White Spot Lesions (WSLs)—Post-Orthodontic Occurrence, Management and Treatment Alternatives: A Narrative Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Eligibility Criteria
- Scientific articles published from 1 January 2010 to 31 December 2022;
- Scientific articles published in the English language;
- Clinical studies that mention development of WSLs during or after orthodontic treatment:
- The literature search was not restricted to any age interval, sex, duration of treatment or orthodontic disharmony treated with fixed appliances.
- Only articles related to the development of WSLs in connection with orthodontic treatment were considered relevant to the purpose of this review.
- Papers with no clear report of clinical study
- Lesions that are not present in the oral cavity or in a well-specified location in title and/or abstract;
- Animal studies;
- In vitro studies, case reports and case series.
2.2. Literature Search Strategy
2.2.1. Data Sources
2.2.2. The Data Collection Protocol Used in This Review Was as Follows
- -
- Selection of items from the Dentistry and Oral Health category;
- -
- The population was not restricted in any way (any race, sex, age, geographical location);
- -
- Selection of studies that included only orthodontically treated abnormalities by fixed or mobile methods;
- -
- Selection of articles only provided as a full text.
2.3. Risk of Bias
3. Results
3.1. Results According to the Prevention Method Used
3.1.1. Toothpaste with Fluoride
3.1.2. Varnish with Fluoride
3.1.3. Differences between Paste and Varnish
3.1.4. Use of Probiotics
3.2. Results According to the Type of Ligatures Used (Elastic/Wire)
3.3. Results Depending on the Type of Orthodontic Appliance Used
3.3.1. Mobile versus Fixed Device
3.3.2. Incognito versus WIN
3.4. Results Depending on the Adhesive Material of the Brackets
3.4.1. Cement
3.4.2. Composite Resins
3.4.3. Sealers
3.5. Results Depending on the Bonding Agent Used
Direct versus Indirect Technique
3.6. Results Depending on the Demineralization Technique
3.6.1. Self-Etching Primers versus Conventional Demineralization
3.6.2. Total Etching versus Partial Etching
3.7. Results by Sex and Age
4. Discussions
Limitations of this Review
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Höchli, D.; Hersberger-Zurfluh, M.; Papageorgiou, S.N.; Eliades, T. Interventions for orthodontically induced white spot lesions: A systematic review and meta-analysis. Eur. J. Orthod. 2017, 39, 122–133. [Google Scholar] [CrossRef] [Green Version]
- Agrawal, A.; Shigli, A. Comparison of six different methods of cleaning and preparing occlusal fissure surface before placement of pit and fissure sealant: An in vitro study. J. Indian Soc. Pedod. Prev. Dent. 2012, 30, 51. [Google Scholar] [CrossRef]
- Srivastava, K.; Tikku, T.; Khanna, R.; Sachan, K. Risk factors and management of white spot lesions in orthodontics. J. Orthod. Sci. 2013, 2, 43–49. [Google Scholar] [CrossRef]
- Sundararaj, D.; Venkatachalapathy, S.; Tandon, A.; Pereira, A. Critical evaluation of incidence and prevalence of white spot lesions during fixed orthodontic appliance treatment: A meta-analysis. J. Int. Soc. Prev. Community Dent. 2015, 5, 433–439. [Google Scholar] [CrossRef] [Green Version]
- Boersma, J.; van der Veen, M.; Lagerweij, M.; Bokhout, B.; Prahl-Andersen, B. Caries Prevalence Measured with QLF after Treatment with Fixed Orthodontic Appliances: Influencing Factors. Caries Res. 2005, 39, 41–47. [Google Scholar] [CrossRef]
- Geiger, A.M.; Gorelick, L.; Gwinnett, A.J.; Griswold, P.G. The effect of a fluoride program on white spot formation during orthodontic treatment. Am. J. Orthod. Dentofac. Orthop. 1988, 93, 29–37. [Google Scholar] [CrossRef]
- Farooq, I.; Bugshan, A. The role of salivary contents and modern technologies in the remineralization of dental enamel: A narrative review. F1000 Research 2020, 9, 171. [Google Scholar] [CrossRef]
- Neel, E.A.A.; Aljabo, A.; Strange, A.; Ibrahim, S.; Coathup, M.; Young, A.M.; Bozec, L.; Mudera, V. Demineralization–remineralization dynamics in teeth and bone. Int. J. Nanomed. 2016, 11, 4743–4763. [Google Scholar] [CrossRef]
- Robinson, C.; Connell, S.; Kirkham, J.; Brookes, S.; Shore, R.; Smith, A. The Effect of Fluoride on the Developing Tooth. Caries Res. 2004, 38, 268–276. [Google Scholar] [CrossRef]
- Stavrianos, C.; Papadopoul, C.; Vasiliadis, L.; Dagkalis, P.; Stavrianou, I.; Petalotis, N. Enamel Structure and Forensic Use. Res. J. Biol. Sci. 2010, 5, 650–655. [Google Scholar] [CrossRef]
- Nanci, A. Ten Cate’s Oral Histology: Development, Structure, and Function; Mosby: Maryland Heights, MO, USA, 2008; pp. 22–31. [Google Scholar]
- Hart, S.; Hart, T. Disorders of human dentin. Cells Tissues Organs 2007, 186, 70–77. [Google Scholar] [CrossRef] [Green Version]
- Scaramucci, T.; Carvalho, J.C.; Hara, A.T.; Zero, D.T. Causes of Dental Erosion: Extrinsic Factors; Springer International Publishing: Berlin/Heidelberg, Germany, 2015; pp. 69–96. [Google Scholar]
- Scaramucci, T.; Carvalho, J.C.; Hara, A.T.; Zero, D.T. Causes of Dental Erosion: Intrinsic Factors; Springer International Publishing: Berlin/Heidelberg, Germany, 2015; pp. 35–67. [Google Scholar]
- Miura, K.K.; Ito, I.Y.; Enoki, C.; Elias, A.M.; Matsumoto, M.A.N. Anticariogenic effect of fluoride-releasing elastomers in orthodontic patients. Braz. Oral Res. 2007, 21, 228–233. [Google Scholar] [CrossRef] [Green Version]
- Chen, W.; Zhou, Y. Caries outcomes after orthodontic treatment with fixed appliances: A longitudinal prospective study. Int. J. Clin. Exp. Med. 2015, 8, 2815–2822. [Google Scholar]
- Kanthathas, K.; Willmot, D.R.; Benson, P.E. Differentiation of developmental and post-orthodontic white lesions using image analysis. Eur. J. Orthod. 2005, 27, 167–172. [Google Scholar] [CrossRef]
- Örtendahl, T.; Thilander, B.; Svanberg, M. Mutans streptococci and incipient caries adjacent to glass ionomer cement or resin-based composite in orthodontics. Am. J. Orthod. Dentofac. Orthop. 1997, 112, 271–274. [Google Scholar] [CrossRef]
- Jurela, A.; Repic, D.; Pejda, S.; Juric, H.; Vidakovic, R.; Matic, I.; Bosnjak, A. The effect of two different bracket types on the salivary levels of S mutans and S sobrinus in the early phase of orthodontic treatment. Angle Orthod. 2013, 83, 140–145. [Google Scholar] [CrossRef]
- Fukae, M.; Yamamoto, R.; Karakida, T.; Shimoda, S.; Tanabe, T. Micelle structure of amelogenin in porcine secretory enamel. J. Dent. Res. 2007, 86, 758–763. [Google Scholar] [CrossRef]
- Lanteri, V.F.; Lanteri, G.; Caravita, C.; Cossellu, G.R. The efficacy of orthodontic treatments for anterior crowding with Invisalign compared with fixed appliances using the Peer Assessment Rating Index. Quintessence Int. 2018, 49, 581–587. [Google Scholar]
- Butera, A.; Maiorani, C.; Morandini, A.; Simonini, M.; Morittu, S.; Barbieri, S.; Bruni, A.; Sinesi, A.; Ricci, M.; Trombini, J.; et al. Assessment of Genetical, Pre, Peri and Post Natal Risk Factors of Deciduous Molar Hypomineralization (DMH), Hypomineralized Second Primary Molar (HSPM) and Molar Incisor Hypomineralization (MIH): A Narrative Review. Children 2021, 8, 432. [Google Scholar] [CrossRef]
- Quirynen, M.; Bollen, C.M.L. CA Novel Cold Atmospheric Pressure Air Plasma Jet for Peri-Implantitis Treatment: An in Vitro Study. J. Clin. Periodontol. 1995, 22, 1–14. [Google Scholar] [CrossRef]
- Sonesson, M.; Twetman, S.; Bondemark, L. Effectiveness of high-fluoride toothpaste on enamel demineralization during orthodontic treatment—A multicenter randomized controlled trial. Eur. J. Orthod. 2014, 36, 678–682. [Google Scholar] [CrossRef] [Green Version]
- Liberati, A.; Altman, D.G.; Tetzlaff, J.; Mulrow, C.; Gøtzsche, P.C.; Ioannidis, J.P.A.; Clarke, M.; Devereaux, P.J.; Kleijnen, J.; Moher, D. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: Explanation and elaboration. J. Clin. Epidemiol. 2009, 62, e1–e34. [Google Scholar] [CrossRef] [Green Version]
- Hoffman, D.A.; Clark, A.E.; Rody, W.J.; McGorray, S.P.; Wheeler, T.T. A prospective randomized clinical trial into the capacity of a toothpaste containing NovaMin to prevent white spot lesions and gingivitis during orthodontic treatment. Prog. Orthod. 2015, 16, 25. [Google Scholar] [CrossRef] [Green Version]
- Restrepo, M.; Bussaneli, D.G.; Jeremias, F.; Cordeiro, R.; Raveli, D.; Magalhães, A.; Candolo, C.; Santos-Pinto, L. Control of White Spot Lesions with Use of Fluoride Varnish or Chlorhexidine Gel During Orthodontic Treatment A Randomized Clinical Trial. J. Clin. Pediatr. Dent. 2016, 40, 274–280. [Google Scholar] [CrossRef]
- Sonesson, M.; Bergstrand, F.; Gizani, S.; Twetman, S. Management of post-orthodontic white spot lesions: An updated systematic review. Eur. J. Orthod. 2017, 39, 116–121. [Google Scholar] [CrossRef] [Green Version]
- Knösel, M.; Bojes, M.; Jung, K.; Ziebolz, D. Increased susceptibility for white spot lesions by surplus orthodontic etching exceeding bracket base area. Am. J. Orthod. Dentofac. Orthop. 2012, 141, 574–582. [Google Scholar] [CrossRef]
- Rechmann, P.; Bekmezian, S.; Rechmann, B.M.T.; Chaffee, B.W.; Featherstone, J.D.B. MI Varnish and MI Paste Plus in a caries prevention and remineralization study: A randomized controlled trial. Clin. Oral Investig. 2018, 22, 2229–2239. [Google Scholar] [CrossRef]
- Alabdullah, M.M.; Nabawia, A.; Ajaj, M.A.; Saltaji, H. Effect of fluoride-releasing resin composite in white spot lesions prevention: A single-centre, split-mouth, randomized controlled trial. Eur. J. Orthod. 2017, 39, 634–640. [Google Scholar] [CrossRef]
- Gómez, C.; Abellán, R.; Palma, J.C. Efficacy of photodynamic therapy vs ultrasonic scaler for preventing gingival inflammation and white spot lesions during orthodontic treatment. Photodiagnosis Photodyn. Ther. 2018, 24, 377–383. [Google Scholar] [CrossRef]
- Yagci, A.; Korkmaz, Y.N.; Yagci, F.; Atilla, A.O.; Buyuk, S.K. Effect of 3 cements on white spot lesion formation after full-coverage rapid maxillary expander: A comparative in-vivo study. Am. J. Orthod. Dentofac. Orthop. 2016, 150, 1005–1013. [Google Scholar] [CrossRef]
- Hammad, S.M.; Knösel, M. Efficacy of a new sealant to prevent white spot lesions during fixed orthodontic treatment: A 12-month, single-center, randomized controlled clinical trial. J. Orofac. Orthopedics. 2016, 77, 439–445. [Google Scholar] [CrossRef]
- Perrini, F.; Lombardo, L.; Arreghini, A.; Medori, S.; Siciliani, G. Caries prevention during orthodontic treatment: In-vivo assessment of high-fluoride varnish to prevent white spot lesions. Am. J. Orthod. Dentofac. Orthop. 2016, 149, 238–243. [Google Scholar] [CrossRef]
- Jena, A.K.; Singh, S.P.; Utreja, A.K. Efficacy of resin-modified glass ionomer cement varnish in the prevention of white spot lesions during comprehensive orthodontic treatment: A split-mouth study. J. Orthod. 2015, 42, 200–207. [Google Scholar] [CrossRef] [PubMed]
- Buck, T.; Pellegrini, P.; Sauerwein, R.; Leo, M.C.; Covell, D.A., Jr.; Maier, T.; Machida, C.A. Elastomeric-ligated vs self-ligating appliances: A pilot study examining microbial colonization and white spot lesion formation after 1 year of orthodontic treatment. Orthod. Art Pract. Dentofac. Enhanc. 2011, 12, 108–121. [Google Scholar]
- Albhaisi, Z.; Al-Khateeb, S.N.; Abu Alhaija, E.S. Enamel demineralization during clear aligner orthodontic treatment compared with fixed appliance therapy, evaluated with quantitative light-induced fluorescence: A randomized clinical trial. Am. J. Orthod. Dentofac. Orthop. 2020, 157, 594–601. [Google Scholar] [CrossRef] [PubMed]
- Esenlik, E.; Çelik, E.U.; Bolat, E. Efficacy of a casein phosphopeptide amorphous calcium phosphate (CPP-ACP) paste in preventing white spot lesions in patients with fixed orthodontic appliances: A prospective clinical trial. Eur. J. Paediatr. Dent. 2016, 17, 274–280. [Google Scholar]
- Robertson, M.A.; Kau, C.H.; English, J.D.; Lee, R.P.; Powers, J.; Nguyen, J.T. MI Paste Plus to prevent demineralization in orthodontic patients: A prospective randomized controlled trial. Am. J. Orthod. Dentofac. Orthop. 2011, 140, 660–668. [Google Scholar] [CrossRef]
- O’Reilly, M.T.; Viñas, J.D.J.; Hatch, J.P. Effectiveness of a sealant compared with no sealant in preventing enamel demineralization in patients with fixed orthodontic appliances: A prospective clinical trial. Am. J. Orthod. Dentofac. Orthop. 2013, 143, 837–844. [Google Scholar] [CrossRef] [PubMed]
- Cheng, H.-C.; Hu, H.-T.; Chang, Y.-C. Effectiveness of Enzyme Dentifrices on Oral Health in Orthodontic Patients: A Randomized Controlled Trial. Int. J. Environ. Res. Public Health 2019, 16, 2243. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yagci, A.; Seker, E.D.; Demirsoy, K.K.; Ramoglu, S.I. Do total or partial etching procedures effect the rate of white spot lesion formation? A single-center, randomized, controlled clinical trial. Angle Orthod. 2019, 89, 16–24. [Google Scholar] [CrossRef] [Green Version]
- Gizani, S.; Petsi, G.; Twetman, S.; Caroni, C.; Makou, M.; Papagianoulis, L. Effect of the probiotic bacteriumLactobacillus reuterion white spot lesion development in orthodontic patients. Eur. J. Orthod. 2016, 38, 85–89. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Der Kaaij, N.C.W.; Van Der Veen, M.H.; Van Der Kaaij, M.A.E.; Cate, J.M.T. A prospective, randomized placebo-controlled clinical trial on the effects of a fluoride rinse on white spot lesion development and bleeding in orthodontic patients. Eur. J. Oral Sci. 2015, 123, 186–193. [Google Scholar] [CrossRef]
- Yıldırım, K.; Saglam-Aydinatay, B. Comparative assessment of treatment efficacy and adverse effects during nonextraction orthodontic treatment of Class I malocclusion patients with direct and indirect bonding: A parallel randomized clinical trial. Am. J. Orthod. Dentofac. Orthop. 2018, 154, 26–34.e1. [Google Scholar] [CrossRef]
- Guram, G.; Kumar, G.S.; Kashyap, A.; Raghav, S.; Bhardwaj, R.; Singh, A. Role of Text Message Reminder on Oral Hygiene Maintenance of Orthodontic Patients. J. Contemp. Dent. Pract. 2018, 19, 98–101. [Google Scholar] [CrossRef] [PubMed]
- Alexandria, A.K.; Nassur, C.; Nóbrega, C.B.C.; Branco-De-Almeida, L.S.; dos Santos, K.R.N.; Vieira, A.R.; Neves, A.A.; Rosalen, P.L.; Valença, A.M.G.; Maia, L.C. Effect of TiF4 varnish on microbiological changes and caries prevention: In situ and in vivo models. Clin. Oral Investig. 2019, 23, 2583–2591. [Google Scholar] [CrossRef] [PubMed]
- Quaranta, A.; Marchisio, O.; D’isidoro, O.; Genovesi, A.M.; Covani, U. Single-blind randomized clinical trial on the efficacy of an interdental cleaning device in orthodontic patients. Minerva Dent. Oral Sci. 2018, 67, 141–147. [Google Scholar] [CrossRef]
- Lipták, L.; Szabó, K.; Nagy, G.; Marton, S.; Madléna, M. Microbiological Changes and Caries-Preventive Effect of an Innovative Varnish Containing Chlorhexidine in Orthodontic Patients. Caries Res. 2018, 52, 272–278. [Google Scholar] [CrossRef]
- Atilla, A.O.; Öztürk, T.; Eruz, M.M.; Yagci, A. A comparative assessment of orthodontic treatment outcomes using the quantitative light-induced fluorescence (QLF) method between direct bonding and indirect bonding techniques in adolescents: A single-centre, single-blind randomized controlled trial. Eur. J. Orthod. 2020, 42, 441–453. [Google Scholar] [CrossRef]
- Tüfekçi, E.; Pennella, D.R.; Mitchell, J.C.; Best, A.; Lindauer, S.J. Efficacy of a fluoride-releasing orthodontic primer in reducing demineralization around brackets: An in-vivo study. Am. J. Orthod. Dentofac. Orthop. 2014, 146, 207–214. [Google Scholar] [CrossRef]
- Eppright, M.; Shroff, B.; Best, A.M.; Barcoma, E.; Lindauer, S.J. Influence of active reminders on oral hygiene compliance in orthodontic patients. Angle Orthod. 2014, 84, 208–213. [Google Scholar] [CrossRef] [Green Version]
- Danaei, S.M.; Safavi, A.; Roeinpeikar, S.M.; Oshagh, M.; Iranpour, S.; Omidekhoda, M. Ion release from orthodontic brackets in 3 mouthwashes: An in-vitro study. Am. J. Orthod. Dentofac. Orthop. 2011, 139, 730–734. [Google Scholar] [CrossRef] [PubMed]
- Andrucioli, M.C.D.; Faria, G.; Nelson-Filho, P.; Romano, F.; Matsumoto, M.A.N. Influence of resin-modified glass ionomer and topical fluoride on levels of Streptococcus mutans in saliva and biofilm adjacent to metallic brackets. J. Appl. Oral Sci. 2017, 25, 196–202. [Google Scholar] [CrossRef] [PubMed]
- Benson, P.E.; Alexander-Abt, J.; Cotter, S.; Dyer, F.M.V.; Fenesha, F.; Patel, A. Resin-modified glass ionomer cement vs composite for orthodontic bonding: A multicenter, single-blind, randomized controlled trial. Am. J. Orthod. Dentofac. Orthopedics. 2019, 155, 10–18. [Google Scholar] [CrossRef]
- Paschoal, M.A.B.; Gurgel, C.V.; Rios, D.; Magalhães, A.C.; Buzalaf, M.A.R.; Machado, M.A.D.A.M. Fluoride release profile of a nanofilled resin-modified glass ionomer cement. Braz. Dent. J. 2011, 22, 275–279. [Google Scholar] [CrossRef] [Green Version]
- Kantovitz, K.R.; Pascon, F.M.; Nociti, F.H.; Tabchoury, C.P.M.; Puppin-Rontani, R.M. Inhibition of enamel mineral loss by fissure sealant: An in situ study. J. Dent. 2013, 41, 42–50. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Knösel, M.; Klang, E.; Helms, H.-J.; Wiechmann, D. Lingual orthodontic treatment duration: Performance of two different completely customized multi-bracket appliances (Incognito and WIN) in groups with different treatment complexities. Head Face Med. 2014, 10, 46. [Google Scholar] [CrossRef] [Green Version]
- Oosterkamp, B.C.M.; Wafae, A.; Schols, J.G.J.H.; Van Der Sanden, W.J.M.; Wensing, M. Effectiveness of a clinical guideline to improve dental health among orthodontically treated patients: Study protocol for a cluster randomized controlled trial. Trials 2016, 17, 201. [Google Scholar] [CrossRef] [Green Version]
- Mayne, R.J.; Cochrane, N.J.; Cai, F.; Woods, M.G.; Reynolds, E.C. In-vitro study of the effect of casein phosphopeptide amorphous calcium fluoride phosphate on iatrogenic damage to enamel during orthodontic adhesive removal. Am. J. Orthod. Dentofac. Orthop. 2011, 139, e543–e551. [Google Scholar] [CrossRef]
- Knösel, M.; Klang, E.; Helms, H.-J.; Wiechmann, D. Occurrence and severity of enamel decalcification adjacent to bracket bases and sub-bracket lesions during orthodontic treatment with two different lingual appliances. Eur. J. Orthod. 2016, 38, 485–492. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Davari, A.; Yassaei, S.; Karandish, M.; Zarghami, F. In vitro Evaluation of Microleakage under Ceramic and Metal Brackets Bonded with LED and Plasma Arc Curing. J. Contemp. Dent. Pract. 2012, 13, 644–649. [Google Scholar] [CrossRef] [PubMed]
- Benson, P.E.; Parkin, N.; Dyer, F.; Millett, D.T.; Germain, P. Fluorides for preventing early tooth decay (demineralised lesions) during fixed brace treatment. Cochrane Database Syst. Rev. 2019, 2019, CD003809. [Google Scholar] [CrossRef]
- Millett, D.T.; Glenny, A.-M.; Mattick, R.C.; Hickman, J.; Mandall, N.A. Adhesives for fixed orthodontic bands. Cochrane Database Syst. Rev. 2016, 2016, CD004485. [Google Scholar] [CrossRef]
- Mandall, N.A.; Hickman, J.; Macfarlane, T.V.; Mattick, R.C.; Millett, D.T.; Worthington, H.V. Adhesives for fixed orthodontic brackets. Cochrane Database Syst. Rev. 2018, 2018, CD002282. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, H.; Li, C.; Li, F.; Chen, J.; Sun, J.; Zou, S.; Sandham, A.; Xu, Q.; Riley, P.; Ye, Q. Enamel etching for bonding fixed orthodontic braces. Cochrane Database Syst. Rev. 2013, 2018, CD005516. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Millett, D.T.; Mandall, N.A.; Mattick, R.C.; Hickman, J.; Glenny, A.-M. Adhesives for bonded molar tubes during fixed brace treatment. Cochrane Database Syst. Rev. 2017, 2017, CD008236. [Google Scholar] [CrossRef] [PubMed]
- Pereira-Cenci, T.; Cenci, M.S.; Fedorowicz, Z.; Azevedo, M. Antibacterial agents in composite restorations for the prevention of dental caries. Cochrane Database Syst. Rev. 2013, 2014, CD007819. [Google Scholar] [CrossRef]
- Metin-Gürsoy, G.; Uzuner, F.D. The Relationship between Orthodontic Treatment and Dental Caries. In Dental Caries-Diagnosis, Prevention and Management; Zühre Akarslan, IntechOpen: London, UK, 2018; pp. 41–52. [Google Scholar] [CrossRef] [Green Version]
- Jose, J.E.; Padmanabhan, S.; Chitharanjan, A.B. Systemic consumption of probiotic curd and use of probiotic toothpaste to reduce Streptococcus mutans in plaque around orthodontic brackets. Am. J. Orthod. Dentofac. Orthop. 2013, 144, 67–72. [Google Scholar] [CrossRef]
- Uzuner, F.D.; Kaygısız, E.; Çankaya, Z.T. Effect of the bracket types on microbial colonization and periodontal status. Angle Orthod. 2014, 84, 1062–1067. [Google Scholar] [CrossRef]
- Munjal, D. Assessment of White Spot Lesions and In-Vivo Evaluation of the Effect of CPP-ACP on White Spot Lesions in Permanent Molars of Children. J. Clin. Diagn. Res. 2016, 10, 149–154. [Google Scholar] [CrossRef]
- Aljehani, A.; Tranæus, S.; Forsberg, C.-M.; Angmar-Mansson, B.; Shi, X.-O. In vitro quantification of white spot enamel lesions adjacent to fixed orthodontic appliances using quantitative light-induced fluorescence and diagnodent. Acta Odontol. Scand. 2004, 62, 313–318. [Google Scholar] [CrossRef]
- Livas, C.; Kuijpers-Jagtman, A.M.; Bronkhorst, E.; Derks, A.; Katsaros, C. Quantification of White Spot Lesions around Orthodontic Brackets with Image Analysis. Angle Orthod. 2008, 78, 585–590. [Google Scholar] [CrossRef] [Green Version]
- Butera, A.; Pascadopoli, M.; Gallo, S.; Lelli, M.; Tarterini, F.; Giglia, F.; Scribante, A. SEM/EDS Evaluation of the Mineral Deposition on a Polymeric Composite Resin of a Toothpaste Containing Biomimetic Zn-Carbonate Hydroxyapatite (microRepair®) in Oral Environment: A Randomized Clinical Trial. Polymers 2021, 13, 2740. [Google Scholar] [CrossRef]
- Scribante, A.; Farahani, M.R.D.; Marino, G.; Matera, C.; Baena, R.R.Y.; Lanteri, V.; Butera, A. Biomimetic Effect of Nano-Hydroxyapatite in Demineralized Enamel before Orthodontic Bonding of Brackets and Attachments: Visual, Adhesion Strength, and Hardness in In Vitro Tests. BioMed Res. Int. 2020, 2020, 6747498. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roveri, N.; Marco, L.; Marchisio, O.; Ismaela, F.; Genovesi, A.; Montebugnoli, G.; Massimo, M.; Ugo, C. Different corrosive effects on hydroxyapatite nanocrystals and amine fluoride-based mouthwashes on dental titanium brackets: A comparative in vitro study. Int. J. Nanomed. 2013, 8, 307–314. [Google Scholar] [CrossRef] [Green Version]
- Vano, M.; Derchi, G.; Barone, A.; Pinna, R.; Usai, P.; Covani, U. Reducing dentine hypersensitivity with nano-hydroxyapatite toothpaste: A double-blind randomized controlled trial. Clin. Oral Investig. 2018, 55, 261–320. [Google Scholar] [CrossRef] [PubMed]
- Lanteri, V.; Segu, M.; Doldi, J.; Butera, A. Pre-bonding prophylaxis and brackets detachment: An experimental comparison of different methods. Int. J. Clin. Dent. 2014, 7, 191–197. [Google Scholar]
- Butera, A.; Gallo, S.; Pascadopoli, M.; Montasser, M.A.; Abd El Latief, M.H.; Modica, G.G.; Scribante, A. Home Oral Care with Biomimetic Hydroxyapatite vs. Conventional Fluoridated Toothpaste for the Remineralization and Desensitizing of White Spot Lesions: Randomized Clinical Trial. Int. J. Environ. Res. Public Health 2022, 19, 8676. [Google Scholar] [CrossRef]
- Shan, D.; He, Y.; Gao, M.; Liu, H.; Zhu, Y.; Liao, L.; Hadaegh, F.; Long, H.; Lai, W. A comparison of resin infiltration and microabrasion for postorthodontic white spot lesion. Am. J. Orthod. Dentofac. Orthop. 2021, 160, 516–522. [Google Scholar] [CrossRef] [PubMed]
- Simon, L.S.; Dash, J.K.; Deepika, U.; Philip, S.; Sarangi, S. Management of Post Orthodontic White Spot Lesions Using Resin Infiltration and CPP-ACP Materials- A Clinical Study. J. Clin. Pediatr. Dent. 2022, 46, 70–74. [Google Scholar] [CrossRef]
Article | Results |
---|---|
1. Hoffman et al. [26] | + |
2. Restrepo et al. [27] | X |
3. Sonesson et al. [28] | X |
4. Knösel et al. [29] | X |
5. Rechmann et al. [30] | + |
6. Alabdullah et al. [31] | X |
7. Gómez et al. [32] | X |
8. Yagci et al. [33] | X |
9. Hammad et al. [34] | + |
10. Perrini et al. [35] | + |
11. Jena et al. [36] | X |
12. Buck et al. [37] | X |
13. Albhaisi et al. [38] | X |
14. Esenlik et al. [39] | + |
15. Robertson et al. [40] | + |
16. O’Reilly et al. [41] | + |
17. Cheng et al. [42] | X |
18. Yagci et al. [43] | X |
19. Gizani et al. [44] | X |
20. van der Kaaij et al. [45] | X |
21. Yıldırım et al. [46] | X |
22. Kumar et al. [47] | X |
23. Adílis et al. [48] | X |
24. Quaranta et al. [49] | X |
25. Lipták et al. [50] | X |
26. Atilla et al. [51] | X |
27. Tüfekçi et al. [52] | X |
28. Eppright et al. [53] | X |
29. Danaei et al. [54] | X |
30. Damião Andrucioli et al. [55] | - |
31. Benson et al. [56] | + |
32. Paschoal et al. [57] | X |
33. Kantovitz et al. [58] | X |
34. Knösel et al. [59] | X |
35. Oosterkamp et al. [60] | X |
36. Mayne et al. [61] | X |
37. Knösel et al. [62] | X |
38. Davari et al. [63] | x |
39. Benson et al. [64] | + |
40. Millett et al. [65] | X |
41. Mandall et al. [66] | X |
42. Hu et al. [67] | X |
43. Millett et al. [68] | X |
44. Pereira-Cenci et al. [69] | X |
45. Metin-Gürsoy et al. [70] | + |
46. Jose et al. [71] | X |
47. Uzuner et al. [72] | X |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lazar, L.; Vlasa, A.; Beresescu, L.; Bud, A.; Lazar, A.P.; Matei, L.; Bud, E. White Spot Lesions (WSLs)—Post-Orthodontic Occurrence, Management and Treatment Alternatives: A Narrative Review. J. Clin. Med. 2023, 12, 1908. https://doi.org/10.3390/jcm12051908
Lazar L, Vlasa A, Beresescu L, Bud A, Lazar AP, Matei L, Bud E. White Spot Lesions (WSLs)—Post-Orthodontic Occurrence, Management and Treatment Alternatives: A Narrative Review. Journal of Clinical Medicine. 2023; 12(5):1908. https://doi.org/10.3390/jcm12051908
Chicago/Turabian StyleLazar, Luminita, Alexandru Vlasa, Liana Beresescu, Anamaria Bud, Ana Petra Lazar, Larisa Matei, and Eugen Bud. 2023. "White Spot Lesions (WSLs)—Post-Orthodontic Occurrence, Management and Treatment Alternatives: A Narrative Review" Journal of Clinical Medicine 12, no. 5: 1908. https://doi.org/10.3390/jcm12051908
APA StyleLazar, L., Vlasa, A., Beresescu, L., Bud, A., Lazar, A. P., Matei, L., & Bud, E. (2023). White Spot Lesions (WSLs)—Post-Orthodontic Occurrence, Management and Treatment Alternatives: A Narrative Review. Journal of Clinical Medicine, 12(5), 1908. https://doi.org/10.3390/jcm12051908