||
DM, n (%) | 2 (10.5) | 2 (10.5) | 1.000 | 7 (17.9) | 8 (20.5) | 1.000 | 4 (33.3) | 4 (33.3) | 1.000 | |
Asthma, n (%) | 1 (5.3) | 1 (5.3) | 1.000 | 1 (2.6) | 1 (2.6) | 1.000 | 12 (100) | 12 (100) | 1.000 | |
COPD, n (%) | 1 (5.3) | 2 (10.5) | 1.000 | 2 (5.1) | 2 (5.1) | 1.000 | 1 (8.3) | 1 (8.3) | 1.000 | |
CKD, n (%) | <0.001 | <0.001 | <0.001 | |||||||
1 | 0 (0) | 2 (10.5) | 0 (0) | 1 (2.6) | 0 (0) | 2 (17.7) | ||||
2 | 0 (0) | 11 (57.9) | 0 (0) | 27 (69.2) | 0 (0) | 6 (50) | ||||
3 | 0 (0) | 6 (31.6) | 2 (5.1) | 10 (25.6) | 1 (8.3) | 3 (25) | ||||
4 | 1 (5.3) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 1 (8.3) |
Without | First-Degree | Second-Degree | Third-Degree | ||
---|---|---|---|---|---|
Age | 53.42 ± 5.79 | 50.00 ± 10.70 | 64.72 ± 11.69 | 65.80 ± 10.35 | <0.001 |
BMI | 25.80 ± 2.74 | 27.97 ± 4.34 | 30.05 ± 5.26 | 30.63 ± 5.29 | 0.080 |
Medication | Mild | Medium | Severe | ||||||
---|---|---|---|---|---|---|---|---|---|
Pre- COVID | Post- COVID | p-Value | Pre- COVID | Post- COVID | p-Value | Pre- COVID | Post- COVID | p-Value | |
ACE inhibitors, n (%) | 3 (15.8) | 5 (26.3) | 0.693 | 6 (15.4) | 1 (2.6) | 0.048 | 2 (16.7) | 2 (16.7) | 1.000 |
Sartans, n (%) | 2 (10.5) | 3 (15.8) | 1.000 | 5 (12.8) | 8 (20.5) | 0.545 | 6 (50) | 3 (25) | 0.400 |
Beta-blockers, n (%) | 7 (36.8) | 8 (42.1) | 1.000 | 16 (41) | 24 (61.5) | 0.112 | 6 (50) | 8 (66.7) | 0.680 |
Calcium channel blockers, n (%) | 7 (36.8) | 9 (47.4) | 0.743 | 6 (15.4) | 13 (33.3) | 0.112 | 5 (41.7) | 6 (50) | 1.000 |
Diuretic, n (%) | 5 (26.3) | 4 (21.1) | 0.157 | 10 (25.7) | 6 (15.4) | 0.516 | 5 (41.7) | 5 (41.7) | 1.000 |
Central blockers, n (%) | 1 (5.3) | 1 (5.3) | 1.000 | 1 (2.6) | 2 (5.1) | 1.000 | 1 (8.3) | 1 (8.3) | 1.000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdulan, I.M.; Feller, V.; Oancea, A.; Maștaleru, A.; Alexa, A.I.; Negru, R.; Cumpăt, C.M.; Leon, M.M. Evolution of Cardiovascular Risk Factors in Post-COVID Patients. J. Clin. Med. 2023, 12, 6538. https://doi.org/10.3390/jcm12206538
Abdulan IM, Feller V, Oancea A, Maștaleru A, Alexa AI, Negru R, Cumpăt CM, Leon MM. Evolution of Cardiovascular Risk Factors in Post-COVID Patients. Journal of Clinical Medicine. 2023; 12(20):6538. https://doi.org/10.3390/jcm12206538
Chicago/Turabian StyleAbdulan, Irina Mihaela, Veronica Feller, Andra Oancea, Alexandra Maștaleru, Anisia Iuliana Alexa, Robert Negru, Carmen Marinela Cumpăt, and Maria Magdalena Leon. 2023. "Evolution of Cardiovascular Risk Factors in Post-COVID Patients" Journal of Clinical Medicine 12, no. 20: 6538. https://doi.org/10.3390/jcm12206538
APA StyleAbdulan, I. M., Feller, V., Oancea, A., Maștaleru, A., Alexa, A. I., Negru, R., Cumpăt, C. M., & Leon, M. M. (2023). Evolution of Cardiovascular Risk Factors in Post-COVID Patients. Journal of Clinical Medicine, 12(20), 6538. https://doi.org/10.3390/jcm12206538