Association between Leukemia Inhibitory Factor Gene Polymorphism and Clinical Outcomes among Young Women with Poor Ovarian Response to Assisted Reproductive Technology
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Setting
2.2. Patient Selection Criteria
2.3. Stimulation Protocol
2.4. Blood Sampling and DNA Sequencing
2.5. Statistical Analysis
3. Results
3.1. Patient Baseline Characteristics
3.2. Genotyping and Polymorphism Analysis
3.3. Genotyping and Polymorphisms Analysis of the LIF Gene (rs929271) in Patients with Poor Response and Normal Responders
3.4. Association between Genotype and Ovarian Response
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hilton, D.J.; Nicola, N.A.; Metcalf, D. Purification of a murine leukemia inhibitory factor from Krebs ascites cells. Anal. Biochem. 1988, 173, 359–367. [Google Scholar] [CrossRef] [PubMed]
- Gearing, D.P.; Gough, N.M.; King, J.A.; Hilton, D.J.; Nicola, N.A.; Simpson, R.J.; Nice, E.C.; Kelso, A.; Metcalf, D. Molecular cloning and expression of cDNA encoding a murine myeloid leukaemia inhibitory factor (LIF). EMBO J. 1987, 6, 3995–4002. [Google Scholar] [CrossRef] [PubMed]
- Salleh, N.; Giribabu, N. Leukemia inhibitory factor: Roles in embryo implantation and in nonhormonal contraception. ScientificWorldJournal 2014, 2014, 201514. [Google Scholar] [CrossRef] [Green Version]
- Arici, A.; Oral, E.; Bahtiyar, O.; Engin, O.; Seli, E.; Jones, E.E. Leukaemia inhibitory factor expression in human follicular fluid and ovarian cells. Hum. Reprod. 1997, 12, 1233–1239. [Google Scholar] [CrossRef] [Green Version]
- Nilsson, E.E.; Kezele, P.; Skinner, M.K. Leukemia inhibitory factor (LIF) promotes the primordial to primary follicle transition in rat ovaries. Mol. Cell. Endocrinol. 2002, 188, 65–73. [Google Scholar] [CrossRef] [PubMed]
- Mo, X.; Wu, G.; Yuan, D.; Jia, B.; Liu, C.; Zhu, S.; Hou, Y. Leukemia inhibitory factor enhances bovine oocyte maturation and early embryo development. Mol. Reprod. Dev. 2014, 81, 608–618. [Google Scholar] [CrossRef]
- Vendrell-Flotats, M.; García-Martínez, T.; Martínez-Rodero, I.; López-Béjar, M.; LaMarre, J.; Yeste, M.; Mogas, T. In vitro maturation in the presence of Leukemia Inhibitory Factor modulates gene and miRNA expression in bovine oocytes and embryos. Sci. Rep. 2020, 10, 17777–17792. [Google Scholar] [CrossRef]
- May-Panloup, P.; Boucret, L.; Chao de la Barca, J.M.; Desquiret-Dumas, V.; Ferré-L’Hotellier, V.; Morinière, C.; Descamps, P.; Procaccio, V.; Reynier, P. Ovarian ageing: The role of mitochondria in oocytes and follicles. Hum. Reprod. Update 2016, 22, 725–743. [Google Scholar] [CrossRef] [Green Version]
- Iliodromiti, S.; Anderson, R.A.; Nelson, S.M. Technical and performance characteristics of anti-Müllerian hormone and antral follicle count as biomarkers of ovarian response. Hum. Reprod. Update 2015, 21, 698–710. [Google Scholar] [CrossRef] [Green Version]
- Broer, S.L.; van Disseldorp, J.; Broeze, K.A.; Dolleman, M.; Opmeer, B.C.; Bossuyt, P.; Eijkemans, M.J.; Mol, B.W.; Broekmans, F.J. Added value of ovarian reserve testing on patient characteristics in the prediction of ovarian response and ongoing pregnancy: An individual patient data approach. Hum. Reprod. Update 2013, 19, 26–36. [Google Scholar] [CrossRef]
- Oudshoorn, S.C.; van Tilborg, T.C.; Eijkemans, M.J.C.; Oosterhuis, G.J.E.; Friederich, J.; van Hooff, M.H.A.; van Santbrink, E.J.P.; Brinkhuis, E.A.; Smeenk, J.M.J.; Kwee, J.; et al. Individualized versus standard FSH dosing in women starting IVF/ICSI: An RCT. Part 2: The predicted hyper responder. Hum. Reprod. 2017, 32, 2506–2514. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Y.L.; Yu, T.N.; Wang, P.H.; Tzeng, C.R.; Chen, C.H.; Chen, C.H. Could PGT-A pick up true abnormalities that have clinical relevance? Retrospective analysis of 1043 embryos. Taiwan J. Obs. Gynecol. 2020, 59, 496–501. [Google Scholar] [CrossRef] [PubMed]
- Yu, T.N.; Cheng, E.H.; Tsai, H.N.; Lin, P.Y.; Chen, C.H.; Huang, C.C.; Lee, T.H.; Lee, M.S. Assessment of Telomere Length and Mitochondrial DNA Copy Number in Granulosa Cells as Predictors of Aneuploidy Rate in Young Patients. J. Clin. Med. 2022, 11, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Esteves, S.C.; Yarali, H.; Vuong, L.N.; Carvalho, J.F.; Özbek, İ.Y.; Polat, M.; Le, H.L.; Pham, T.D.; Ho, T.M.; Humaidan, P.; et al. Cumulative delivery rate per aspiration IVF/ICSI cycle in POSEIDON patients: A real-world evidence study of 9073 patients. Hum. Reprod. 2021, 36, 2157–2169. [Google Scholar] [CrossRef]
- Humaidan, P.; Alviggi, C.; Fischer, R.; Esteves, S.C. The novel POSEIDON stratification of ’Low prognosis patients in Assisted Reproductive Technology’ and its proposed marker of successful outcome. F1000Research 2016, 5, 2911–2919. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schüring, A.N.; Busch, A.S.; Bogdanova, N.; Gromoll, J.; Tüttelmann, F. Effects of the FSH-β-subunit promoter polymorphism -211G->T on the hypothalamic-pituitary-ovarian axis in normally cycling women indicate a gender-specific regulation of gonadotropin secretion. J. Clin. Endocrinol. Metab. 2013, 98, E82–E86. [Google Scholar] [CrossRef] [Green Version]
- Trevisan, C.M.; de Oliveira, R.; Christofolini, D.M.; Barbosa, C.P.; Bianco, B. Effects of a Polymorphism in the Promoter Region of the Follicle-Stimulating Hormone Subunit Beta (FSHB) Gene on Female Reproductive Outcomes. Genet. Test. Mol. Biomark. 2019, 23, 39–44. [Google Scholar] [CrossRef]
- Polyzos, N.P.; Neves, A.R.; Drakopoulos, P.; Spits, C.; Alvaro Mercadal, B.; Garcia, S.; Ma, P.Q.M.; Le, L.H.; Ho, M.T.; Mertens, J.; et al. The effect of polymorphisms in FSHR and FSHB genes on ovarian response: A prospective multicenter multinational study in Europe and Asia. Hum. Reprod. 2021, 36, 1711–1721. [Google Scholar] [CrossRef] [PubMed]
- Alviggi, C.; Conforti, A.; Santi, D.; Esteves, S.C.; Andersen, C.Y.; Humaidan, P.; Chiodini, P.; De Placido, G.; Simoni, M. Clinical relevance of genetic variants of gonadotrophins and their receptors in controlled ovarian stimulation: A systematic review and meta-analysis. Hum. Reprod. Update 2018, 24, 599–614. [Google Scholar] [CrossRef]
- Perez Mayorga, M.; Gromoll, J.; Behre, H.M.; Gassner, C.; Nieschlag, E.; Simoni, M. Ovarian response to follicle-stimulating hormone (FSH) stimulation depends on the FSH receptor genotype. J. Clin. Endocrinol. Metab. 2000, 85, 3365–3369. [Google Scholar] [CrossRef]
- Alviggi, C.; Clarizia, R.; Pettersson, K.; Mollo, A.; Humaidan, P.; Strina, I.; Coppola, M.; Ranieri, A.; D’Uva, M.; De Placido, G. Suboptimal response to GnRHa long protocol is associated with a common LH polymorphism. Reprod. Biomed. Online 2011, 22 (Suppl. S1), S67–S72. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.H.; Lee, T.H.; Chen, H.H.; Chen, C.I.; Huang, C.C.; Lee, M.S. The influence of female age on the cumulative live-birth rate of fresh cycles and subsequent frozen cycles using vitrified blastocysts in hyper-responders. Taiwan J. Obs. Gynecol. 2015, 54, 567–571. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chung, T.T.; Pan, M.S.; Kuo, C.L.; Wong, R.H.; Lin, C.W.; Chen, M.K.; Yang, S.F. Impact of RECK gene polymorphisms and environmental factors on oral cancer susceptibility and clinicopathologic characteristics in Taiwan. Carcinogenesis 2011, 32, 1063–1068. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weng, S.L.; Tzeng, S.L.; Lee, C.I.; Liu, C.H.; Huang, C.C.; Yang, S.F.; Lee, M.S.; Lee, T.H. Association between GnRH Receptor Polymorphisms and Luteinizing Hormone Levels for Low Ovarian Reserve Infertile Women. Int. J. Environ. Res. Public Health 2021, 18, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Kang, H.J.; Feng, Z.; Sun, Y.; Atwal, G.; Murphy, M.E.; Rebbeck, T.R.; Rosenwaks, Z.; Levine, A.J.; Hu, W. Single-nucleotide polymorphisms in the p53 pathway regulate fertility in humans. Proc. Natl. Acad. Sci. USA 2009, 106, 9761–9766. [Google Scholar] [CrossRef] [Green Version]
- Drakopoulos, P.; Blockeel, C.; Stoop, D.; Camus, M.; de Vos, M.; Tournaye, H.; Polyzos, N.P. Conventional ovarian stimulation and single embryo transfer for IVF/ICSI. How many oocytes do we need to maximize cumulative live birth rates after utilization of all fresh and frozen embryos? Hum. Reprod. 2016, 31, 370–376. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, J.B.; Vagnini, L.D.; Petersen, C.G.; Renzi, A.; Oliveira-Pelegrin, G.R.; Mauri, A.L.; Ricci, J.; Massaro, F.C.; Dieamant, F.; Cavagna, M.; et al. Association between leukaemia inhibitory factor gene polymorphism and pregnancy outcomes after assisted reproduction techniques. Reprod. Biomed. Online 2016, 32, 66–78. [Google Scholar] [CrossRef] [Green Version]
- Vagnini, L.D.; Renzi, A.; Petersen, B.; Canas, M.; Petersen, C.G.; Mauri, A.L.; Mattila, M.C.; Ricci, J.; Dieamant, F.; Oliveira, J.B.A.; et al. Association between estrogen receptor 1 (ESR1) and leukemia inhibitory factor (LIF) polymorphisms can help in the prediction of recurrent implantation failure. Fertil. Steril. 2019, 111, 527–534. [Google Scholar] [CrossRef]
- Komatsu, K.; Koya, T.; Wang, J.; Yamashita, M.; Kikkawa, F.; Iwase, A. Analysis of the Effect of Leukemia Inhibitory Factor on Follicular Growth in Cultured Murine Ovarian Tissue. Biol. Reprod. 2015, 93, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Achrekar, S.K.; Modi, D.N.; Desai, S.K.; Mangoli, V.S.; Mangoli, R.V.; Mahale, S.D. Follicle-stimulating hormone receptor polymorphism (Thr307Ala) is associated with variable ovarian response and ovarian hyperstimulation syndrome in Indian women. Fertil. Steril. 2009, 91, 432–439. [Google Scholar] [CrossRef]
- La Marca, A.; Sighinolfi, G.; Argento, C.; Grisendi, V.; Casarini, L.; Volpe, A.; Simoni, M. Polymorphisms in gonadotropin and gonadotropin receptor genes as markers of ovarian reserve and response in in vitro fertilization. Fertil. Steril. 2013, 99, 970–978.e971. [Google Scholar] [CrossRef] [PubMed]
- Trevisan, C.M.; Peluso, C.; Cordts, E.B.; de Oliveira, R.; Christofolini, D.M.; Barbosa, C.P.; Bianco, B. Ala307Thr and Asn680Ser polymorphisms of FSHR gene in human reproduction outcomes. Cell. Physiol. Biochem. Int. J. Exp. Cell. Physiol. Biochem. Pharmacol. 2014, 34, 1527–1535. [Google Scholar] [CrossRef] [PubMed]
- König, T.E.; van der Lee, J.; Schats, R.; Lambalk, C.B. The relationship between FSH receptor polymorphism status and IVF cycle outcome: A retrospective observational study. Reprod. Biomed. Online 2019, 39, 231–240. [Google Scholar] [CrossRef]
- Song, D.; Huang, X.L.; Hong, L.; Yu, J.M.; Zhang, Z.F.; Zhang, H.Q.; Sun, Z.G.; Du, J. Sequence variants in FSHR and CYP19A1 genes and the ovarian response to controlled ovarian stimulation. Fertil. Steril. 2019, 112, 749–757.e742. [Google Scholar] [CrossRef] [PubMed]
Gene (SNP ID) | Variation | Region | Forward and Backward Primer Sequences |
---|---|---|---|
GnRHR (rs3756159) | G > A | Non-coding Intron | CCGACTTTCATAGCCACACCCTGAAT CACAACATGAAAGGTATAAAGCCCTCCAG |
FSHR (rs6166) | 2039 G > A Asn680Ser | Coding (exon) | CTTCAGCTCCCAGAGTCACC CATTGTGTTTTAGTTTTGGGCTAA |
AMH (rs10407022) | 146 T > G Ile49Ser | Coding (exon) | TCCGAGAAGACTTGGACTGG AGCTGCTGCCATTGCTGT |
LIF (rs929271) | c.1414T > G | Non-coding Promoter | Reference to TagMan® SNP genotyping system |
POSEIDON Groups | p Value 1 | ||||
---|---|---|---|---|---|
1 (n = 208) | 2 (n = 361) | 3 (n = 117) | 4 (n = 398) | ||
GnRHR (rs3756159) | |||||
GG | 51(24.5%) | 117(32.4%) | 37(31.6%) | 113(28.4%) | p = 0.3100 |
GA | 118(56.7%) | 178(49.3%) | 55(47.0%) | 196(49.2%) | |
AA | 39(18.8%) | 66(18.3%) | 25(21.4%) | 89(22.4%) | |
G | 220(52.9%) | 412(57.1%) | 129(55.1%) | 422(53.0%) | p = 0.3775 |
A | 196(47.1%) | 310(42.9%) | 105(44.9%) | 374(47.0%) | |
FSHR (rs6166) | |||||
AA | 99(47.6%) | 170(47.1%) | 47(40.2%) | 157(39.4%) | p = 0.1657 |
AG | 92(44.2%) | 161(44.6%) | 59(50.4%) | 191(48.0%) | |
GG | 17(8.2%) | 30(8.3%) | 11(9.4%) | 50(12.6%) | |
A | 290(69.7%) | 501(69.4%) | 153(65.4%) | 505(63.4%) | p = 0.0453 * |
G | 126(30.3%) | 221(30.6%) | 81(34.6%) | 291(36.6%) | |
AMH (rs10407022) | |||||
TT | 67(32.2%) | 128(35.5%) | 47(40.2%) | 149(37.4%) | p = 0.8423 |
TG | 100(48.1%) | 167(46.3%) | 51(43.6%) | 176(44.2%) | |
GG | 41(19.7%) | 66(18.3%) | 19(16.2%) | 73(18.3%) | |
T | 234(56.3%) | 423(58.6%) | 145(62.0%) | 474(59.5%) | p = 0.5164 |
G | 182(43.7%) | 299(41.4%) | 89(38.0%) | 322(40.5%) | |
LIF (rs929271) | |||||
TT | 64(30.8%) | 154(42.7%) | 42(35.9%) | 163(41.0%) | p = 0.0100 * |
TG | 112(53.8%) | 158(43.8%) | 50(42.7%) | 192(48.2%) | |
GG | 32(15.4%) | 49(13.6%) | 25(21.4%) | 43(10.8%) | |
T | 240(57.7%) | 466(64.5%) | 134(57.3%) | 518(65.1%) | p = 0.0156 * |
G | 176(42.3%) | 256(35.5%) | 100(42.7%) | 278(34.9%) |
Groups of Response | p Value 1 | ||
---|---|---|---|
≥35 Y/O | POSEIDON 2 (n = 361) | Normal Response (n = 269) | |
LIF (rs929271) | |||
TT | 154(42.7%) | 102(37.9%) | p = 0.4781 |
TG | 158(43.8%) | 126(46.8%) | |
GG | 49(13.6%) | 41(15.2%) | p = 0.2436 |
T | 466(64.5%) | 330(61.3%) | |
G | 256(35.5%) | 208(38.7%) | |
FSHR (rs6166) | |||
AA | 170 (47.1%) | 110 (40.9%) | p = 0.0757 |
AG | 161 (44.6%) | 123 (45.7%) | |
GG | 30 (8.3%) | 36 (13.4%) | |
A | 501(69.4%) | 343 (63.8%) | p = 0.0354 * |
G | 221(30.6%) | 195 (36.2%) | |
<35 Y/O | POSEIDON 1 (n = 208) | Normal Response (n = 391) | |
LIF (rs929271) | |||
TT | 64(30.8%) | 163(41.7%) | p = 0.0279 * |
TG | 112(53.8%) | 172(44.0%) | |
GG | 32(15.4%) | 56(14.3%) | |
T | 240 (57.7%) | 498(63.7%) | p = 0.0425 * |
G | 176 (42.3%) | 284(36.3%) | |
FSHR (rs6166) | |||
AA | 99 (47.6%) | 171 (43.7%) | p = 0.3834 |
AG | 92 (44.2%) | 175 (44.8%) | |
GG | 17 (8.2%) | 45 (11.5%) | |
A | 290 (69.7%) | 517 (66.1%) | p = 0.2061 |
G | 126 (30.3%) | 265 (33.9%) |
LIF rs929271 | TT (n = 227) | TG/GG (n = 372) | |||
---|---|---|---|---|---|
Median | 25%–75% | Median | 25%–75% | p 1 | |
Age (years) | 32.0 | 29.0 to 33.0 | 31.0 | 30.0 to 33.0 | 0.8501 |
BMI (kg/m2) | 21.5 | 19.7 to 23.8 | 21.1 | 19.55 to 23.67 | 0.3258 |
AMH (ng/mL) | 4.90 | 2.94 to 8.35 | 4.68 | 2.87 to 8.11 | 0.6640 |
Baseline FSH (IU/L) | 6.40 | 4.56 to 7.77 | 6.11 | 4.57 to 7.80 | 0.5976 |
Baseline LH (IU/L) | 5.03 | 3.50 to 8.50 | 5.3 | 3.24 to 8.10 | 0.4799 |
Baseline E2 (ng/mL) | 28.0 | 19.0 to 48.0 | 27.0 | 19.0 to 49.5 | 0.8584 |
Duration of Infertility (years) | 2.0 | 1.2 to 4.0 | 2.5 | 1.43 to 4.0 | 0.5786 |
E2 on HCG day (ng/mL) | 2686.0 | 1752.5 to 4098.5 | 2784.0 | 1795.8 to 4428.8 | 0.4896 |
P4 on HCG day (pg/mL) | 1.14 | 0.79 to 1.51 | 1.14 | 0.74 to 1.62 | 0.7889 |
Oocytes number | 16 | 11 to 22 | 14 | 9 to 20 | 0.0109 * |
MII number | 13 | 9 to 18 | 11 | 7 to 16 | 0.0082 ** |
Number of Day3 Embryos | 11 | 7 to 15 | 10 | 6 to 15 | 0.0904 |
Day3 Good Embryo Rate (%) | 53.9 | 37.5 to 69.2 | 55.0 | 37.500 to 70.000 | 0.9984 |
FSHR (rs6166) | AA/AG (n = 564) | GG (n = 66) | |||
---|---|---|---|---|---|
Median | 25%–75% | Median | 25%75% | p 1 | |
Age (years) | 38.0 | 36.0 to 39.0 | 37.0 | 36.0 to 39.0 | 0.4614 |
BMI (kg/m2) | 21.7 | 20.0 to 24.2 | 22.3 | 19.7 to 25.1 | 0.9450 |
AMH (ng/mL) | 3.07 | 1.94 to 5.31 | 3.29 | 2.13 to 5.44 | 0.3255 |
Baseline FSH (IU/L) | 6.30 | 4.40 to 8.10 | 6.56 | 4.52 to 8.40 | 0.2727 |
Baseline LH (IU/L) | 4.70 | 3.08 to 6.82 | 4.70 | 3.60 to 6.20 | 0.6209 |
Baseline E2 (ng/mL) | 28.0 | 19.0 to 53.0 | 25.0 | 18.0 to 67.0 | 0.5810 |
Duration of Infertility (years) | 3.0 | 2.0 to 5.0 | 3.5 | 2.0 to 6.0 | 0.6520 |
E2 on HCG day (ng/mL) | 1993.0 | 1144.5 to 3146.3 | 2241.0 | 1447.0 to 3198.0 | 0.3316 |
P4 on HCG day (pg/mL) | 0.99 | 0.63 to 1.40 | 1.07 | 0.66 to 1.40 | 0.7464 |
Oocytes number | 11 | 6 to 16 | 13 | 8 to 16 | 0.1439 |
MII number | 8 | 5 to 13 | 10 | 6 to 14 | 0.0315 * |
Number of Day3 Embryos | 7 | 4 to 12 | 10 | 5 to 14 | 0.0670 |
Day3 Good Embryo Rate (%) | 55.6 | 38.890 to 71.430 | 56.3 | 40.0 to 66.7 | 0.6739 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.-L.; Lee, C.-I.; Liu, C.-H.; Cheng, E.-H.; Yang, S.-F.; Tsai, H.-Y.; Lee, M.-S.; Lee, T.-H. Association between Leukemia Inhibitory Factor Gene Polymorphism and Clinical Outcomes among Young Women with Poor Ovarian Response to Assisted Reproductive Technology. J. Clin. Med. 2023, 12, 796. https://doi.org/10.3390/jcm12030796
Liu Y-L, Lee C-I, Liu C-H, Cheng E-H, Yang S-F, Tsai H-Y, Lee M-S, Lee T-H. Association between Leukemia Inhibitory Factor Gene Polymorphism and Clinical Outcomes among Young Women with Poor Ovarian Response to Assisted Reproductive Technology. Journal of Clinical Medicine. 2023; 12(3):796. https://doi.org/10.3390/jcm12030796
Chicago/Turabian StyleLiu, Yung-Liang, Chun-I Lee, Chung-Hsien Liu, En-Hui Cheng, Shun-Fa Yang, Hsueh-Yu Tsai, Maw-Sheng Lee, and Tsung-Hsien Lee. 2023. "Association between Leukemia Inhibitory Factor Gene Polymorphism and Clinical Outcomes among Young Women with Poor Ovarian Response to Assisted Reproductive Technology" Journal of Clinical Medicine 12, no. 3: 796. https://doi.org/10.3390/jcm12030796
APA StyleLiu, Y.-L., Lee, C.-I., Liu, C.-H., Cheng, E.-H., Yang, S.-F., Tsai, H.-Y., Lee, M.-S., & Lee, T.-H. (2023). Association between Leukemia Inhibitory Factor Gene Polymorphism and Clinical Outcomes among Young Women with Poor Ovarian Response to Assisted Reproductive Technology. Journal of Clinical Medicine, 12(3), 796. https://doi.org/10.3390/jcm12030796