The Role of High-Sensitivity Troponin T Regarding Prognosis and Cardiovascular Outcome across Heart Failure Spectrum
Abstract
:1. Introduction
2. Methods
Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- McDonagh, T.A.; Metra, M.; Adamo, M.; Gardner, R.S.; Baumbach, A.; Böhm, M.; Burri, H.; Butler, J.; Čelutkienė, J.; Chioncel, O.; et al. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur. Heart J. 2021, 42, 3599–3726. [Google Scholar] [CrossRef] [PubMed]
- Writing Committee; Maddox, T.M.; Januzzi, J.L., Jr.; Allen, L.A.; Breathett, K.; Butler, J.; Davis, L.L.; Fonarow, G.C.; Ibrahim, N.E.; Lindenfeld, J.; et al. 2021 Update to the 2017 ACC Expert Consensus Decision Pathway for Optimization of Heart Failure Treatment: Answers to 10 Pivotal Issues about Heart Failure with Reduced Ejection Fraction: A Report of the American College of Cardiology Solution Set Oversight Committee. J. Am. Coll. Cardiol. 2021, 77, 772–810. [Google Scholar] [CrossRef] [PubMed]
- Tsao, C.W.; Lyass, A.; Enserro, D.; Larson, M.G.; Ho, J.E.; Kizer, J.R.; Gottdiener, J.S.; Psaty, B.M.; Vasan, R.S. Temporal trends in the incidence of and mortality associated with heart failure with preserved and reduced ejection fraction. JACC Heart Fail. 2018, 6, 678–685. [Google Scholar] [CrossRef] [PubMed]
- Greene, S.J.; Bauersachs, J.; Brugts, J.J.; Ezekowitz, J.A.; Lam, C.S.P.; Lund, L.H.; Ponikowski, P.; Voors, A.A.; Zannad, F.; Zieroth, S.; et al. Worsening Heart Failure: Nomenclature, Epidemiology, and Future Directions: JACC Review Topic of the Week. J. Am. Coll. Cardiol. 2023, 81, 413–424. [Google Scholar] [CrossRef] [PubMed]
- D’Amato, A.; Prosperi, S.; Severino, P.; Myftari, V.; Labbro Francia, A.; Cestiè, C.; Pierucci, N.; Marek-Iannucci, S.; Mariani, M.V.; Germanò, R.; et al. Current Approaches to Worsening Heart Failure: Pathophysiological and Molecular Insights. Int. J. Mol. Sci. 2024, 25, 1574. [Google Scholar] [CrossRef] [PubMed]
- Tsutsui, H.; Albert, N.M.; Coats, A.J.S.; Anker, S.D.; Bayes-Genis, A.; Butler, J.; Chioncel, O.; Defilippi, C.R.; Drazner, M.H.; Felker, G.M.; et al. Natriuretic Peptides: Role in the Diagnosis and Management of Heart Failure: A Scientific Statement from the Heart Failure Association of the European Society of Cardiology, Heart Failure Society of America and Japanese Heart Failure Society. J. Card. Fail. 2023, 29, 787–804. [Google Scholar] [CrossRef] [PubMed]
- Logeart, D.; Thabut, G.; Jourdain, P.; Chavelas, C.; Beyne, P.; Beauvais, F.; Bouvier, E.; Solal, A.C. Predischarge B-type natriuretic peptide assay for identifying patients at high risk of re-admission after decompensated heart failure. J. Am. Coll. Cardiol. 2004, 43, 635–641. [Google Scholar] [CrossRef] [PubMed]
- Kociol, R.D.; Horton, J.R.; Fonarow, G.C.; Reyes, E.M.; Shaw, L.K.; O’Connor, C.M.; Felker, G.M.; Hernandez, A.F. Admission, discharge, or change in B-type natriuretic peptide and long-term outcomes: Data from Organized Program to Initiate Lifesaving Treatment in Hospitalized Patients with Heart Failure (OPTIMIZE-HF) linked to Medicare claims. Circ. Heart Fail. 2011, 4, 628–636. [Google Scholar] [CrossRef] [PubMed]
- Ezekowitz, J.A.; Alemayehu, W.; Rathwell, S.; Grant, A.D.; Fiuzat, M.; Whellan, D.J.; Ahmad, T.; Adams, K.; Piña, I.L.; Cooper, L.S.; et al. The influence of comorbidities on achieving an N-terminal pro-b-type natriuretic peptide target: A secondary analysis of the GUIDE-IT trial. ESC Heart Fail. 2022, 9, 77–86. [Google Scholar] [CrossRef]
- Del Carlo, C.H.; O’Connor, C.M. Cardiac troponins in congestive heart failure. Am. Heart J. 1999, 138 Pt 1, 646–653. [Google Scholar] [CrossRef]
- Garg, P.; Morris, P.; Fazlanie, A.L.; Vijayan, S.; Dancso, B.; Dastidar, A.G.; Plein, S.; Mueller, C.; Haaf, P. Cardiac biomarkers of acute coronary syndrome: From history to high-sensitivity cardiac troponin. Intern. Emerg. Med. 2017, 12, 147–155. [Google Scholar] [CrossRef] [PubMed]
- Chauin, A. The Main Causes and Mechanisms of Increase in Cardiac Troponin Concentrations Other than Acute Myocardial Infarction (Part 1): Physical Exertion, Inflammatory Heart Disease, Pulmonary Embolism, Renal Failure, Sepsis. Vasc. Health Risk Manag. 2021, 17, 601–617. [Google Scholar] [CrossRef]
- Sandoval, Y.; Apple, F.S.; Mahler, S.A.; Body, R.; Collinson, P.O.; Jaffe, A.S.; International Federation of Clinical Chemistry and Laboratory Medicine Committee on the Clinical Application of Cardiac Biomarkers. High-Sensitivity Cardiac Troponin and the 2021 AHA/ACC/ASE/CHEST/SAEM/SCCT/SCMR Guidelines for the Evaluation and Diagnosis of Acute Chest Pain. Circulation 2022, 146, 569–581. [Google Scholar] [CrossRef]
- Sato, Y.; Yamada, T.; Taniguchi, R.; Nagai, K.; Makiyama, T.; Okada, H.; Kataoka, K.; Ito, H.; Matsumori, A.; Sasayama, S.; et al. Persistently increased serum concentrations of cardiac troponin t in patients with idiopathic dilated cardiomyopathy are predictive of adverse outcomes. Circulation 2001, 103, 369–374. [Google Scholar] [CrossRef] [PubMed]
- Setsuta, K.; Seino, Y.; Ogawa, T.; Arao, M.; Miyatake, Y.; Takano, T. Use of cytosolic and myofibril markers in the detection of ongoing myocardial damage in patients with chronic heart failure. Am. J. Med. 2002, 113, 717–722. [Google Scholar] [CrossRef] [PubMed]
- Kociol, R.D.; Pang, P.S.; Gheorghiade, M.; Fonarow, G.C.; O’Connor, C.M.; Felker, G.M. Troponin elevation in heart failure prevalence, mechanisms, and clinical implications. J. Am. Coll. Cardiol. 2010, 56, 1071–1078. [Google Scholar] [CrossRef]
- Castiglione, V.; Aimo, A.; Vergaro, G.; Saccaro, L.; Passino, C.; Emdin, M. Biomarkers for the diagnosis and management of heart failure. Heart Fail. Rev. 2022, 27, 625–643. [Google Scholar] [CrossRef]
- Lazar, D.R.; Lazar, F.L.; Homorodean, C.; Cainap, C.; Focsan, M.; Cainap, S.; Olinic, D.M. High-Sensitivity Troponin: A Review on Characteristics, Assessment, and Clinical Implications. Dis. Markers 2022, 2022, 9713326. [Google Scholar] [CrossRef]
- Latini, R.; Masson, S.; Anand, I.S.; Missov, E.; Carlson, M.; Vago, T.; Angelici, L.; Barlera, S.; Parrinello, G.; Maggioni, A.P.; et al. Prognostic value of very low plasma concentrations of troponin T in patients with stable chronic heart failure. Circulation 2007, 116, 1242–1249. [Google Scholar] [CrossRef]
- You, J.J.; Austin, P.C.; Alter, D.A.; Ko, D.T.; Tu, J.V. Relation between cardiac troponin I and mortality in acute decompensated heart failure. Am. Heart J. 2007, 153, 462–470. [Google Scholar] [CrossRef]
- Myhre, P.L.; O’Meara, E.; Claggett, B.L.; de Denus, S.; Jarolim, P.; Anand, I.S.; Beldhuis, I.E.; Fleg, J.L.; Lewis, E.; Pitt, B.; et al. Cardiac Troponin I and Risk of Cardiac Events in Patients with Heart Failure and Preserved Ejection Fraction. Circ. Heart Fail. 2018, 11, e005312. [Google Scholar] [CrossRef] [PubMed]
- Yan, I.; Börschel, C.S.; Neumann, J.T.; Sprünker, N.A.; Makarova, N.; Kontto, J.; Kuulasmaa, K.; Salomaa, V.; Magnussen, C.; Iacoviello, L.; et al. High-Sensitivity Cardiac Troponin I Levels and Prediction of Heart Failure: Results from the BiomarCaRE Consortium. JACC Heart Fail. 2020, 8, 401–411. [Google Scholar] [CrossRef] [PubMed]
- Stelzle, D.; Shah, A.S.V.; Anand, A.; Strachan, F.E.; Chapman, A.R.; Denvir, M.A.; Mills, N.L.; McAllister, D.A. High-sensitivity cardiac troponin I and risk of heart failure in patients with suspected acute coronary syndrome: A cohort study. Eur. Heart J. Qual. Care Clin. Outcomes 2018, 4, 36–42. [Google Scholar] [CrossRef] [PubMed]
- Del Carlo, C.H.; Pereira-Barretto, A.C.; Cassaro-Strunz, C.; Latorre, M.d.R.; Ramires, J.A. Serial measure of cardiac troponin T levels for prediction of clinical events in decompensated heart failure. J. Card. Fail. 2004, 10, 43–48. [Google Scholar] [CrossRef] [PubMed]
- Aimo, A.; Januzzi, J.L., Jr.; Vergaro, G.; Ripoli, A.; Latini, R.; Masson, S.; Magnoli, M.; Anand, I.S.; Cohn, J.N.; Tavazzi, L.; et al. Prognostic Value of High-Sensitivity Troponin T in Chronic Heart Failure: An Individual Patient Data Meta-Analysis. Circulation 2018, 137, 286–297. [Google Scholar] [CrossRef] [PubMed]
- Masson, S.; Anand, I.; Favero, C.; Barlera, S.; Vago, T.; Bertocchi, F.; Maggioni, A.P.; Tavazzi, L.; Tognoni, G.; Cohn, J.N.; et al. Serial measurement of cardiac troponin T using a highly sensitive assay in patients with chronic heart failure: Data from 2 large randomized clinical trials. Circulation 2012, 125, 280–288. [Google Scholar] [CrossRef] [PubMed]
- Peacock, W.F., 4th; De Marco, T.; Fonarow, G.C.; Diercks, D.; Wynne, J.; Apple, F.S.; Wu, A.H. Cardiac troponin and outcome in acute heart failure. N. Engl. J. Med. 2008, 358, 2117–2126. [Google Scholar] [CrossRef] [PubMed]
- Pandey, A.; Golwala, H.; Sheng, S.; DeVore, A.D.; Hernandez, A.F.; Bhatt, D.L.; Heidenreich, P.A.; Yancy, C.W.; de Lemos, J.A.; Fonarow, G.C. Factors Associated with and Prognostic Implications of Cardiac Troponin Elevation in Decompensated Heart Failure with Preserved Ejection Fraction: Findings from the American Heart Association Get with the Guidelines-Heart Failure Program. JAMA Cardiol. 2017, 2, 136–145. [Google Scholar] [CrossRef] [PubMed]
- Evans, J.D.W.; Dobbin, S.J.H.; Pettit, S.J.; Di Angelantonio, E.; Willeit, P. High-Sensitivity Cardiac Troponin and New-Onset Heart Failure: A Systematic Review and Meta-Analysis of 67,063 Patients with 4165 Incident Heart Failure Events. JACC Heart Fail. 2018, 6, 187–197. [Google Scholar] [CrossRef]
- Westermann, D.; Neumann, J.T.; Sörensen, N.A.; Blankenberg, S. High-sensitivity assays for troponin in patients with cardiac disease. Nat. Rev. Cardiol. 2017, 14, 472–483. [Google Scholar] [CrossRef]
- Januzzi, J.L., Jr.; Filippatos, G.; Nieminen, M.; Gheorghiade, M. Troponin elevation in patients with heart failure: On behalf of the third Universal Definition of Myocardial Infarction Global Task Force: Heart Failure Section. Eur. Heart J. 2012, 33, 2265–2271. [Google Scholar] [CrossRef]
- Miller, W.L.; Hartman, K.A.; Burritt, M.F.; Grill, D.E.; Jaffe, A.S. Profiles of serial changes in cardiac troponin T concentrations and outcome in ambulatory patients with chronic heart failure. J. Am. Coll. Cardiol. 2009, 54, 1715–1721. [Google Scholar] [CrossRef]
- Potluri, S.; Ventura, H.O.; Mulumudi, M.; Mehra, M.R. Cardiac troponin levels in heart failure. Cardiol. Rev. 2004, 12, 21–25. [Google Scholar] [CrossRef]
- Meijers, W.C.; Bayes-Genis, A.; Mebazaa, A.; Bauersachs, J.; Cleland, J.G.F.; Coats, A.J.S.; Januzzi, J.L.; Maisel, A.S.; McDonald, K.; Mueller, T.; et al. Circulating heart failure biomarkers beyond natriuretic peptides: Review from the Biomarker Study Group of the Heart Failure Association (HFA), European Society of Cardiology (ESC). Eur. J. Heart Fail. 2021, 23, 1610–1632. [Google Scholar] [CrossRef] [PubMed]
- Gherasim, L. Troponins in Heart Failure—A Perpetual Challenge. Maedica 2019, 14, 371–377. [Google Scholar] [CrossRef] [PubMed]
- Madelaire, C.; Gustafsson, F.; Stevenson, L.W.; Kristensen, S.L.; Køber, L.; Andersen, J.; D’Souza, M.; Biering-Sørensen, T.; Andersson, C.; Torp-Pedersen, C.; et al. One-Year Mortality after Intensification of Outpatient Diuretic Therapy. J. Am. Heart Assoc. 2020, 9, e016010. [Google Scholar] [CrossRef]
- Palazzuoli, A.; Beltrami, M. Are HFpEF and HFmrEF So Different? The Need to Understand Distinct Phenotypes. Front. Cardiovasc. Med. 2021, 8, 676658. [Google Scholar] [CrossRef]
- Li, P.; Zhao, H.; Zhang, J.; Ning, Y.; Tu, Y.; Xu, D.; Zeng, Q. Similarities and Differences between HFmrEF and HFpEF. Front. Cardiovasc. Med. 2021, 8, 678614. [Google Scholar] [CrossRef]
- Simmonds, S.J.; Cuijpers, I.; Heymans, S.; Jones, E.A.V. Cellular and Molecular Differences between HFpEF and HFrEF: A Step Ahead in an Improved Pathological Understanding. Cells 2020, 9, 242. [Google Scholar] [CrossRef] [PubMed]
- Streng, K.W.; Nauta, J.F.; Hillege, H.L.; Anker, S.D.; Cleland, J.G.; Dickstein, K.; Filippatos, G.; Lang, C.C.; Metra, M.; Ng, L.L.; et al. Non-cardiac comorbidities in heart failure with reduced, mid-range and preserved ejection fraction. Int. J. Cardiol. 2018, 271, 132–139. [Google Scholar] [CrossRef]
- Santas, E.; de la Espriella, R.; Palau, P.; Miñana, G.; Amiguet, M.; Sanchis, J.; Lupón, J.; Bayes-Genís, A.; Chorro, F.J.; Villota, J.N. Rehospitalization burden and morbidity risk in patients with heart failure with mid-range ejection fraction. ESC Heart Fail. 2020, 7, 1007–1014. [Google Scholar] [CrossRef] [PubMed]
- Savarese, G.; Becher, P.M.; Lund, L.H.; Seferovic, P.; Rosano, G.M.C.; Coats, A.J.S. Global burden of heart failure: A comprehensive and updated review of epidemiology. Cardiovasc. Res. 2023, 118, 3272–3287. [Google Scholar] [CrossRef] [PubMed]
- Agdashian, D.; Daniels, L.B. What Is the Clinical Utility of Cardiac Troponins in Heart Failure? Are They Modifiable beyond Their Prognostic Value? Curr. Heart Fail. Rep. 2023, 20, 33–43. [Google Scholar] [CrossRef] [PubMed]
- Severino, P.; D’Amato, A.; Prosperi, S.; Myftari, V.; Canuti, E.S.; Labbro Francia, A.; Cestiè, C.; Maestrini, V.; Lavalle, C.; Badagliacca, R.; et al. Heart Failure Pharmacological Management: Gaps and Current Perspectives. J. Clin. Med. 2023, 12, 1020. [Google Scholar] [CrossRef] [PubMed]
- Severino, P.; D’Amato, A.; Prosperi, S.; Dei Cas, A.; Mattioli, A.V.; Cevese, A.; Novo, G.; Prat, M.; Pedrinelli, R.; Raddino, R.; et al. Do the Current Guidelines for Heart Failure Diagnosis and Treatment Fit with Clinical Complexity? J. Clin. Med. 2022, 11, 857. [Google Scholar] [CrossRef] [PubMed]
- Adamo, M.; Pagnesi, M.; Mebazaa, A.; Davison, B.; Edwards, C.; Tomasoni, D.; Arrigo, M.; Barros, M.; Biegus, J.; Celutkiene, J.; et al. NT-proBNP and high intensity care for acute heart failure: The STRONG-HF trial. Eur. Heart J. 2023, 44, 2947–2962. [Google Scholar] [CrossRef]
- Severino, P.; Mancone, M.; D’Amato, A.; Mariani, M.V.; Prosperi, S.; Alunni Fegatelli, D.; Birtolo, L.I.; Angotti, D.; Milanese, A.; Cerrato, E.; et al. Heart failure ‘the cancer of the heart’: The prognostic role of the HLM score. ESC Heart Fail. 2024, 11, 390–399. [Google Scholar] [CrossRef]
Variable | Total Population (N = 253) |
---|---|
Age, years (IQR) | 73 (64.5–80) |
Male sex, n (%) | 177 (70) |
Arterial hypertension, n (%) | 195 (77.1) |
Diabetes mellitus, n (%) | 72 (28.5) |
Dyslipidemia, n (%) | 133 (52.6) |
Family history of CVD, n (%) | 66 (26.1) |
COPD, n (%) | 67 (26.5) |
Smoking habit, n (%) | 96 (37.9) |
Ischemic, n (%) | 138 (54.5) |
Hypertensive, n (%) | 35 (13.8) |
Idiopathic, n (%) | 29 (11.5) |
Valvular, n (%) | 29 (11.5) |
Inflammatory/drug induced, n (%) | 22 (8.7) |
Acute presentation, n (%) | 146 (57.7) |
Chronic presentation, n (%) | 107 (42.3) |
eGFR, mL/min/m2 (IQR) | 64 (46–81.7) |
Hemoglobin, g/dL (IQR) | 12.9 (10.9–14.3) |
K+, mmol/L (IQR) | 4 (3.68–4.33) |
Admission hs-cTnT, ng/mL (IQR) | 0.031 (0.02–0.078) |
Discharge hs-cTnT, ng/mL (IQR) | 0.031 (0.02–0.077) |
hs-cTnT peak, ng/mL (IQR) | 0.042 (0.023–0.121) |
hs-cTnT delta peak-admission, ng/mL (IQR) | 0.001 (0–0.026) |
HFrEF, n (%) | 199 (78.7) |
HFmrEF/HFpEF, n (%) | 54 (21.3) |
LVEF, % (IQR) | 32 (25–40) |
LVEDD, mm (IQR) | 58 (52–64) |
IVS, mm (IQR) | 11 (9–12) |
PW, mm (IQR) | 10 (9–10.5) |
Basal RVEDD, mm (IQR) | 36 (31–44) |
TAPSE, mm (IQR) | 18 (15–20) |
Median NYHA, class (IQR) | 3 (2–3) |
Variable | hs-cTnT below Median Value | hs-cTnT above Median Value | p Value |
---|---|---|---|
CV death/HFH, n (%) | 13 (9.5) | 23 (19.8) | 0.02 |
CV death, n (%) | 8 (5.8) | 15 (12.9) | 0.05 |
HFH, n (%) | 9 (6.6) | 11 (9.5) | 0.4 |
Urgent visit/loop diuretic escalation, n (%) | 21 (15.3) | 20 (17.2) | 0.68 |
Variable | No hs-cTnT Increase | hs-cTnT Increase | p Value |
---|---|---|---|
CV death/HFH, n (%) | 16 (10.5) | 20 (20) | 0.03 |
CV death, n (%) | 10 (6.5) | 13 (13) | 0.08 |
HFH, n (%) | 11 (7.2) | 9 (9) | 0.6 |
Urgent visit/loop diuretic escalation, n (%) | 28 (18.3) | 13 (13) | 0.26 |
Univariate | |||
---|---|---|---|
Variable | OR | 95% CI | p Value |
hs-cTnT above median | 2.2 | 1.117–4.353 | 0.02 |
Age | 1.01 | 0.986–1.044 | 0.33 |
Male sex | 0.75 | 0.380–1.479 | 0.40 |
ACS | 1.12 | 0.489–2.550 | 0.79 |
Arterial hypertension | 0.65 | 0.322–1.328 | 0.24 |
Diabetes mellitus | 1.64 | 0.838–3.201 | 0.15 |
eGFR | 0.99 | 0.994–1.004 | 0.78 |
LVEF | 0.99 | 0.950–1.012 | 0.21 |
Hemoglobin | 0.88 | 0.768–1.015 | 0.08 |
Multivariate | |||
Variable | OR | 95% CI | p value |
hs-cTnT above median | 2.06 | 1.025–4.128 | 0.04 |
Hemoglobin | 0.94 | 0.815–1.090 | 0.42 |
Univariate | |||
---|---|---|---|
Variable | OR | 95% CI | p Value |
hs-cTnT increase | 2.02 | 1.05–3.908 | 0.035 |
Age | 1.01 | 0.968–10.44 | 0.33 |
Male sex | 0.75 | 0.380–1.479 | 0.40 |
ACS | 1.12 | 0.489–2.550 | 0.79 |
Arterial hypertension | 0.65 | 0.322–1.328 | 0.24 |
Diabetes mellitus | 1.64 | 0.838–3.201 | 0.15 |
eGFR | 0.99 | 0.994–1.004 | 0.78 |
LVEF | 0.98 | 0.950–1.012 | 0.21 |
Hemoglobin | 0.88 | 0.768–1.015 | 0.08 |
Multivariate | |||
Variable | OR | 95% CI | p value |
hs-cTnT increase | 1.95 | 1.006–3.769 | 0.04 |
Hemoglobin | 0.92 | 0.803–1.061 | 0.26 |
Variable | hs-cTnT below Median Value | hs-cTnT above Median Value | p Value |
---|---|---|---|
CV death/HFH, n (%) | 2 (3.3) | 7 (14.9) | 0.04 |
CV death, n (%) | 1 (1.7) | 4 (8.5) | 0.17 |
HFH, n (%) | 1 (1.7) | 5 (10.6) | 0.08 |
Urgent visit/loop diuretic escalation, n (%) | 8 (13.3) | 12 (25.5) | 0.1 |
Variable | HFrEF (N = 199) | HFmrEF/HFpEF (N = 54) | p Value |
---|---|---|---|
Age, years (IQR) | 72 (64–80) | 76 (68–81) | 0.081 |
Male sex, n (%) | 147 (73.9) | 30 (55.6) | 0.009 |
Ischemic etiology, n (%) | 113 (56.8) | 25 (46.3) | 0.21 |
Arterial hypertension, n (%) | 156 (78.4) | 39 (72.2) | 0.339 |
Diabetes mellitus, n (%) | 59 (29.6) | 13 (24.1) | 0.421 |
Dyslipidemia, n (%) | 104 (52.3) | 29 (53.7) | 0.851 |
Family history of CVD, n (%) | 52 (26.1) | 14 (25.9) | 0.976 |
COPD, n (%) | 51 (25.6) | 16 (29.6) | 0.554 |
Smoking habit, n (%) | 75 (37.7) | 21 (38.9) | 0.872 |
Acute presentation, n (%) | 120 (60.3) | 26 (48.1) | 0.024 |
Chronic presentation, n (%) | 79 (39.7) | 28 (51.9) | 0.024 |
eGFR, mL/min/m2 (IQR) | 63 (44–80) | 66.3 (50–84.3) | 0.62 |
Hemoglobin, g/dL (IQR) | 13 (10.9–14.3) | 12.5 (11.2–14.2) | 0.46 |
K+, mmol/L (IQR) | 4 (3.7–4.3) | 4 (3.4–4.4) | 0.55 |
Admission hs-cTnT, ng/mL (IQR) | 0.031 (0.020–0.089) | 0.031 (0.019–0.067) | 0.817 |
Discharge hs-cTnT, ng/mL (IQR) | 0.030 (0.020–0.074) | 0.04 (0.02–0.079) | 0.139 |
hs-cTnT peak, ng/mL (IQR) | 0.04 (0.024–0.118) | 0.044 (0.022–0.183) | 0.852 |
hs-cTnT delta peak-admission, ng/mL (IQR) | 0.001 (0–0.024) | 0.003 (0–0.048) | 0.375 |
LVEF, % (IQR) | 30 (21–35) | 45 (45–50) | <0.001 |
LVEDD, mm (IQR) | 60 (54–65) | 50.5 (45–56) | <0.001 |
IVS, mm (IQR) | 11 (9–12) | 11 (10–12.3) | 0.077 |
PW, mm (IQR) | 10 (9–11) | 10 (9–10) | 0.737 |
Basal RVEDD, mm (IQR) | 34 (29–41) | 38 (33–44) | 0.1 |
TAPSE, mm (IQR) | 18 (14–20) | 19 (17–20) | 0.029 |
ACEi, n (%) | 17 (8.5) | 17 (31.5) | <0.001 |
ARBs, n (%) | 14 (7) | 4 (7.4) | 1 |
ARNI, n (%) | 137 (68.8) | 15 (27.8) | <0.001 |
BB, n (%) | 189 (95) | 53 (98.1) | 0.466 |
MRAs, n (%) | 165 (82.9) | 29 (53.7) | <0.001 |
SGLT2i, n (%) | 108 (54.3) | 17 (31.5) | 0.009 |
Loop diuretics, n (%) | 153 (76.9) | 31 (57.4) | 0.004 |
Median NYHA, class (IQR) | 3 (2–3) | 3 (2–3) | 1 |
Variable | hs-cTnT below Median Value | hs-cTnT above Median Value | p Value |
---|---|---|---|
CV death/HFH, n (%) | 2 (6.7) | 6 (25) | 0.12 |
CV death, n (%) | 1 (3.3) | 3 (12.5) | 0.31 |
HFH, n (%) | 1 (3.3) | 4 (16.7) | 0.16 |
Urgent visit/loop diuretic escalation, n (%) | 3 (10) | 8 (33.3) | 0.04 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
D’Amato, A.; Severino, P.; Prosperi, S.; Mariani, M.V.; Germanò, R.; De Prisco, A.; Myftari, V.; Cestiè, C.; Labbro Francia, A.; Marek-Iannucci, S.; et al. The Role of High-Sensitivity Troponin T Regarding Prognosis and Cardiovascular Outcome across Heart Failure Spectrum. J. Clin. Med. 2024, 13, 3533. https://doi.org/10.3390/jcm13123533
D’Amato A, Severino P, Prosperi S, Mariani MV, Germanò R, De Prisco A, Myftari V, Cestiè C, Labbro Francia A, Marek-Iannucci S, et al. The Role of High-Sensitivity Troponin T Regarding Prognosis and Cardiovascular Outcome across Heart Failure Spectrum. Journal of Clinical Medicine. 2024; 13(12):3533. https://doi.org/10.3390/jcm13123533
Chicago/Turabian StyleD’Amato, Andrea, Paolo Severino, Silvia Prosperi, Marco Valerio Mariani, Rosanna Germanò, Andrea De Prisco, Vincenzo Myftari, Claudia Cestiè, Aurora Labbro Francia, Stefanie Marek-Iannucci, and et al. 2024. "The Role of High-Sensitivity Troponin T Regarding Prognosis and Cardiovascular Outcome across Heart Failure Spectrum" Journal of Clinical Medicine 13, no. 12: 3533. https://doi.org/10.3390/jcm13123533
APA StyleD’Amato, A., Severino, P., Prosperi, S., Mariani, M. V., Germanò, R., De Prisco, A., Myftari, V., Cestiè, C., Labbro Francia, A., Marek-Iannucci, S., Tabacco, L., Vari, L., Marano, S. L., Di Pietro, G., Lavalle, C., Sardella, G., Mancone, M., Badagliacca, R., Fedele, F., & Vizza, C. D. (2024). The Role of High-Sensitivity Troponin T Regarding Prognosis and Cardiovascular Outcome across Heart Failure Spectrum. Journal of Clinical Medicine, 13(12), 3533. https://doi.org/10.3390/jcm13123533