Could Flow Cytometry Provide New Prognostic Markers in Colorectal Cancer?
Abstract
:1. Introduction
2. Materials and Methods
Statistical Analysis
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Marks, K.M.; West, N.P.; Morris, E.; Quirke, P. Clinicopathological, genomic and immunological factors in colorectal cancer prognosis. Br. J. Surg. 2018, 105, e99–e109. [Google Scholar] [CrossRef]
- Weiser, M.R. AJCC 8th Edition: Colorectal Cancer. Ann. Surg. Oncol. 2018, 25, 1454–1455. [Google Scholar] [CrossRef] [PubMed]
- Koncina, E.; Haan, S.; Rauh, S.; Letellier, E. Prognostic and predictive molecular biomarkers for colorectal cancer: Updates and challenges. Cancers 2020, 12, 319. [Google Scholar] [CrossRef]
- Laubert, T.; Freitag-Wolf, S.; Linnebacher, M.; König, A.; Vollmar, B.; Habermann, J.K. Stage-specific frequency and prognostic significance of aneuploidy in patients with sporadic colorectal cancer—A meta-analysis and current overview. Int. J. Color. Dis. 2015, 30, 1015–1028. [Google Scholar] [CrossRef]
- Danielsen, H.E.; Pradhan, M.; Novelli, M. Revisiting tumour aneuploidy-the place of ploidy assessment in the molecular era. Nat. Rev. Clin. Oncol. 2016, 13, 291–304. [Google Scholar] [CrossRef]
- Galizia, G.; Gemei, M.; Orditura, M.; Romano, C.; Zamboli, A.; Castellano, P.; Mabilia, A.; Auricchio, A.; De Vita, F.; Del Vecchio, L.; et al. Postoperative Detection of Circulating Tumor Cells Predicts Tumor Recurrence in Colorectal Cancer Patients. J. Gastrointest. Surg. 2013, 17, 1809–1818. [Google Scholar] [CrossRef]
- Georvasili, V.K.; Markopoulos, G.S.; Batistatou, A.; Mitsis, M.; Messinis, T.; Lianos, G.D.; Alexiou, G.; Vartholomatos, G.; Bali, C.D. Detection of cancer cells and tumor margins during colorectal cancer surgery by intraoperative flow cytometry. Int. J. Surg. 2022, 104, 106717. [Google Scholar] [CrossRef]
- Pang, R.; Law, W.L.; Chu, A.C.; Poon, J.T.; Lam, C.S.; Chow, A.K.; Ng, L.; Cheung, L.W.; Lan, X.R.; Lan, H.Y.; et al. A subpopulation of CD26+ cancer stem cells with metastatic capacity in human colorectal cancer. Cell Stem Cell 2010, 6, 603–615. [Google Scholar] [CrossRef] [PubMed]
- Lam, C.S.-C.; Cheung, A.H.-K.; Wong, S.K.-M.; Wan, T.M.-H.; Ng, L.; Chow, A.K.-M.; Cheng, N.S.-M.; Pak, R.C.-H.; Li, H.-S.; Man, J.H.-W.; et al. Prognostic significance of CD26 in patients with colorectal cancer. PLoS ONE 2014, 9, e98582. [Google Scholar] [CrossRef]
- Chen, H.-Y.; Feng, L.-L.; Li, M.; Ju, H.-Q.; Ding, Y.; Lan, M.; Song, S.-M.; Han, W.-D.; Yu, L.; Wei, M.-B.; et al. College of American Pathologists Tumor Regression Grading System for Long-Term Outcome in Patients with Locally Advanced Rectal Cancer. Oncologist 2021, 26, e780–e793. [Google Scholar] [CrossRef]
- Nunez, R. DNA Analysis Using Flow Cytometry 67 DNA Measurement and Cell Cycle Analysis by Flow Cytometry. Curr. Issues Mol. Biol. 2001, 3, 67–70. [Google Scholar] [PubMed]
- Darzynkiewicz, Z.; Huang, X. Analysis of cellular DNA content by flow cytometry. Curr. Protoc. Immunol. 2004. [Google Scholar] [CrossRef] [PubMed]
- Markopoulos, G.S.; Pakos, E.E.; Gavrielatos, V.; Kosmas, D.; Gkiatas, I.; Alexiou, G.A.; Batistatou, A.; Lampri, E.; Vartholomatos, G. Intraoperative Flow Cytometry Upon and Beyond the Cell Cycle: A Case Study of the Characterization of a Bone Metastasis. J. Mol. Pathol. 2023, 4, 225–233. [Google Scholar] [CrossRef]
- Dekker, E.; Tanis, P.J.; Vleugels, J.L.A.; Kasi, P.M.; Wallace, M.B. Colorectal cancer. Lancet 2019, 394, 1467–1480. [Google Scholar] [CrossRef] [PubMed]
- Bali, C.; Georvasili, V.K. Intraoperative Flow Cytometry in Colorectal Cancer. In Intraoperative Flow Cytometry; Springer International Publishing: Cham, Switzerland, 2023; pp. 293–307. [Google Scholar] [CrossRef]
- Al-Sohaily, S.; Biankin, A.; Leong, R.; Kohonen-Corish, M.; Warusavitarne, J. Molecular pathways in colorectal cancer. J. Gastroenterol. Hepatol. 2012, 27, 1423–1431. [Google Scholar] [CrossRef]
- Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: The next generation. Cell 2011, 144, 646–674. [Google Scholar] [CrossRef] [PubMed]
- Malki, A.; Elruz, R.A.; Gupta, I.; Allouch, A.; Vranic, S.; Al Moustafa, A.E. Molecular mechanisms of colon cancer progression and metastasis: Recent insights and advancements. Int. J. Mol. Sci. 2021, 22, 130. [Google Scholar] [CrossRef] [PubMed]
- Munro, M.J.; Wickremesekera, S.K.; Peng, L.; Tan, S.T.; Itinteang, T. Cancer stem cells in colorectal cancer: A review. J. Clin. Pathol. 2018, 71, 110–116. [Google Scholar] [CrossRef]
- Laubert, T.; Bente, V.; Freitag-Wolf, S.; Voulgaris, H.; Oberländer, M.; Schillo, K.; Kleemann, M.; Bürk, C.; Bruch, H.P.; Roblick, U.J.; et al. Aneuploidy and elevated CEA indicate an increased risk for metachronous metastasis in colorectal cancer. Int. J. Color. Dis. 2013, 28, 767–775. [Google Scholar] [CrossRef]
- Mouradov, D.; Domingo, E.; Gibbs, P.; Jorissen, R.N.; Li, S.; Soo, P.Y.; Lipton, L.; Desai, J.; E Danielsen, H.; Oukrif, D.; et al. Survival in stage II/III colorectal cancer is independently predicted by chromosomal and microsatellite instability, but not by specific driver mutations. Am. J. Gastroenterol. 2013, 108, 1785–1793. [Google Scholar] [CrossRef] [PubMed]
- Hveem, T.S.; A Merok, M.; E Pretorius, M.; Novelli, M.; Bævre, M.S.; Sjo, O.H.; Clinch, N.; Liestøl, K.; Svindland, A.; A Lothe, R.; et al. Prognostic impact of genomic instability in colorectal cancer. Br. J. Cancer 2014, 110, 2159–2164. [Google Scholar] [CrossRef] [PubMed]
- Araujo, S.E.A.; Bernardo, W.M.; Habr-Gama, A.; Kiss, D.R.; Cecconello, I. DNA ploidy status and prognosis in colorectal cancer: A meta-analysis of published data. Dis. Colon Rectum 2007, 50, 1800–1810. [Google Scholar] [CrossRef] [PubMed]
- Sinicrope, F.A.; Rego, R.L.; Halling, K.C.; Foster, N.; Sargent, D.J.; La Plant, B.; French, A.J.; Laurie, J.A.; Goldberg, R.M.; Thibodeau, S.N.; et al. Prognostic Impact of Microsatellite Instability and DNA Ploidy in Human Colon Carcinoma Patients. Gastroenterology 2006, 131, 729–737. [Google Scholar] [CrossRef] [PubMed]
- Alexiou, G.A.; Vartholomatos, G.; Goussia, A.; Batistatou, A.; Tsamis, K.; Voulgaris, S.; Kyritsis, A.P. Fast cell cycle analysis for intraoperative characterization of brain tumor margins and malignancy. J. Clin. Neurosci. 2015, 22, 129–132. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Xiao, Q.; Venkatachalam, N.; Hofheinz, R.D.; Veldwijk, M.R.; Herskind, C.; Ebert, M.P.; Zhan, T. Predicting response to neoadjuvant chemoradiotherapy in rectal cancer: From biomarkers to tumor models. Ther. Adv. Med. Oncol. 2022, 14, 1–23. [Google Scholar] [CrossRef]
- Ng, L.; Foo, D.C.C.; Wong, C.K.H.; Man, A.T.K.; Lo, O.S.H.; Law, W.L. Repurposing dpp-4 inhibitors for colorectal cancer: A retrospective and single center study. Cancers 2021, 13, 3588. [Google Scholar] [CrossRef]
Patients (n) | Ca Recurrence/Metastasis (n) | Alive (n) | Ca-Related Death (n) | Overall Survival (%) | DFS (%) | |
---|---|---|---|---|---|---|
Sex | ||||||
Male | 69 | 18 | 51 | 10 | 74 | 62 |
Female | 37 | 4 | 30 | 3 | 81 | 78 |
Tumor location | ||||||
Right colon | 37 | 10 | 28 | 6 | 75 | 65 |
Left colon | 31 | 7 | 22 | 6 | 71 | 68 |
Rectum | 36 | 5 | 29 | 1 | 80 | 69 |
Tumor stage | ||||||
0 | 5 | 0 | 5 | 0 | 100 | 100 |
I | 20 | 1 | 14 | 1 | 70 | 70 |
II | 36 | 4 | 32 | 1 | 89 | 80 |
III | 38 | 13 | 27 | 7 | 71 | 55 |
IV | 7 | 4 | 3 | 4 | 43 | 43 |
Neoadjuvant therapy | 18 | 2 | 16 | 1 | 89 | 83 |
TRG 0 | 3 | 0 | 3 | 0 | 100 | 100 |
TRG 1 | 3 | 0 | 2 | 0 | 67 | 67 |
TRG 2 | 9 | 1 | 9 | 0 | 100 | 89 |
TRG 3 | 3 | 1 | 2 | 1 | 67 | 67 |
Overall | 106 | 22 | 81 | 17 | 76 | 72 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Georvasili, V.; Markopoulos, G.; Lampri, E.; Lianos, G.; Vartholomatos, G.; Mitsis, M.; Bali, C. Could Flow Cytometry Provide New Prognostic Markers in Colorectal Cancer? J. Clin. Med. 2024, 13, 4753. https://doi.org/10.3390/jcm13164753
Georvasili V, Markopoulos G, Lampri E, Lianos G, Vartholomatos G, Mitsis M, Bali C. Could Flow Cytometry Provide New Prognostic Markers in Colorectal Cancer? Journal of Clinical Medicine. 2024; 13(16):4753. https://doi.org/10.3390/jcm13164753
Chicago/Turabian StyleGeorvasili, Vaia, Georgios Markopoulos, Evangeli Lampri, Georgios Lianos, George Vartholomatos, Michail Mitsis, and Christina Bali. 2024. "Could Flow Cytometry Provide New Prognostic Markers in Colorectal Cancer?" Journal of Clinical Medicine 13, no. 16: 4753. https://doi.org/10.3390/jcm13164753
APA StyleGeorvasili, V., Markopoulos, G., Lampri, E., Lianos, G., Vartholomatos, G., Mitsis, M., & Bali, C. (2024). Could Flow Cytometry Provide New Prognostic Markers in Colorectal Cancer? Journal of Clinical Medicine, 13(16), 4753. https://doi.org/10.3390/jcm13164753