Oral Semaglutide in Type 2 Diabetes: Clinical–Metabolic Outcomes and Quality of Life in Real-World Practice
Abstract
:1. Introduction
Study Objective
2. Materials and Methods
2.1. Study Design
2.2. Ethical Considerations
2.3. Sample and Criteria
2.4. Study Procedures
2.5. Statistical Analysis
3. Results
3.1. Sample
3.2. Baseline Characteristics of Study Participants
3.2.1. Glycemic and Anthropometric Parameters and Body Composition
3.2.2. Cardiovascular Risk Factors
3.2.3. QoL and Treatment Satisfaction
3.3. Impact of Semaglutide on Glycemic and Anthropometric Parameters and Body Composition
3.4. Impact of Semaglutide on Cardiovascular Risk Factors
3.5. Impact of Semaglutide on QoL and Treatment Satisfaction
4. Discussion
Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ahmad, E.; Lim, S.; Lamptey, R.; Webb, D.R.; Davies, M.J. Type 2 diabetes. Lancet 2022, 400, 1803–1820. [Google Scholar] [CrossRef] [PubMed]
- Magliano, D.J.; Boyko, E.J. Committee IDFDAtes. IDF diabetes atlas. In Idf Diabetes Atlas; International Diabetes Feeration: Brussels, Belgium, 2021; Volume 2021. [Google Scholar]
- Wong, N.D.; Sattar, N. Cardiovascular risk in diabetes mellitus: Epidemiology, assessment and prevention. Nat. Rev. Cardiol. 2023, 20, 685–695. [Google Scholar] [CrossRef] [PubMed]
- Davies, M.J.; Aroda, V.R.; Collins, B.S.; Gabbay, R.A.; Green, J.; Maruthur, N.M.; Rosas, S.E.; Del Prato, S.; Mathieu, C.; Mingrone, G.; et al. Management of Hyperglycemia in Type 2 Diabetes, 2022. A Consensus Report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetes Care 2022, 45, 2753–2786. [Google Scholar] [CrossRef] [PubMed]
- American Diabetes Association Professional Practice Committee; ElSayed, N.A.; Aleppo, G.; Bannuru, R.R.; Bruemmer, D.; Collins, B.S.; Ekhlaspour, L.; Gaglia, J.L.; Hilliard, M.E.; Johnson, E.L.; et al. 9. Pharmacologic Approaches to Glycemic Treatment: Standards of Care in Diabetes—2024. Diabetes Care 2024, 47 (Suppl. S1), S158–S178. [Google Scholar] [CrossRef]
- Buse, J.B.; Wexler, D.J.; Tsapas, A.; Rossing, P.; Mingrone, G.; Mathieu, C.; D’alessio, D.A.; Davies, M.J. 2019 update to: Management of hyperglycaemia in type 2 diabetes, 2018. A consensus report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetologia 2020, 63, 221–228. [Google Scholar] [CrossRef] [PubMed]
- American Diabetes Association Professional Practice Committee; ElSayed, N.A.; Aleppo, G.; Bannuru, R.R.; Bruemmer, D.; Collins, B.S.; Das, S.R.; Ekhlaspour, L.; Hilliard, M.E.; Johnson, E.L.; et al. 10. Cardiovascular Disease and Risk Management: Standards of Care in Diabetes—2024. Diabetes Care 2024, 47 (Suppl. S1), S179–S218. [Google Scholar] [CrossRef]
- American Diabetes Association Professional Practice Committee; ElSayed, N.A.; Aleppo, G.; Bannuru, R.R.; Bruemmer, D.; Collins, B.S.; Ekhlaspour, L.; Hilliard, M.E.; Johnson, E.L.; Khunti, K.; et al. 11. Chronic Kidney Disease and Risk Management: Standards of Care in Diabetes—2024. Diabetes Care 2024, 47 (Suppl. S1), S219–S230. [Google Scholar] [CrossRef]
- Hogan, A.E.; Gaoatswe, G.; Lynch, L.; Corrigan, M.A.; Woods, C.; O’Connell, J.; O‘Shea, D. Glucagon-like peptide 1 analogue ther-apy directly modulates innate immune-mediated inflammation in individuals with type 2 diabetes mellitus. Diabetologia 2014, 57, 781–784. [Google Scholar] [CrossRef] [PubMed]
- Rosenstock, J.; Capehorn, M.; De Remigis, A.; Rasmussen, S.; Weimers, P.; Mosenzon, O. Semaglutide Reduces High-Sensitivity Crp Levels across Different Treatment Formulations: Exploratory Analyses of Sustain 3 and Pioneer 1, 2 and 5 Trials. J. Am. Coll. Cardiol. 2021, 77, 1607. [Google Scholar] [CrossRef]
- Sattar, N.; Lee, M.M.Y.; Kristensen, S.L.; Branch, K.R.H.; Del Prato, S.; Khurmi, N.S.; Lam, C.S.; Lopes, R.D.; McMurray, J.J.V.; Pratley, R.E.; et al. Cardiovascular, mortality, and kidney outcomes with GLP-1 receptor agonists in patients with type 2 diabetes: A systematic review and meta-analysis of ran-domised trials. Lancet Diabetes Endocrinol. 2021, 9, 653–662. [Google Scholar] [CrossRef]
- Avogaro, A.; de Kreutzenberg, S.V.; Morieri, M.L.; Fadini, G.P.; Del Prato, S. Glucose-lowering drugs with cardiovascular benefits as modifiers of critical elements of the human life history. Lancet Diabetes Endocrinol. 2022, 10, 882–889. [Google Scholar] [CrossRef] [PubMed]
- Pantanetti, P.; Cangelosi, G.; Alberti, S.; Di Marco, S.; Michetti, G.; Cerasoli, G.; Di Giacinti, M.; Coacci, S.; Francucci, N.; Petrelli, F.; et al. Changes in body weight and composition, metabolic parameters, and quality of life in patients with type 2 diabetes treated with subcutaneous semaglutide in real-world clinical practice. Front. Endocrinol. 2024, 15, 1394506. [Google Scholar] [CrossRef] [PubMed]
- Buckley, S.T.; Baekdal, T.A.; Vegge, A.; Maarbjerg, S.J.; Pyke, C.; Ahnfelt-Ronne, J.; Madsen, K.G.; Scheele, S.G.; Alanentalo, T.; Kirk, R.K.; et al. Transcellular stomach absorption of aderivatized glucagon-like peptide-1 receptor agonist. Sci. Transl. Med. 2018, 10, eaar7047. [Google Scholar] [CrossRef] [PubMed]
- García-Pérez, L.-E.; Álvarez, M.; Dilla, T.; Gil-Guillén, V.; Orozco-Beltrán, D. Adherence to therapies in patients with type 2 diabetes. Diabetes Ther. 2013, 4, 175–194. [Google Scholar] [CrossRef] [PubMed]
- Aroda, V.R.; Rosenstock, J.; Terauchi, Y.; Altuntas, Y.; Lalic, N.M.; Villegas, E.C.M.; Jeppesen, O.K.; Christiansen, E.; Hertz, C.L.; Haluzík, M. PIONEER 1: Randomized Clinical Trial of the Efficacy and Safety of Oral Semaglutide Monotherapy in Comparison with Placebo in Patients with Type 2 Diabetes. Diabetes Care 2019, 42, 1724–1732. [Google Scholar] [CrossRef]
- Rodbard, H.W.; Rosenstock, J.; Canani, L.H.; Deerochanawong, C.; Gumprecht, J.; Lindberg, S.; Lingvay, I.; Søndergaard, A.L.; Treppendahl, M.B.; Montanya, E. Oral Semaglutide versus Empagliflozin in Patients with Type 2 Diabetes Uncontrolled on Metformin: The PIONEER 2 Trial. Diabetes Care 2019, 42, 2272–2281. [Google Scholar] [CrossRef]
- Rosenstock, J.; Allison, D.; Birkenfeld, A.L.; Blicher, T.M.; Deenadayalan, S.; Jacobsen, J.B.; Serusclat, P.; Violante, R.; Watada, H.; Davies, M.; et al. Effect of Additional Oral Semaglutide vs. Sitagliptin on Glycated Hemoglobin in Adults with Type 2 Diabetes Uncontrolled with Metformin Alone or with Sulfonylure. JAMA 2019, 321, 1466. [Google Scholar] [CrossRef] [PubMed]
- Pratley, R.; Amod, A.; Hoff, S.T.; Kadowaki, T.; Lingvay, I.; Nauck, M.; Pedersen, K.B.; Saugstrup, T.; Meier, J.J. Oral Semaglutide versus Subcutaneous Liraglutide and Placebo in Type 2 Diabetes (PIONEER 4): A Randomised, Double-Blind, Phase 3a Trial. Lancet 2019, 394, 39–50. [Google Scholar] [CrossRef] [PubMed]
- Mosenzon, O.; Blicher, T.M.; Rosenlund, S.; Eriksson, J.W.; Heller, S.; Hels, O.H.; Pratley, R.; Sathyapalan, T.; Desouza, C.; Abramof, R.; et al. Efficacy and Safety of Oral Semaglutide in Patients with Type 2 Diabetes and Moderate Renal Impairment (PIONEER 5): A PlaceboControlled, Randomised, Phase 3a Trial. Lancet Diabetes Endocrinol. 2019, 7, 515–527. [Google Scholar] [CrossRef]
- Pieber, T.R.; Bode, B.; Mertens, A.; Cho, Y.M.; Christiansen, E.; Hertz, C.L.; Wallenstein, S.O.R.; Buse, J.B.; Akın, S.; Aladağ, N.; et al. Efficacy and Safety of Oral Semaglutide with Flexible Dose Adjustment versus Sitagliptin in Type 2 Diabetes (PIONEER 7): A Multicentre, OpenLabel, Randomised, Phase 3a Trial. Lancet Diabetes Endocrinol. 2019, 7, 528–539. [Google Scholar] [CrossRef]
- Zinman, B.; Aroda, V.R.; Buse, J.B.; Cariou, B.; Harris, S.B.; Hoff, S.T.; Pedersen, K.B.; Tarp-Johansen, M.J.; Araki, E. Efficacy, Safety, and Tolerability of Oral Semaglutide versus Placebo Added to Insulin with or without Metformin in Patients with Type 2 Diabetes: The PIONEER 8 Trial. Diabetes Care 2019, 42, 2262–2271. [Google Scholar] [CrossRef] [PubMed]
- Yamada, Y.; Katagiri, H.; Hamamoto, Y.; Deenadayalan, S.; Navarria, A.; Nishijima, K.; Seino, Y.; Fukushima, Y.; Hisatomi, A.; Ide, Y.; et al. Dose-Response, Efficacy, and Safety of Oral Semaglutide Monotherapy in Japanese Patients with Type 2 Diabetes (PIONEER 9): A 52-Week, Phase 2/3a, Randomised, Controlled Trial. Lancet Diabetes Endocrinol. 2020, 8, 377–391. [Google Scholar] [CrossRef] [PubMed]
- Yabe, D.; Nakamura, J.; Kaneto, H.; Deenadayalan, S.; Navarria, A.; Gislum, M.; Inagaki, N.; Arisaka, T.; Asakura, T.; Azuma, N.; et al. Safety and Efficacy of Oral Semaglutide versus Dulaglutide in Japanese Patients with Type 2 Diabetes (PIONEER 10): An Open-Label, Randomised, Active-Controlled, Phase 3a Trial. Lancet Diabetes Endocrinol. 2020, 8, 392–406. [Google Scholar] [CrossRef] [PubMed]
- Husain, M.; Birkenfeld, A.L.; Donsmark, M.; Dungan, K.; Eliaschewitz, F.G.; Franco, D.R.; Jeppesen, O.K.; Lingvay, I.; Mosenzon, O.; Pedersen, S.D.; et al. Oral Semaglutide and Cardio-vascular Outcomes in Patients with Type 2 Diabete. N. Engl. J. Med. 2019, 381, 841–851. [Google Scholar] [CrossRef] [PubMed]
- Andersen, A.; Knop, F.K.; Vilsbøll, T. A Pharmacological and Clinical Overview of Oral Semaglutide for the Treatment of Type 2 Diabetes. Drugs 2021, 81, 1003–1030. [Google Scholar] [CrossRef]
- Aroda, V.R.; Faurby, M.; Lophaven, S.; Noone, J.; Wolden, M.L.; Lingvay, I. Insights into the early use of oral semaglutide in routine clinical practice: The IGNITE study. Diabetes Obes. Metab. 2021, 23, 2177–2182. [Google Scholar] [CrossRef] [PubMed]
- Yanai, H.; Hakoshima, M.; Adachi, H.; Katsuyama, H. A Significant Effect of Oral Semaglutide on Cardiovascular Risk Factors in Patients with Type 2 Diabetes. Cardiol. Res. 2022, 13, 303–308. [Google Scholar] [CrossRef] [PubMed]
- Klobučar, S.; Belančić, A.; Bukša, I.; Morić, N.; Rahelić, D. Effectiveness of Oral versus Injectable Semaglutide in Adults with Type 2 Diabetes: Results from a Retrospective Observational Study in Croatia. Diabetology 2023, 5, 60–68. [Google Scholar] [CrossRef]
- Candido, R.; Gaiotti, S.; Giudici, F.; Toffoli, B.; De Luca, F.; Velardi, V.; Petrucco, A.; Gottardi, C.; Manca, E.; Buda, I.; et al. Real-World Retrospective Study into the Effects of Oral Semaglutide (As a Switchover or Add-On Therapy) in Type 2 Diabetes. J. Clin. Med. 2023, 12, 6052. [Google Scholar] [CrossRef]
- Bradley, C. Diabetes treatment satisfaction questionnaire (DTSQ). In Handbook of Psychology and Diabetes; Bradley, C., Ed.; Harwood Academy Publisher: Amsterdam, The Netherlands, 1994; pp. 111–132. [Google Scholar]
- Nicolucci, A.; Giorgino, R.; Cucinotta, D.; Zoppini, G.; Muggeo, M.; Squatrito, S.; Corsi, A.; Lostia, S.; Pappalardo, L.; Benaduce, E.; et al. Validation of the italian version of the WHO well-being questionnaire (WHO-WBQ) and the WHO-diabetes treatment satisfaction questionnaire (WHO-DTSQ). Diabetes Nutr. Metab. 2004, 17, 235–243. [Google Scholar]
- Ware, J.E.; Sherbourne, C.D. The MOS 36-item short-form health survey (SF-36). I. Conceptual framework and item selection. Med. Care 1992, 30, 473–483. [Google Scholar] [CrossRef] [PubMed]
- McHorney, C.A.; Ware, J.E.J.; Lu, J.F.R.; Sherbourne, C.D. The MOS 36-item shortform health survey (SF-36): III. Tests of data quality, scaling assumptions, and reliability across diverse patient groups. Med. Care 1994, 32, 40–66. [Google Scholar] [CrossRef] [PubMed]
- Musa, A.F.; Yasin, M.S.M.; Smith, J.; Yakub, M.A.; Nordin, R.B. The Malay version of SF-36 health survey instrument: Testing data quality, scaling assumptions, reliability and validity in post-coronary artery bypass grafting (CABG) surgery patients at the National Heart Institute (Institut Jantung Negara-IJN), Kuala Lumpur. Health Qual. Life Outcomes 2021, 19, 50. [Google Scholar] [CrossRef] [PubMed]
- Apolone, G.; Mosconi, P. The Italian SF-36Health Survey: Translation, validation and norming. J. Clin. Epidemiol. 1998, 51, 1025–1036. [Google Scholar] [CrossRef] [PubMed]
- Simó, R.; Franch-Nadal, J.; Vlacho, B.; Real, J.; Amado, E.; Flores, J.; Mata-Cases, M.; Ortega, E.; Rigla, M.; Vallés, J.-A.; et al. Rapid Reduction of HbA1c and Early Worsening of Diabetic Retinopathy: A Real-world Population-Based Study in Subjects with Type 2 Diabetes. Diabetes Care 2023, 46, 1633–1639. [Google Scholar] [CrossRef] [PubMed]
- Prasad, K. Does HbA1cc Play a Role in the Development of Cardiovascular Diseases? Curr. Pharm. Des. 2018, 24, 2876–2882. [Google Scholar] [CrossRef] [PubMed]
- Pei, J.; Wang, X.; Pei, Z.; Hu, X. Glycemic control, HbA1c variability, and major cardiovascular adverse outcomes in type 2 diabetes patients with elevated cardiovascular risk: Insights from the ACCORD study. Cardiovasc. Diabetol. 2023, 22, 287. [Google Scholar] [CrossRef] [PubMed]
- Cavero-Redondo, I.; Peleteiro, B.; Álvarez-Bueno, C.; Rodriguez-Artalejo, F.; Martínez-Vizcaíno, V. Glycated haemoglobin A1c as a risk factor of cardiovascular outcomes and all-cause mortality in diabetic and non-diabetic populations: A systematic review and meta-analysis. BMJ Open 2017, 7, e015949. [Google Scholar] [CrossRef] [PubMed]
- Ho-Pham, L.T.; Nguyen, U.D.T.; Tran, T.X.; Nguyen, T.V. Discordance in the diagnosis of diabetes: Comparison between HbA1c and fasting plasma glucose. PLoS ONE 2017, 12, e0182192. [Google Scholar] [CrossRef]
- Plotnikoff, R.C.; Costigan, S.A.; Karunamuni, N.D.; Lubans, D.R. Community-based physical activity interventions for treatment of type 2 diabetes: A systematic review with meta-analysis. Front. Endocrinol. 2013, 4, 3. [Google Scholar] [CrossRef]
- Moore, P.W.; Malone, K.; VanValkenburg, D.; Rando, L.L.; Williams, B.C.; Matejowsky, H.G.; Ahmadzadeh, S.; Shekoohi, S.; Cornett, E.M.; Kaye, A.D. GLP-1 Agonists for Weight Loss: Pharmacology and Clinical Implications. Adv. Ther. 2023, 40, 723–742. [Google Scholar] [CrossRef] [PubMed]
- White, G.E.; Shu, I.; Rometo, D.; Arnold, J.; Korytkowski, M.; Luo, J. Real-world weight-loss effectiveness of glucagon-like peptide-1 agonists among patients with type 2 diabetes: A retrospective cohort study. Obesity 2023, 31, 537–544. [Google Scholar] [CrossRef] [PubMed]
- Ugras, S. Evaluating of altered hydration status on effectiveness of body composition analysis using bioelectric impedance analysis. Libyan J. Med. 2020, 15, 1741904. [Google Scholar] [CrossRef] [PubMed]
- Zalejska-Fiolka, J.; Birková, A.; Wielkoszyński, T.; Hubková, B.; Szlachta, B.; Fiolka, R.; Błaszczyk, U.; Kuzan, A.; Gamian, A.; Mareková, M.; et al. Loss of Skeletal Muscle Mass and Intracellular Water as Undesired Outcomes of Weight Reduction in Obese Hyperglycemic Women: A Short-Term Longitudinal Study. Int. J. Environ. Res. Public Health 2022, 19, 1001. [Google Scholar] [CrossRef] [PubMed]
- Dal Canto, E.; Ceriello, A.; Rydén, L.; Ferrini, M.; Hansen, T.B.; Schnell, O.; Standl, E.; Beulens, J.W. Diabetes as a cardiovascular risk factor: An overview of global trends of macro and micro vascular complications. Eur. J. Prev. Cardiol. 2019, 26 (Suppl. S2), 25–32. [Google Scholar] [CrossRef]
- Sun, D.; Zhou, T.; Heianza, Y.; Li, X.; Fan, M.; Fonseca, V.A.; Qi, L. Type 2 Diabetes and Hypertension. Circ. Res. 2019, 124, 930–937. [Google Scholar] [CrossRef]
- Nauck, M.A.; Quast, D.R. Cardiovascular Safety and Benefits of Semaglutide in Patients with Type 2 Diabetes: Findings from SUSTAIN 6 and PIONEER 6. Front. Endocrinol. 2021, 12, 645566. [Google Scholar] [CrossRef] [PubMed]
- Husain, M.; Bain, S.C.; Jeppesen, O.K.; Lingvay, I.; Sørrig, R.; Treppendahl, M.B.; Vilsbøll, T. Semaglutide (SUSTAIN and PIONEER) reduces cardiovascular events in type 2 diabetes across varying cardiovascular risk. Diabetes Obes. Metab. 2020, 22, 442–451. [Google Scholar] [CrossRef] [PubMed]
- Rezaei, S.; Tabrizi, R.; Nowrouzi-Sohrabi, P.; Jalali, M.; Atkin, S.L.; Al-Rasadi, K.; Jamialahmadi, T.; Sahebkar, A. GLP-1 Receptor Agonist Effects on Lipid and Liver Profiles in Patients with Nonalcoholic Fatty Liver Disease: Systematic Review and Meta-Analysis. Can. J. Gastroenterol. Hepatol. 2021, 2021, 8936865. [Google Scholar] [CrossRef]
- Yao, H.; Zhang, A.; Li, D.; Wu, Y.; Wang, C.-Z.; Wan, J.-Y.; Yuan, C.-S. Comparative effectiveness of GLP-1 receptor agonists on glycaemic control, body weight, and lipid profile for type 2 diabetes: Systematic review and network meta-analysis. BMJ 2024, 384, e076410. [Google Scholar] [CrossRef]
- Tahir, A.; Martinez, P.J.; Ahmad, F.; Fisher-Hoch, S.P.; McCormick, J.; Gay, J.L.; Mirza, S.; Chaudhary, S.U. An evaluation of lipid profile and pro-inflammatory cytokines as determinants of cardiovascular disease in those with diabetes: A study on a Mexican American cohort. Sci. Rep. 2021, 11, 2435, Erratum in Sci. Rep. 2021, 11, 14197. [Google Scholar] [CrossRef] [PubMed]
- Hasheminasabgorji, E.; Jha, J.C. Dyslipidemia, Diabetes and Atherosclerosis: Role of Inflammation and ROS-Redox-Sensitive Factors. Biomedicines 2021, 9, 1602. [Google Scholar] [CrossRef] [PubMed]
- Majeed, A.; Rehman, M.; Hussain, I.; Imran, I.; Saleem, M.U.; Saeed, H.; Hashmi, F.K.; Akbar, M.; Abrar, M.A.; Ramzan, B.; et al. The Impact of Treatment Adherence on Quality of Life Among Type 2 Diabetes Mellitus Patients—Findings from a Cross-Sectional Study. Patient Prefer. Adherence 2021, 15, 475–481. [Google Scholar] [CrossRef] [PubMed]
- Billings, L.K.; Handelsman, Y.; Heile, M.; Schneider, D.; Wyne, K. Health-Related Quality of Life Assessments with Once-Weekly Glucagon-Like Peptide-1 Receptor Agonists in Type 2 Diabetes Mellitus. J. Manag. Care Spec. Pharm. 2018, 24 (Suppl. S9), S30–S41. [Google Scholar] [CrossRef] [PubMed]
- Kautzky-Willer, A.; Leutner, M.; Harreiter, J. Sex differences in type 2 diabetes. Diabetologia 2023, 66, 986–1002. [Google Scholar] [CrossRef] [PubMed]
- Kautzky-Willer, A.; Harreiter, J. Sex and gender differences in therapy of type 2 diabetes. Diabetes Res. Clin. Pract. 2017, 131, 230–241. [Google Scholar] [CrossRef] [PubMed]
- Li, A.; Su, X.; Hu, S.; Wang, Y. Efficacy and safety of oral semaglutide in type 2 diabetes mellitus: A systematic review and meta-analysis. Diabetes Res. Clin. Pract. 2023, 198, 110605. [Google Scholar] [CrossRef]
- Wang, S.; Wang, S.; Wang, Y.; Luan, J. Glycemic Control, Weight Management, Cardiovascular Safety, and Cost-Effectiveness of Semaglutide for Patients with Type 2 Diabetes Mellitus: A Rapid Review and Meta-analysis of Real-World Studies. Diabetes Ther. 2024, 15, 497–519. [Google Scholar] [CrossRef]
Endpoint | Mean Difference | SD | IQR Difference | Median After | Mean After | Median Difference | Test Statistic | p-Value |
---|---|---|---|---|---|---|---|---|
HbA1c (%) | −1.24 | 1.33 | 1.44 | 6.72 | 6.68 | −0.74 | 7.28 * | <0.05 |
FPG (mg/dL) | −31.01 | 41.71 | 56 | 123.32 | 123.32 | −26.68 | 265.50 ** | <0.05 |
Weight (kg) | −3.09 | 5.84 | 4.5 | 88.3 | 86.1 | −2.20 | 4.14 * | <0.05 |
BMI (kg/m2) | −1.19 | 1.97 | 1.78 | 29.61 | 29.61 | −1.19 | 4.75 * | <0.05 |
Body water (kg) | −1.66 | 6.14 | 2.4 | 43.02 | 43.02 | −1.66 | 523 ** | <0.05 |
Fat mass (%) | −0.9 | 8.01 | 2.3 | 29.3 | 30.74 | −0.70 | 546.5 ** | <0.05 |
Muscle mass (%) | −2.07 | 8.74 | 5.4 | 59.3 | 57.92 | −2.30 | 1.85 * | 0.06 |
Endpoint | Mean Difference | SD | IQR Difference | Median After | Mean After | Median Difference | Test Statistic | p-Value |
---|---|---|---|---|---|---|---|---|
SBP (mm/hg) | −12.74 | 1.33 | 16.11 | 126.11 | 126.11 | −13.89 | 157 ** | <0.05 |
DBP (mm/hg) | −6.39 | 41.71 | 10 | 75.74 | 75.74 | −4.26 | 132.5 ** | <0.05 |
TC (mg/dL) | −22.19 | 5.84 | 37 | 159.87 | 159.87 | −18.13 | 3.75 * | <0.05 |
LDL (mg/dL) | −18.00 | 1.97 | 34.5 | 89 | 95.5 | −24.5 | 333.5 ** | <0.05 |
HDL (mg/dL) | 0.77 | 6.14 | 11 | 44 | 44.3 | −1.07 | 750.5 ** | 0.31 |
TG (mg/dL) | −40.13 | 8.01 | 92.32 | 139 | 152.55 | −27 | 549 ** | <0.05 |
Endpoint | Mean Difference | SD | IQR Difference | Median Difference | Median After | Mean After | Test Statistic | p-Value |
---|---|---|---|---|---|---|---|---|
SF-36 (score) | 1.16 | 1.33 | 8.18 | 0 | 103 | 101.18 | 705.5 ** | 0.17 |
DTSQ (score) | 4.31 | 41.71 | 10 | 4.31 | 31.02 | 31.02 | 445 ** | <0.05 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pantanetti, P.; Ronconi, V.; Sguanci, M.; Palomares, S.M.; Mancin, S.; Tartaglia, F.C.; Cangelosi, G.; Petrelli, F. Oral Semaglutide in Type 2 Diabetes: Clinical–Metabolic Outcomes and Quality of Life in Real-World Practice. J. Clin. Med. 2024, 13, 4752. https://doi.org/10.3390/jcm13164752
Pantanetti P, Ronconi V, Sguanci M, Palomares SM, Mancin S, Tartaglia FC, Cangelosi G, Petrelli F. Oral Semaglutide in Type 2 Diabetes: Clinical–Metabolic Outcomes and Quality of Life in Real-World Practice. Journal of Clinical Medicine. 2024; 13(16):4752. https://doi.org/10.3390/jcm13164752
Chicago/Turabian StylePantanetti, Paola, Vanessa Ronconi, Marco Sguanci, Sara Morales Palomares, Stefano Mancin, Francesco Carlo Tartaglia, Giovanni Cangelosi, and Fabio Petrelli. 2024. "Oral Semaglutide in Type 2 Diabetes: Clinical–Metabolic Outcomes and Quality of Life in Real-World Practice" Journal of Clinical Medicine 13, no. 16: 4752. https://doi.org/10.3390/jcm13164752
APA StylePantanetti, P., Ronconi, V., Sguanci, M., Palomares, S. M., Mancin, S., Tartaglia, F. C., Cangelosi, G., & Petrelli, F. (2024). Oral Semaglutide in Type 2 Diabetes: Clinical–Metabolic Outcomes and Quality of Life in Real-World Practice. Journal of Clinical Medicine, 13(16), 4752. https://doi.org/10.3390/jcm13164752