Differences in Outcome of Patients with Cardiogenic Shock Associated with In-Hospital or Out-of-Hospital Cardiac Arrest
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Patients, Design, and Data Collection
2.2. Inclusion and Exclusion Criteria, Study Endpoints
2.3. Statistical Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Baran, D.A.; Grines, C.L.; Bailey, S.; Burkhoff, D.; Hall, S.A.; Henry, T.D.; Hollenberg, S.M.; Kapur, N.K.; O’Neill, W.; Ornato, J.P.; et al. SCAI clinical expert consensus statement on the classification of cardiogenic shock: This document was endorsed by the American College of Cardiology (ACC), the American Heart Association (AHA), the Society of Critical Care Medicine (SCCM), and the Society of Thoracic Surgeons (STS) in April 2019. Catheter. Cardiovasc. Interv. 2019, 94, 29–37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thiele, H. Editorial: Cardiogenic shock: On the search for a breakthrough in outcome? Curr. Opin. Crit. Care 2019, 25, 363–364. [Google Scholar] [CrossRef] [PubMed]
- Thiele, H.; Ohman, E.M.; de Waha-Thiele, S.; Zeymer, U.; Desch, S. Management of cardiogenic shock complicating myocardial infarction: An update 2019. Eur. Heart J. 2019, 40, 2671–2683. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jentzer, J.C.; van Diepen, S.; Henry, T.D. Understanding How Cardiac Arrest Complicates the Analysis of Clinical Trials of Cardiogenic Shock. Circ. Cardiovasc. Qual. Outcomes 2020, 13, e006692. [Google Scholar] [CrossRef] [PubMed]
- Torre, T.; Toto, F.; Klersy, C.; Theologou, T.; Casso, G.; Gallo, M.; Surace, G.G.; Franciosi, G.; Demertzis, S.; Ferrari, E. Early predictors of mortality in refractory cardiogenic shock following acute coronary syndrome treated with extracorporeal membrane oxygenator. J. Artif. Organs 2021, 24, 327–335. [Google Scholar] [CrossRef]
- Lauridsen, M.D.; Josiassen, J.; Schmidt, M.; Butt, J.H.; Ostergaard, L.; Schou, M.; Kjaergaard, J.; Moller, J.E.; Hassager, C.; Torp-Pedersen, C.; et al. Prognosis of myocardial infarction-related cardiogenic shock according to preadmission out-of-hospital cardiac arrest. Resuscitation 2021, 162, 135–142. [Google Scholar] [CrossRef]
- Myat, A.; Song, K.J.; Rea, T. Out-of-hospital cardiac arrest: Current concepts. Lancet 2018, 391, 970–979. [Google Scholar] [CrossRef]
- Hawkes, C.; Booth, S.; Ji, C.; Brace-McDonnell, S.J.; Whittington, A.; Mapstone, J.; Cooke, M.W.; Deakin, C.D.; Gale, C.P.; Fothergill, R.; et al. Epidemiology and outcomes from out-of-hospital cardiac arrests in England. Resuscitation 2017, 110, 133–140. [Google Scholar] [CrossRef] [Green Version]
- Tirkkonen, J.; Hellevuo, H.; Olkkola, K.T.; Hoppu, S. Aetiology of in-hospital cardiac arrest on general wards. Resuscitation 2016, 107, 19–24. [Google Scholar] [CrossRef] [Green Version]
- Wallmuller, C.; Meron, G.; Kurkciyan, I.; Schober, A.; Stratil, P.; Sterz, F. Causes of in-hospital cardiac arrest and influence on outcome. Resuscitation 2012, 83, 1206–1211. [Google Scholar] [CrossRef]
- Allencherril, J.; Lee, P.Y.K.; Khan, K.; Loya, A.; Pally, A. Etiologies of In-hospital cardiac arrest: A systematic review and meta-analysis. Resuscitation 2022, 175, 88–95. [Google Scholar] [CrossRef]
- Behnes, M.; Mashayekhi, K.; Borggrefe, M.; Akin, I. Coronary artery disease: Interventional and operative therapeutic options after cardiac arrest. Herz 2017, 42, 138–150. [Google Scholar] [CrossRef]
- Grasner, J.T.; Herlitz, J.; Tjelmeland, I.B.M.; Wnent, J.; Masterson, S.; Lilja, G.; Bein, B.; Bottiger, B.W.; Rosell-Ortiz, F.; Nolan, J.P.; et al. European Resuscitation Council Guidelines 2021: Epidemiology of cardiac arrest in Europe. Resuscitation 2021, 161, 61–79. [Google Scholar] [CrossRef]
- Perkins, G.D.; Graesner, J.T.; Semeraro, F.; Olasveengen, T.; Soar, J.; Lott, C.; Van de Voorde, P.; Madar, J.; Zideman, D.; Mentzelopoulos, S.; et al. European Resuscitation Council Guidelines 2021: Executive summary. Resuscitation 2021, 161, 1–60. [Google Scholar] [CrossRef] [PubMed]
- Chou, T.H.; Fang, C.C.; Yen, Z.S.; Lee, C.C.; Chen, Y.S.; Ko, W.J.; Wang, C.H.; Wang, S.S.; Chen, S.C. An observational study of extracorporeal CPR for in-hospital cardiac arrest secondary to myocardial infarction. Emerg. Med. J. 2014, 31, 441–447. [Google Scholar] [CrossRef] [PubMed]
- Desch, S.; Freund, A.; Akin, I.; Behnes, M.; Preusch, M.R.; Zelniker, T.A.; Skurk, C.; Landmesser, U.; Graf, T.; Eitel, I.; et al. Angiography after Out-of-Hospital Cardiac Arrest without ST-Segment Elevation. N. Engl. J. Med. 2021, 385, 2544–2553. [Google Scholar] [CrossRef] [PubMed]
- Zeymer, U.; Bueno, H.; Granger, C.B.; Hochman, J.; Huber, K.; Lettino, M.; Price, S.; Schiele, F.; Tubaro, M.; Vranckx, P.; et al. Acute Cardiovascular Care Association position statement for the diagnosis and treatment of patients with acute myocardial infarction complicated by cardiogenic shock: A document of the Acute Cardiovascular Care Association of the European Society of Cardiology. Eur. Heart J. Acute Cardiovasc. Care 2020, 9, 183–197. [Google Scholar] [CrossRef] [Green Version]
- Collet, J.P.; Thiele, H.; Barbato, E.; Barthelemy, O.; Bauersachs, J.; Bhatt, D.L.; Dendale, P.; Dorobantu, M.; Edvardsen, T.; Folliguet, T.; et al. 2020 ESC Guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation. Eur. Heart J. 2021, 42, 1289–1367. [Google Scholar] [CrossRef]
- Ibanez, B.; James, S.; Agewall, S.; Antunes, M.J.; Bucciarelli-Ducci, C.; Bueno, H.; Caforio, A.L.P.; Crea, F.; Goudevenos, J.A.; Halvorsen, S.; et al. 2017 ESC Guidelines for the management of acute myocardial infarction in patients presenting with ST-segment elevation: The Task Force for the management of acute myocardial infarction in patients presenting with ST-segment elevation of the European Society of Cardiology (ESC). Eur. Heart J. 2018, 39, 119–177. [Google Scholar] [CrossRef] [Green Version]
- Thygesen, K.; Alpert, J.S.; Jaffe, A.S.; Chaitman, B.R.; Bax, J.J.; Morrow, D.A.; White, H.D.; Executive Group on behalf of the Joint European Society of Cardiology /American College of Cardiology /American Heart Association /World Heart Federation Task Force for the Universal Definition of Myocardial Infarction. Fourth Universal Definition of Myocardial Infarction (2018). J. Am. Coll. Cardiol. 2018, 72, 2231–2264. [Google Scholar] [CrossRef]
- Peberdy, M.A.; Kaye, W.; Ornato, J.P.; Larkin, G.L.; Nadkarni, V.; Mancini, M.E.; Berg, R.A.; Nichol, G.; Lane-Trultt, T. Cardiopulmonary resuscitation of adults in the hospital: A report of 14720 cardiac arrests from the National Registry of Cardiopulmonary Resuscitation. Resuscitation 2003, 58, 297–308. [Google Scholar] [CrossRef]
- Hodgetts, T.J.; Kenward, G.; Vlackonikolis, I.; Payne, S.; Castle, N.; Crouch, R.; Ineson, N.; Shaikh, L. Incidence, location and reasons for avoidable in-hospital cardiac arrest in a district general hospital. Resuscitation 2002, 54, 115–123. [Google Scholar] [CrossRef]
- Grasner, J.T.; Wnent, J.; Herlitz, J.; Perkins, G.D.; Lefering, R.; Tjelmeland, I.; Koster, R.W.; Masterson, S.; Rossell-Ortiz, F.; Maurer, H.; et al. Survival after out-of-hospital cardiac arrest in Europe—Results of the EuReCa TWO study. Resuscitation 2020, 148, 218–226. [Google Scholar] [CrossRef] [PubMed]
- Hessulf, F.; Karlsson, T.; Lundgren, P.; Aune, S.; Stromsoe, A.; Sodersved Kallestedt, M.L.; Djarv, T.; Herlitz, J.; Engdahl, J. Factors of importance to 30-day survival after in-hospital cardiac arrest in Sweden—A population-based register study of more than 18,000 cases. Int. J. Cardiol. 2018, 255, 237–242. [Google Scholar] [CrossRef] [PubMed]
- Adielsson, A.; Karlsson, T.; Aune, S.; Lundin, S.; Hirlekar, G.; Herlitz, J.; Ravn-Fischer, A. A 20-year perspective of in hospital cardiac arrest: Experiences from a university hospital with focus on wards with and without monitoring facilities. Int. J. Cardiol. 2016, 216, 194–199. [Google Scholar] [CrossRef] [PubMed]
- Jentzer, J.C.; Henry, T.D.; Barsness, G.W.; Menon, V.; Baran, D.A.; Van Diepen, S. Influence of cardiac arrest and SCAI shock stage on cardiac intensive care unit mortality. Catheter. Cardiovasc. Interv. 2020, 96, 1350–1359. [Google Scholar] [CrossRef]
- Muller, J.; Behnes, M.; Schupp, T.; Reiser, L.; Taton, G.; Reichelt, T.; Ellguth, D.; Borggrefe, M.; Engelke, N.; Bollow, A.; et al. Clinical outcome of out-of-hospital vs. in-hospital cardiac arrest survivors presenting with ventricular tachyarrhythmias. Heart Vessel. 2022, 37, 828–839. [Google Scholar] [CrossRef]
- El Farissi, M.; Keulards, D.C.J.; Zelis, J.M.; van’t Veer, M.; Zimmermann, F.M.; Pijls, N.H.J.; Otterspoor, L.C. Hypothermia for Reduction of Myocardial Reperfusion Injury in Acute Myocardial Infarction: Closing the Translational Gap. Circ. Cardiovasc. Interv. 2021, 14, e010326. [Google Scholar] [CrossRef]
- Beom, J.H.; Kim, J.H.; Seo, J.; Lee, J.H.; Chung, Y.E.; Chung, H.S.; Chung, S.P.; Kim, C.H.; You, J.S. Targeted temperature management at 33 degrees C or 36 °C induces equivalent myocardial protection by inhibiting HMGB1 release in myocardial ischemia/reperfusion injury. PLoS ONE 2021, 16, e0246066. [Google Scholar] [CrossRef]
- Erlinge, D.; Gotberg, M.; Grines, C.; Dixon, S.; Baran, K.; Kandzari, D.; Olivecrona, G.K. A pooled analysis of the effect of endovascular cooling on infarct size in patients with ST-elevation myocardial infarction. EuroIntervention 2013, 8, 1435–1440. [Google Scholar] [CrossRef]
- Tissier, R.; Couvreur, N.; Ghaleh, B.; Bruneval, P.; Lidouren, F.; Morin, D.; Zini, R.; Bize, A.; Chenoune, M.; Belair, M.F.; et al. Rapid cooling preserves the ischaemic myocardium against mitochondrial damage and left ventricular dysfunction. Cardiovasc. Res. 2009, 83, 345–353. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gambert, S.; Bes-Houtmann, S.; Vandroux, D.; Tissier, C.; Vergely-Vandriesse, C.; Rochette, L.; Athias, P. Deep hypothermia during ischemia improves functional recovery and reduces free-radical generation in isolated reperfused rat heart. J. Heart Lung Transplant. 2004, 23, 487–491. [Google Scholar] [CrossRef] [PubMed]
All Patients (n = 151) | IHCA (n = 47) | OHCA (n = 104) | p-Value | ||||
---|---|---|---|---|---|---|---|
Age, median; (IQR) | 69 | (58–78) | 74 | (60–78) | 67 | (58–78) | 0.101 |
Male sex, n (%) | 98 | (64.9) | 23 | (48.9) | 75 | (72.1) | 0.006 |
Body mass index, kg/m2 (median, (IQR)) | 26.65 | (24.20–30.40) | 27.10 | (24.20–31.13) | 26.25 | (24.23–29.88) | 0.530 |
Physiologic parameters (median, (IQR)) | |||||||
Body temperature (°C) | 35.4 | (34.3–36.3) | 36.1 | (35.0–36.9) | 35.2 | (34.0–36.2) | 0.003 |
Heart rate (bpm) | 86 | (72–108) | 92 | (80–112) | 84 | (71–106) | 0.149 |
Systolic blood pressure (mmHg) | 110 | (95–131) | 100 | (81–120) | 114 | (98–136) | 0.002 |
Respiratory rate (breaths/min) | 19 | (16–22) | 19 | (17–24) | 19 | (16–22) | 0.686 |
Cardiovascular risk factors, n (%) | |||||||
Arterial hypertension | 97 | (64.2) | 32 | (68.1) | 65 | (62.5) | 0.507 |
Diabetes mellitus | 51 | (34.0) | 22 | (46.8) | 29 | (28.2) | 0.025 |
Hyperlipidemia | 65 | (43.0) | 24 | (51.1) | 41 | (39.4) | 0.181 |
Smoking | 50 | (33.1) | 19 | (40.4) | 31 | (29.8) | 0.199 |
Prior medical history, n (%) | |||||||
Coronary artery disease | 49 | (32.5) | 18 | (28.3) | 31 | (29.8) | 0.683 |
Congestive heart failure | 37 | (24.5) | 18 | (38.3) | 19 | (18.3) | 0.008 |
Atrial fibrillation | 33 | (21.9) | 12 | (25.5) | 21 | (20.2) | 0.462 |
Chronic kidney disease | 37 | (24.5) | 20 | (42.6) | 17 | (16.3) | 0.001 |
Stroke | 15 | (9.9) | 10 | (21.3) | 5 | (4.8) | 0.002 |
COPD | 27 | (17.9) | 8 | (17) | 19 | (18.3) | 0.853 |
Liver cirrhosis | 3 | (2.0) | 1 | (2.1) | 2 | (1.9) | 0.934 |
Medication on admission, n (%) | |||||||
ACE-inhibitor | 43 | (33.1) | 14 | (33.3) | 29 | (33.0) | 0.966 |
ARB | 21 | (16.0) | 8 | (19.0) | 13 | (14.6) | 0.518 |
Beta blocker | 57 | (43.8) | 23 | (54.8) | 34 | (38.6) | 0.083 |
ARNI | 3 | (2.3) | 1 | (2.4) | 2 | (2.2) | 0.962 |
Aldosterone antagonist | 18 | (13.8) | 4 | (9.5) | 14 | (15.9) | 0.324 |
Diuretics | 48 | (36.4) | 20 | (47.6) | 28 | (31.1) | 0.066 |
ASA | 32 | (21.2) | 13 | (27.7) | 19 | (18.3) | 0.191 |
P2Y12 inhibitor | 11 | (7.3) | 4 | (8.5) | 7 | (6.7) | 0.697 |
Statin | 51 | (38.9) | 19 | (45.2) | 32 | (36.0) | 0.309 |
All Patients (n = 151) | IHCA (n = 47) | OHCA (n = 104) | p-Value | ||||
---|---|---|---|---|---|---|---|
Cause of CS, n (%) | |||||||
Acute myocardial infarction | 90 | (59.6) | 30 | (63.8) | 60 | (57.7) | |
Arrhythmic | 16 | (10.6) | 4 | (8.5) | 12 | (11.5) | |
ADHF | 25 | (16.6) | 8 | (17.0) | 17 | (16.3) | |
Pulmonary embolism | 11 | (7.3) | 2 | (4.3) | 9 | (8.7) | 0.905 |
Vitium | 2 | (1.3) | 1 | (2.1) | 1 | (1.0) | |
Cardiomyopathy | 6 | (4.0) | 2 | (4.3) | 4 | (3.8) | |
Aortic dissection | 1 | (0.7) | 0 | (0.0) | 1 | (1.0) | |
Classification of CS, n (%) | |||||||
Stage A | 0 | (0.0) | 0 | (0.0) | 0 | (0.0) | - |
Stage B | 0 | (0.0) | 0 | (0.0) | 0 | (0.0) | |
Stage C | 0 | (0.0) | 0 | (0.0) | 0 | (0.0) | |
Stage D | 0 | (0.0) | 0 | (0.0) | 0 | (0.0) | |
Stage E | 151 | (100.0) | 47 | (100.0) | 104 | (100.0) | |
Transthoracic echocardiography | |||||||
LVEF >55%, (n, %) | 15 | (9.9) | 7 | (14.9) | 8 | (7.7) | |
LVEF 54–41%, (n, %) | 12 | (7.9) | 1 | (2.1) | 11 | (10.6) | |
LVEF 40–30%, (n, %) | 34 | (22.5) | 9 | (19.1) | 25 | (24.0) | 0.242 |
LVEF <30%, (n, %) | 72 | (47.7) | 25 | (53.2) | 47 | (45.2) | |
LVEF not documented, (n, %) | 18 | (11.9) | 5 | (10.6) | 13 | (12.5) | |
VCI, cm (median, (IQR)) | 1.8 | (1.5–2.2) | 2.0 | (1.8–2.3) | 1.8 | (1.5–2.2) | 0.248 |
TAPSE, mm (median, (IQR)) | 17 | (14–23) | 19 | (13–23) | 17 | (14–21) | 0.754 |
Baseline laboratory values (median, (IQR)) | |||||||
pH | 7.26 | (7.15–7.34) | 7.29 | (7.16–7.36) | 7.25 | (7.15–7.34) | 0.400 |
Lactate (mmol/L) | 4.0 | (2.2–9.4) | 4.4 | (1.6–10.4) | 3.8 | (2.2–8.8) | 0.871 |
Sodium (mmol/L) | 139 | (136–141) | 139 | (135–143) | 139 | (136–140) | 0.684 |
Potassium (mmol/L) | 4.2 | (3.6–4.6) | 4.2 | (3.8–4.7) | 4.2 | (3.5–4.6) | 0.595 |
Creatinine (mg/dL) | 1.44 | (1.11–1.86) | 1.49 | (1.03–2.48) | 1.41 | (1.18–1.76) | 0.471 |
Hemoglobin (g/dL) | 13 | (11.2–14.3) | 12.1 | (10.3–13.8) | 13.2 | (11.5–14.4) | 0.206 |
WBC (106/mL) | 16.19 | (12.22–20.58) | 15.56 | (12.19–19.66) | 16.39 | (12.31–21.81) | 0.475 |
Platelets (106/mL) | 227 | (176–274) | 231 | (179–265) | 225 | (175–276) | 0.830 |
INR | 1.18 | (1.08–1.41) | 1.31 | (1.08–1.58) | 1.17 | (1.08–1.35) | 0.151 |
D-dimer (mg/L) | 19.17 | (8.55–32.00) | 3.16 | (1.15–10.50) | 24.18 | (14.28–32.00) | 0.001 |
AST (U/L) | 167 | (79–478) | 109 | (40–770) | 167 | (110–416) | 0.742 |
ALT (U/L) | 111 | (58–233) | 85 | (29–362) | 115 | (71–202) | 0.530 |
Bilirubin (mg/dL) | 0.63 | (0.45–0.92) | 0.78 | (0.54–1.17) | 0.61 | (0.41–0.79) | 0.027 |
Troponin I (µg/L) | 0.895 | (0.191–5.912) | 1.470 | (0.178–20.709) | 0.731 | (0.201–5.047) | 0.333 |
NT-pro BNP (pg/mL) | 1122 | (328–8695) | 5486 | (166–15834) | 1047 | (339–4462) | 0.186 |
Procalcitonin (ng/mL) | 0.26 | (0.07–1.05) | 0.33 | (0.10–1.23) | 0.23 | (0.06–1.22) | 0.789 |
CRP (mg/L) | 5 | (4–27) | 21 | (5–58) | 4 | (4–19) | 0.001 |
Primary endpoint | |||||||
All-cause mortality at 30 days, n (%) | 101 | (66.9) | 34 | (72.3) | 67 | (64.4) | 0.338 |
Cause of death, n (%) | |||||||
| 66 | (43.7) | 29 | (61.7) | 37 | (35.6) | 1.000 |
| 21 | (13.9) | 3 | (6.4) | 18 | (17.3) | |
| 6 | (4.0) | 0 | (0.0) | 6 | (5.8) | |
| 9 | (5.9) | 2 | (4.3) | 7 | (6.7) | |
Follow-up data, n (%) | |||||||
ICU time, days (median, (IQR)) | 4 | (2–9) | 2 | (1–6) | 6 | (2–10) | 0.001 |
Death ICU, n (%) | 100 | (66.2) | 33 | (70.2) | 67 | (64.4) | 0.486 |
All Patients (n = 151) | IHCA (n = 47) | OHCA (n = 104) | p-Value | ||||
---|---|---|---|---|---|---|---|
Cardiopulmonary resuscitation | |||||||
OHCA, n (%) | 104 | (68.9) | 0 | (0.0) | 104 | (100.0) | 0.001 |
IHCA, n (%) | 47 | (31.1) | 47 | (100.0) | 0 | (0.0) | |
Shockable rhythm, n (%) | 73 | (49.0) | 33 | (71.7) | 40 | (38.8) | 0.001 |
Non-shockable rhythm, n (%) | 76 | (51.0) | 13 | (28.3) | 63 | (61.2) | |
No-flow time, min (median, IQR) | 0 | (0–7) | |||||
Low-flow time, min (median, IQR) | 5 | (0–9) | 0 | (0–0) | 6 | (1–9) | 0.062 |
Epinephrine, mg (median, IQR) | 2 | (1–6) | 1 | (1–6) | 3 | (1–7) | 0.228 |
ROSC, min (median, IQR) | 15 | (10–27) | 10 | (5–22) | 15 | (10–29) | 0.017 |
TTM, n (%) | 69 | (45.7) | 6 | (12.8) | 63 | (60.6) | 0.001 |
Coronary status | |||||||
Coronary angiography, n (%) | 84 | (55.6) | 29 | (61.7) | 55 | (52.9) | 0.466 |
Time from CS onset to coronary angiography, min (median, IQR) | 135 | (86–291) | 262 | (73–628) | 121 | (86–169) | 0.029 |
Patients with culprit lesion, n (%) | 85 | (56.3) | 30 | (63.8) | 55 | (52.9) | 0.211 |
| 6 | (3.9) | 3 | (6.4) | 3 | (2.9) | 0.402 |
| 39 | (25.8) | 13 | (27.7) | 26 | (25.0) | |
| 16 | (10.6) | 4 | (8.5) | 12 | (11.5) | |
| 20 | (13.3) | 8 | (17.0) | 12 | (11.5) | |
| 2 | (1.3) | 1 | (2.1) | 1 | (0.9) | |
| 1 | (0.7) | 0 | (0) | 1 | (0.9) | |
Respiratory status | |||||||
Mechanical ventilation, n (%) | 127 | (87.6) | 29 | (67.4) | 98 | (96.1) | 0.001 |
Duration of mechanical ventilation, days, (mean, (IQR)) | 3 | (1–7) | 2 | (1–2) | 5 | (2–9) | 0.001 |
PaO2/FiO2 ratio on admission, (median, (IQR)) | 194 | (118–319) | 197 | (114–302) | 192 | (120–331) | 0.668 |
PaO2 on admission, mmHg (median, (IQR)) | 108 | (77–187) | 92 | (75–174) | 112 | (79–201) | 0.240 |
PaCO2 on admission, mmHg (median, (IQR)) | 45 | (36–52) | 39 | (34–47) | 46 | (38–54) | 0.018 |
Cardiovascular support during ICU | |||||||
Dosis norepinephrine on admission, µg/kg/min (median, IQR) | 0.2 | (0.1–0.6) | 0.2 | (0.0–0.8) | 0.1 | (0.1–0.3) | 0.837 |
Dobutamine, µg/kg/min (median, IQR) | 4.0 | (3.0–6.0) | 4.0 | (3.0–6-0) | 4.0 | (2.5–6.0) | 0.850 |
Time to administration of dobutamine, days (median, IQR) | 3 | (0–6) | 5 | (0–7) | 2 | (0–5) | 0.316 |
Levosimendan, n (%) | 33 | (22) | 11 | (23.4) | 22 | (21.2) | 0.679 |
Time to administration of levosimendan, days (median, IQR) | 2 | (1–3) | 1 | (1–2) | 2 | (2–3) | 0.007 |
Mechanical circulatory assist device, n (%) | 22 | (14.6) | 9 | (19.1) | 13 | (12.5) | 0.284 |
| 20 | (13.2) | 8 | (17.0) | 12 | (11.5) | 0.359 |
| 4 | (3.6) | 2 | (4.3) | 2 | (1.9) | 0.410 |
| 2 | (1.3) | 1 | (2.1) | 1 | (0.9) | 0.280 |
Duration of mechanical circulatory assist device, min (median, IQR) | 3 | (1–5) | 1 | (1–4) | 3 | (2–5) | 0.118 |
Dialysis support during ICU | |||||||
CRRT, n (%) | 43 | (28.5) | 13 | (27.7) | 29 | (27.9) | 0.746 |
Duration of CRRT, h (median, IQR) | 42 | (16–83) | 16 | (10–27) | 70 | (31–108) | 0.008 |
Variables | Univariate | Multivariate | ||||
---|---|---|---|---|---|---|
HR | 95% CI | p-Value | HR | 95% CI | p-Value | |
Age | 1.013 | 0.998–1.027 | 0.091 | 1.004 | 0.987–1.021 | 0.624 |
BMI | 1.036 | 0.990–1.084 | 0.127 | 1.027 | 0.967–1.091 | 0.380 |
Heart rate > 110 bpm | 1.936 | 1.207–3.105 | 0.006 | 1.367 | 0.797–2.347 | 0.256 |
Respiratory rate ≥ 22/min | 1.634 | 1.056–2.529 | 0.028 | 1.070 | 0.639–1.792 | 0.796 |
WBC (106/mL) | 1.011 | 0.979–1.045 | 0.509 | 1.023 | 0.983–1.065 | 0.256 |
Platelets (106/mL) | 0.998 | 0.996–1.000 | 0.109 | 0.996 | 0.993–1.000 | 0.040 |
cTNI (µg/L) | 1.002 | 1.000–1.003 | 0.008 | 1.001 | 1.000–1.003 | 0.045 |
Creatinine (mg/dL) | 1.189 | 1.027–1.377 | 0.021 | 1.127 | 0.949–1.338 | 0.173 |
IHCA | 1.480 | 0.977–2.241 | 0.064 | 1.794 | 1.053–3.056 | 0.031 |
Variables | Non-AMI | AMI | ||||
---|---|---|---|---|---|---|
HR | 95% CI | p-Value | HR | 95% CI | p-Value | |
Age | 1.016 | 0.984–1.049 | 0.322 | 0.997 | 0.976–1.019 | 0.807 |
BMI | 0.993 | 0.905–1.090 | 0.879 | 1.060 | 0.969–1.159 | 0.203 |
Heart rate > 110 bpm | 0.428 | 0.150–1.226 | 0.114 | 1.959 | 0.985–3.895 | 0.055 |
Respiratory rate ≥ 22/min | 1.891 | 0.782–4.574 | 0.157 | 0.864 | 0.442–1.691 | 0.670 |
WBC (106/mL) | 1.100 | 1.023–1.183 | 0.010 | 0.976 | 0.922–1.034 | 0.415 |
Platelets (106/mL) | 0.991 | 0.985–0.998 | 0.014 | 0.998 | 0.994–1.002 | 0.332 |
cTNI (µg/L) | 1.033 | 0.977–1.092 | 0.253 | 1.002 | 1.000–1.003 | 0.070 |
Creatinine (mg/dL) | 1.119 | 0.735–1.704 | 0.600 | 1.151 | 0.945–1.401 | 0.161 |
IHCA | 2.480 | 0.725–8.489 | 0.148 | 2.477 | 1.258–4.879 | 0.009 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rusnak, J.; Schupp, T.; Weidner, K.; Ruka, M.; Egner-Walter, S.; Forner, J.; Bertsch, T.; Kittel, M.; Mashayekhi, K.; Tajti, P.; et al. Differences in Outcome of Patients with Cardiogenic Shock Associated with In-Hospital or Out-of-Hospital Cardiac Arrest. J. Clin. Med. 2023, 12, 2064. https://doi.org/10.3390/jcm12052064
Rusnak J, Schupp T, Weidner K, Ruka M, Egner-Walter S, Forner J, Bertsch T, Kittel M, Mashayekhi K, Tajti P, et al. Differences in Outcome of Patients with Cardiogenic Shock Associated with In-Hospital or Out-of-Hospital Cardiac Arrest. Journal of Clinical Medicine. 2023; 12(5):2064. https://doi.org/10.3390/jcm12052064
Chicago/Turabian StyleRusnak, Jonas, Tobias Schupp, Kathrin Weidner, Marinela Ruka, Sascha Egner-Walter, Jan Forner, Thomas Bertsch, Maximilian Kittel, Kambis Mashayekhi, Péter Tajti, and et al. 2023. "Differences in Outcome of Patients with Cardiogenic Shock Associated with In-Hospital or Out-of-Hospital Cardiac Arrest" Journal of Clinical Medicine 12, no. 5: 2064. https://doi.org/10.3390/jcm12052064
APA StyleRusnak, J., Schupp, T., Weidner, K., Ruka, M., Egner-Walter, S., Forner, J., Bertsch, T., Kittel, M., Mashayekhi, K., Tajti, P., Ayoub, M., Behnes, M., & Akin, I. (2023). Differences in Outcome of Patients with Cardiogenic Shock Associated with In-Hospital or Out-of-Hospital Cardiac Arrest. Journal of Clinical Medicine, 12(5), 2064. https://doi.org/10.3390/jcm12052064