Advancements in Artificial Intelligence for Fetal Neurosonography: A Comprehensive Review
Abstract
:1. Introduction
2. AI in Prenatal Diagnosis
3. AI in Fetal Neurosonography
Reference, Year | Country | GA (wks) | Study Size (n) * | Data Source | Type of Method | Purpose /Target | Task | Description of AI | Clinical Value *** |
---|---|---|---|---|---|---|---|---|---|
Rizzo et al., 2016 [34] | I | 21 (mean) | 120 | 3D | n. s. | SFHP (axial) biometry | automated recognition of axial planes from 3D volumes | 5D CNS software | ++ |
Rizzo et al., 2016 [35] ** | I | 18–24 | 183 | 3D | n. s. | SFHP (axial/ sagittal/coronal) biometry | evaluation of efficacy in reconstructing CNS planes in healthy and abnormal fetuses | 5D CNS+ software | +++ |
Ambroise-Grandjean et al., 2018 [36] | F | 17–30 | 30 | 3D | n. s. | SFHP (axial) biometry (TT, TC) | automated identification of axial from 3DUS and measurement BPD and HC | SmartPlanes CNS | ++ |
Welp et al., 2020 [30] ** | D | 15–36 | 1110 | 3D | n. s. | SFHP (axial/ sagittal/coronal) biometry | validating of a volumetric approach for the detailed assessment of the fetal brain | 5D CNS+ software | +++ |
Pluym et al., 2021 [37] | USA | 18–22 | 143 | 3D | n. s. | SFHP (axial) biometry | evaluation of accuracy of automated 3DUS for fetal intracranial measurements | SonoCNS software | ++ |
Welp et al., 2022 [29] ** | D | 16–35 | 91 | 3D | n. s. | SFHP/anomalies biometry | evaluation of accuracy and reliability of a volumetric approach in abnormal CNSs | 5D CNS+ software | +++ |
Gembicki et al., 2023 [28] ** | D | 18–36 | 129 | 3D | n. s. | SFHP (axial/ sagittal/coronal) biometry | evaluation of accuracy and efficacy of AI-assisted biometric measurements of the fetal CNS | 5D CNS+ software, SonoCNS software | ++ |
Han et al., 2024 [38] | CHN | 18–42 | 642 | 2D | DL | Biometry (incl. HC, BPD, FOD, CER, CM, Vp) | automated measurement and quality assessment of nine biometric parameters | CUPID software | ++ |
Yaqub et al., 2012 [39] | UK | 19–24 | 30 | 3D | ML | multi-structure detection | localization of four local brain structures in 3D US images | Random Forest Classifier | ++ |
Cuingnet et al., 2013 [40] | UK | 19–24 | 78 volumes | 3D | ML | SFHP | fully automatic method to detect and align fetal heads in 3DUS | Random Forest Classifier, Template deformation | ++ |
Sofka et al., 2014 [41] | CZ | 16–35 | 2089 volumes | 3D | ML | SFHP | automatic detection and measurement of structures in CNS volumes | Integrated Detection Network (IDN)/FNN | + |
Namburete et al., 2015 [42] | UK | 18–34 | 187 | 3D | ML | sulcation/gyration | GA prediction | Regression Forest Classifier | ++ |
Yaqub et al., 2015 [43] | UK | 19–24 | 40 | 3D | ML | SFHP | extraction and categorization of unlabeled fetal US images | Random Forest Classifier | + |
Baumgartner et al., 2016 [44] | UK | 18–22 | 201 | 2D | DL | SFHP (TT, TC) | retrieval of standard planes, creation of saliency maps to extract bounding boxes of CNS anatomy | CNN | +++ |
Sridar et al., 2016 [45] | IND | 18–20 | 85 | 2D | DL | structure detection | image classification and structure localization in US images | CNN | + |
Yaqub et al., 2017 [46] | UK | 19–24 | 40 | 3D | DL | SFHP, CNS anomalies | localization of CNS, structure detection, pattern learning | Random Forest Classifier | + |
Qu et al., 2017 [47] | CHN | 16–34 | 155 | 2D | DL | SFHP | automated recognition of six standard CNS planes | CNN, Domain Transfer Learning | ++ |
Namburete et al., 2018 [25] | UK | 18–34 | 739 images | 2D/3D | DL | structure detection | 3D brain localization, structural segmentation and alignment | multi-task CNN | ++ |
Huang et al., 2018 [48] | CHN | 20–29 | 285 | 3D | DL | multi-structure detection | detection of CNS structures in 3DUS and measurements of CER/CM | VP-Net | ++ |
Huang et al., 2018 [49] | UK | 20–30 | 339 images | 2D | DL | structure detection (CC/CP) | standardize intracranial anatomy and measurements | Region descriptor, Boosting classifier | ++ |
van den Heuvel et al., 2018 [50] | NL | 10–40 | 1334 images | 2D | ML | biometry (HC) | automated measurement of fetal head circumference | Random Forest Classifier Hough transform | + |
Dou et al., 2019 [51] | CHN | 19–31 | 430 volumes | 3D | ML | SFHP/structure detection | automated localization of fetal brain standard planes in 3DUS | Reinforcement learning | ++ |
Sahli et al., 2019 [52] | TUN | n/a | 86 | 2D | ML | SFHP | automated extraction of biometric measurements and classification of normal/abnormal | SVM Classifier | ++ |
Alansary et al., 2019 [53] | UK | n/a | 72 | 3D | ML/DL | SFHP/structure detection | localization of target landmarks in medical scans | Reinforcement learning deep Q-Net | + |
Lin et al., 2019 [54] | CHN | 14–28 | 1771 images | 2D | DL | SFHP/structure detection | automated localization of six landmarks and quality assessments | MF R-CNN | + |
Bastiaansen et al., 2020 [55] | NL | 1st trimester | 30 | 2D/3D | DL | SFHP (TT) | fully automated spatial alignment and segmentation of embryonic brains in 3D US | CNN | + |
Xu et al., 2020 [56] | CHN | 2nd/3rd trimester | 3000 images | 2D | DL | SFHP | simulation of realistic 3rd- from 2nd-trimester images | Cycle-GAN | ++ |
Ramos et al., 2020 [57] | MEX | n/a | 78 images | 2D | DL | SFHP biometry (TC) GA prediction | detection and localization of cerebellum in US images, biometry for GA prediction | YOLO | + |
Maraci et al., 2020 [58] | UK | 2nd trim | 8736 images | 2D | DL | biometry (TC) GA prediction | estimation of GA through automatic detection and measurement of the TCD | CNN | + |
Chen et al., 2020 [59] | CHN | n/a | 2900 images | 2D | DL | SFHP biometry (TV) | demonstrate the superior performance of DL pipeline over manual measurements | Mask R-CNN ResNet50 | + |
Xie et al., 2020 [60] | CHN | 18–32 | 92,748 | 2D | DL | SFHP (TV, TC) CNS anomalies | image classification as normal or abnormal, segmentation of craniocerebral regions | U-Net VGG-Net | ++ |
Xie et al., 2020 [61] | CHN | 22–26 | 12,780 | 2D | DL | SFHP, CNS anomalies | binary image classification as normal or abnormal in standard axial planes | CNN | ++ |
Zeng et al., 2021 [62] | CHN | n/a | 1354 images | 2D | DL | biometry | image segmentation for automatic HC biometry | DAG V-Net | + |
Burgos Artizzu et al., 2021 [63] | ESP | 16–42 | 12,400 images (6041 CNS) | 2D | DL/ML | SFHP | evaluation of the maturity of current DL classifications tested in a real clinical environment | 19 different CNNs MC Boosting algorithm HOG classifier | ++ |
Gofer et al., 2021 [64] | IL | 12–14 | 80 images | 2D | ML | SFHP/structure detection (CP) | classification of 1st trimester CNS US images and earlier diagnosis of fetal brain abnormalities | Statistical Region Merging Trainable Weka Segmentation | + |
Skelton et al., 2021 [65] | UK | 20–32 | 48 | 2D/3D | DL | SFHP | assessment of image quality of CNS planes automatically extracted from 3D volumes | Iterative Transformation Network (ITN) | ++ |
Fiorentino et al., 2021 [66] | I | 10–40 | 1334 images | 2D | DL | biometry (HC) | head localization and centering | multi-task CNN | ++ |
Yeung et al., 2021 [67] | UK | 18–22 | 65 volumes | 2D/3D | DL | SFHP/structure detection | mapping 2D US images into 3D space with minimal annotation | CNN | |
Montero et al., 2021 [68] | ESP | 18–40 | 8747 images | 2D | DL | SFHP | generation of synthetic US images via GANs and improvement of SFHP classification | Style-GAN | ++ |
Moccia et al., 2021 [69] | I | 10–40 | 1334 images | 2D | DL | biometry (HC) | fully automated method for HC delineation | Mask-R2CNN | + |
Wyburd et al., 2021 [70] | UK | 19–30 | 811 images | 3D | DL | structure detection/ GA prediction | automated method to predict GA by cortical development | VGG-Net ResNet-18 ResNet-10 | ++ |
Shu et al., 2022 [71] | CHN | 18–26 | 959 images | 2D | DL | SFHP (TC) | automated segmentation of the cerebellum, comparison with other algorithms | ECAU-Net | + |
Hesse et al., 2022 [72] | UK | 18–26 | 278 images | 3D | DL | structure detection | automated segmentation of four CNS landmarks | CNN | +++ |
Di Vece et al., 2022 [73] | UK | 20–25 | 6 volumes | 2D | DL | SFHP/structure detection | estimation of the 6D pose of arbitrarily oriented US planes | ResNet-18 | ++ |
Lin et al., 2022 [74] | CHN | 18–40 | 16,297/166 | 2D | DL | structure detection | detection of different patterns of CNS anomalies in standard planes | PAICS YOLOv3 | +++ |
Sreelakshmy et al., 2022 [75] ‡ | IND | 18–20 | 740 images | 2D | DL | biometry (TC) | cerebellum segmentation from fetal brain images | ResU-Net | - |
Yu et al., 2022 [56] | CHN | n/a | 3200 images | 2D/3D | DL | SFHP | automated generation of coronal and sagittal SPs from axial planes derived from 3DVol | RL-Net | ++ |
Alzubaidi et al., 2022 [76] | QTAR | 18–40 | 551 | 2D | DL | biometry (HC) | GA and EFW prediction based on fetal head images | CNN, Ensemble Transfer Learning | ++ |
Coronado-Gutiérrez et al., 2023 [77] | ESP | 18–24 | 12,400 images | 2D | DL | SFHP, multi-structure delineation | automated measurement of brain structures | DeepLab CNNs | ++ |
Ghabri et al., 2023 [20] | TN | n/a | 896 | 2D | DL | SFHP | classify fetal planes/accurate fetal organ classification | CNN: DenseNet169 | ++ |
Lin et al., 2023 [78] | CHN | n/a | 558 (709 (images/videos) | 2D | DL | SFHP | improved detection efficacy of fetal intracranial malformations | PAICS YOLO | +++ |
Rauf et al., 2023 [79] | PK | n.s. | n.s. | 2D | DL | SFHP | Bayesian optimization for the classification of brain and common maternal fetal ultrasound planes | Bottleneck residual CNN | + |
Alzubaidi et al., 2023 [80] | QTAR | 18–40 | 3832 images | 2D | DL | SFHP | evaluation of a large-scale annotation dataset for head biometry in US images | multi-task CNN | + |
Alzubaidi et al., 2024 [81] | QTAR | 18–40 | 3832 images (20,692 images) | 2D | DL | biometry | advanced segmentation techniques for head biometrics in US imagery | FetSAM Prompt-based Learning | + |
Di Vece et al., 2024 [82] | UK | 20–25 | 6 volumes | 2D/3D | DL | SFHP (TV) | detection and segmentation of the brain; plane pose regression; measurement of proximity to target SP | ResNet-18 | ++ |
Yeung et al., 2024 [83] | UK | 19–21 | 128,256 images | 2D | DL | SFHP | reconstruction of brain volumes from freehand 2D US sequences | PlaneInVol ImplicitVol | ++ |
Dubey et al., 2024 [84] | IND | 10–40 | 1334 images | 2D | DL | biometry (HC) | automated head segmentation and HC measurement | DR-ASPnet, Robust Ellipse Fitting | ++ |
3.1. AI in GA Prediction
3.2. AI Used for Augmenting Fetal Pose Estimations and CNS Anomaly Assessments
3.3. Other Current AI Applications Related to Fetal Neurosonography
4. Perspectives
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Morris, J.K.; Wellesley, D.G.; Barisic, I.; Addor, M.-C.; Bergman, J.E.H.; Braz, P.; Cavero-Carbonell, C.; Draper, E.S.; Gatt, M.; Haeusler, M.; et al. Epidemiology of congenital cerebral anomalies in Europe: A multicentre, population-based EUROCAT study. Arch. Dis. Child. 2019, 104, 1181–1187. [Google Scholar] [CrossRef] [PubMed]
- Tagliabue, G.; Tessandori, R.; Caramaschi, F.; Fabiano, S.; Maghini, A.; Tittarelli, A.; Vergani, D.; Bellotti, M.; Pisani, S.; Gambino, M.L.; et al. Descriptive epidemiology of selected birth defects, areas of Lombardy, Italy, 1999. Popul. Health Metr. 2007, 5, 4. [Google Scholar] [CrossRef]
- Paladini, D.; Malinger, G.; Birnbaum, R.; Monteagudo, A.; Pilu, G.; Salomon, L.J.; Timor-Tritsch, I.E. ISUOG Practice Guidelines (updated): Sonographic examination of the fetal central nervous system. Part 2: Performance of targeted neurosonography. Ultrasound Obstet. Gynecol. 2021, 57, 661–671. [Google Scholar] [CrossRef] [PubMed]
- Yagel, S.; Valsky, D.V. Re: ISUOG Practice Guidelines (updated): Sonographic examination of the fetal central nervous system. Part 1: Performance of screening examination and indications for targeted neurosonography. Ultrasound Obstet. Gynecol. 2021, 57, 173–174. [Google Scholar] [CrossRef] [PubMed]
- Snoek, R.; Albers, M.E.W.A.; Mulder, E.J.H.; Lichtenbelt, K.D.; de Vries, L.S.; Nikkels, P.G.J.; Cuppen, I.; Pistorius, L.R.; Manten, G.T.R.; de Heus, R. Accuracy of diagnosis and counseling of fetal brain anomalies prior to 24 weeks of gestational age. J. Matern. Neonatal Med. 2018, 31, 2188–2194. [Google Scholar] [CrossRef] [PubMed]
- Group, E.W. Role of prenatal magnetic resonance imaging in fetuses with isolated mild or moderate ventriculomegaly in the era of neurosonography: International multicenter study. Ultrasound Obstet. Gynecol. 2020, 56, 340–347. [Google Scholar] [CrossRef]
- Dall’asta, A.; Paramasivam, G.; Basheer, S.N.; Whitby, E.; Tahir, Z.; Lees, C. How to obtain diagnostic planes of the fetal central nervous system using three-dimensional ultrasound and a context-preserving rendering technology. Am. J. Obstet. Gynecol. 2019, 220, 215–229. [Google Scholar] [CrossRef]
- Di Mascio, D.; Buca, D.; Rizzo, G.; Khalil, A.; Timor-Tritsch, I.E.; Odibo, A.; Mappa, I.; Flacco, M.E.; Giancotti, A.; Liberati, M.; et al. Methodological Quality of Fetal Brain Structure Charts for Screening Examination and Targeted Neurosonography: A Systematic Review. Fetal Diagn. Ther. 2022, 49, 145–158. [Google Scholar] [CrossRef]
- Boutet, M.L.; Eixarch, E.; Ahumada-Droguett, P.; Nakaki, A.; Crovetto, F.; Cívico, M.S.; Borrás, A.; Manau, D.; Gratacós, E.; Crispi, F.; et al. Fetal neurosonography and infant neurobehavior following conception by assisted reproductive technology with fresh or frozen embryo transfer. Ultrasound Obstet. Gynecol. 2022, 60, 646–656. [Google Scholar] [CrossRef]
- Bastiaansen, W.A.; Klein, S.; Koning, A.H.; Niessen, W.J.; Steegers-Theunissen, R.P.; Rousian, M. Computational methods for the analysis of early-pregnancy brain ultrasonography: A systematic review. EBioMedicine 2023, 89, 104466. [Google Scholar] [CrossRef]
- Horgan, R.; Nehme, L.; Abuhamad, A. Artificial intelligence in obstetric ultrasound: A scoping review. Prenat. Diagn. 2023, 43, 1176–1219. [Google Scholar] [CrossRef] [PubMed]
- Jost, E.; Kosian, P.; Cruz, J.J.; Albarqouni, S.; Gembruch, U.; Strizek, B.; Recker, F. Evolving the Era of 5D Ultrasound? A Systematic Literature Review on the Applications for Artificial Intelligence Ultrasound Imaging in Obstetrics and Gynecology. J. Clin. Med. 2023, 12, 6833. [Google Scholar] [CrossRef] [PubMed]
- Torres, H.R.; Morais, P.; Oliveira, B.; Birdir, C.; Rüdiger, M.; Fonseca, J.C.; Vilaça, J.L. A review of image processing methods for fetal head and brain analysis in ultrasound images. Comput. Methods Programs Biomed. 2022, 215, 106629. [Google Scholar] [CrossRef] [PubMed]
- Xiao, S.; Zhang, J.; Zhu, Y.; Zhang, Z.; Cao, H.; Xie, M.; Zhang, L. Application and Progress of Artificial Intelligence in Fetal Ultrasound. J. Clin. Med. 2023, 12, 3298. [Google Scholar] [CrossRef] [PubMed]
- Dhombres, F.; Bonnard, J.; Bailly, K.; Maurice, P.; Papageorghiou, A.T.; Jouannic, J.-M. Contributions of Artificial Intelligence Reported in Obstetrics and Gynecology Journals: Systematic Review. J. Med. Internet Res. 2022, 24, e35465. [Google Scholar] [CrossRef]
- Yousef, R.; Gupta, G.; Yousef, N.; Khari, M. A holistic overview of deep learning approach in medical imaging. Multimed. Syst. 2022, 28, 881–914. [Google Scholar] [CrossRef]
- Drukker, L.; Noble, J.A.; Papageorghiou, A.T. Introduction to artificial intelligence in ultrasound imaging in obstetrics and gynecology. Ultrasound Obstet. Gynecol. 2020, 56, 498–505. [Google Scholar] [CrossRef]
- Fiorentino, M.C.; Villani, F.P.; Di Cosmo, M.; Frontoni, E.; Moccia, S. A review on deep-learning algorithms for fetal ultrasound-image analysis. Med. Image Anal. 2023, 83, 102629. [Google Scholar] [CrossRef]
- Zegarra, R.R.; Ghi, T. Use of artificial intelligence and deep learning in fetal ultrasound imaging. Ultrasound Obstet. Gynecol. 2023, 62, 185–194. [Google Scholar] [CrossRef]
- Ghabri, H.; Alqahtani, M.S.; Ben Othman, S.; Al-Rasheed, A.; Abbas, M.; Almubarak, H.A.; Sakli, H.; Abdelkarim, M.N. Transfer learning for accurate fetal organ classification from ultrasound images: A potential tool for maternal healthcare providers. Sci. Rep. 2023, 13, 17904. [Google Scholar] [CrossRef]
- Box, G.E.P. Robustness in the Strategy of Scientific Model Building. In Robustness in Statistics; Launer, R.L., Wilkinson, G.N., Eds.; Academic Press: Cambridge, MA, USA, 1979; pp. 201–236. [Google Scholar]
- Yeo, L.; Romero, R. New and advanced features of fetal intelligent navigation echocardiography (FINE) or 5D heart. J. Matern. Neonatal Med. 2022, 35, 1498–1516. [Google Scholar] [CrossRef] [PubMed]
- Namburete, A.I.; Papież, B.W.; Fernandes, M.; Wyburd, M.K.; Hesse, L.S.; Moser, F.A.; Ismail, L.C.; Gunier, R.B.; Squier, W.; Ohuma, E.O.; et al. Normative spatiotemporal fetal brain maturation with satisfactory development at 2 years. Nature 2023, 623, 106–114. [Google Scholar] [CrossRef] [PubMed]
- Moser, F.; Huang, R.; Papież, B.W.; Namburete, A.I.L. BEAN: Brain Extraction and Alignment Network for 3D Fetal Neuro sonography. Neuroimage 2022, 258, 119341. [Google Scholar] [CrossRef] [PubMed]
- Namburete, A.I.; Xie, W.; Yaqub, M.; Zisserman, A.; Noble, J.A. Fully-automated alignment of 3D fetal brain ultrasound to a canonical reference space using multi-task learning. Med. Image Anal. 2018, 46, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Moser, F.; Huang, R.; Papageorghiou, A.T.; Papież, B.W.; Namburete, A. Automated Fetal Brain Extraction from Clinical Ultrasound Volumes Using 3d Convolutional Neural Networks; Springer International Publishing: Cham, Switzerland, 2020. [Google Scholar]
- Gholipour, A.; Rollins, C.K.; Velasco-Annis, C.; Ouaalam, A.; Akhondi-Asl, A.; Afacan, O.; Ortinau, C.M.; Clancy, S.; Limperopoulos, C.; Yang, E.; et al. A normative spatiotemporal MRI atlas of the fetal brain for automatic segmentation and analysis of early brain growth. Sci. Rep. 2017, 7, 476. [Google Scholar] [CrossRef]
- Gembicki, M.; Welp, A.; Scharf, J.L.; Dracopoulos, C.; Weichert, J. A Clinical Approach to Semiautomated Three-Dimensional Fetal Brain Biometry-Comparing the Strengths and Weaknesses of Two Diagnostic Tools: 5DCNS+(TM) and SonoCNS(TM). J. Clin. Med. 2023, 12, 5334. [Google Scholar] [CrossRef]
- Welp, A.; Gembicki, M.; Dracopoulos, C.; Scharf, J.L.; Rody, A.; Weichert, J. Applicability of a semiautomated volumetric approach (5D CNS+™) for detailed antenatal reconstruction of abnormal fetal CNS anatomy. BMC Med. Imaging 2022, 22, 154. [Google Scholar] [CrossRef]
- Welp, A.; Gembicki, M.; Rody, A.; Weichert, J. Validation of a semiautomated volumetric approach for fetal neurosonography using 5DCNS+ in clinical data from >1100 consecutive pregnancies. Child’s Nerv. Syst. 2020, 36, 2989–2995. [Google Scholar] [CrossRef]
- Lu, J.L.A.; Resta, S.; Marra, M.C.; Patelli, C.; Stefanachi, V.; Rizzo, G. Validation of an automatic software in assessing fetal brain volume from three dimensional ultrasonographic volumes: Comparison with manual analysis. J. Clin. Ultrasound 2023, 51, 1146–1151. [Google Scholar] [CrossRef]
- Alzubaidi, M.; Agus, M.; Alyafei, K.; Althelaya, K.A.; Shah, U.; Abd-Alrazaq, A.; Anbar, M.; Makhlouf, M.; Househ, M. Toward deep observation: A systematic survey on artificial intelligence techniques to monitor fetus via ultrasound images. iScience 2022, 25, 104713. [Google Scholar] [CrossRef]
- TTang, X. The role of artificial intelligence in medical imaging research. BJR Open 2020, 2, 20190031. [Google Scholar] [CrossRef] [PubMed]
- Rizzo, G.; Aiello, E.; Pietrolucci, M.E.; Arduini, D. The feasibility of using 5D CNS software in obtaining standard fetal head measurements from volumes acquired by three-dimensional ultrasonography: Comparison with two-dimensional ultrasound. J. Matern. Neonatal Med. 2016, 29, 2217–2222. [Google Scholar] [CrossRef] [PubMed]
- Rizzo, G.; Capponi, A.; Persico, N.; Ghi, t.; Nazzaro, g.; Boito, s.; Pietrolucci, M.E.; Arduini, D. 5D CNS+ Software for Automatically Imaging Axial, Sagittal, and Coronal Planes of Normal and Abnormal Second-Trimester Fetal Brains. J. Ultrasound Med. 2016, 35, 2263–2272. [Google Scholar] [CrossRef] [PubMed]
- Grandjean, G.A.; Hossu, G.; Bertholdt, C.; Noble, P.; Morel, O.; Grangé, G. Artificial intelligence assistance for fetal head biometry: Assessment of automated measurement software. Diagn. Interv. Imaging 2018, 99, 709–716. [Google Scholar] [CrossRef]
- Pluym, I.D.; Afshar, Y.; Holliman, K.; Kwan, L.; Bolagani, A.; Mok, T.; Silver, B.; Ramirez, E.; Han, C.S.; Platt, L.D. Accuracy of automated three-dimensional ultrasound imaging technique for fetal head biometry. Ultrasound Obstet. Gynecol. 2021, 57, 798–803. [Google Scholar] [CrossRef]
- Han, X.; Yu, J.; Yang, X.; Chen, C.; Zhou, H.; Qiu, C.; Cao, Y.; Zhang, T.; Peng, M.; Zhu, G.; et al. Artificial intelligence assistance for fetal development: Evaluation of an automated software for biometry measurements in the mid-trimester. BMC Pregnancy Childbirth 2024, 24, 158. [Google Scholar] [CrossRef]
- Yaqub, M.; Napolitano, R.; Ioannou, C.; Papageorghiou, A.T.; Noble, J. Automatic detection of local fetal brain structures in ultrasound images. In Proceedings of the International Symposium on Biomedical Imaging, Barcelona, Spain, 2–5 May 2012; pp. 1555–1558. [Google Scholar]
- Cuingnet, R.; Somphone, O.; Mory, B.; Prevost, R.; Yaqub, M.; Napolitano, R.; Papageorghiou, A.; Roundhill, D.; Noble, J.A.; Ardon, R. Where is my baby? A fast fetal head auto-alignment in 3D-ultrasound. In Proceedings of the 2013 IEEE 10th International Symposium on Biomedical Imaging, San Francisco, CA, USA, 7–11 April 2013. [Google Scholar]
- Sofka, M.; Zhang, J.; Good, S.; Zhou, S.K.; Comaniciu, D. Automatic detection and measurement of structures in fetal head ultrasound volumes using sequential estimation and Integrated Detection Network (IDN). IEEE Trans. Med. Imaging 2014, 33, 1054–1070. [Google Scholar] [CrossRef]
- Namburete, A.I.; Stebbing, R.V.; Kemp, B.; Yaqub, M.; Papageorghiou, A.T.; Noble, J.A. Learning-based prediction of gestational age from ultrasound images of the fetal brain. Med. Image Anal. 2015, 21, 72–86. [Google Scholar] [CrossRef]
- Yaqub, M.; Kelly, B.; Papageorghiou, A.T.; Noble, J.A. Guided Random Forests for Identification of Key Fetal Anatomy and Image Categorization in Ultrasound Scans. In Proceedings of the Medical Image Computing and Computer-Assisted Intervention—MICCAI, Munich, Germany, 5–9 October 2015; Springer: Cham, Switzerland, 2015. [Google Scholar]
- Baumgartner, C.F.; Kamnitsas, K.; Matthew, J.; Smith, S.; Kainz, B.; Rueckert, D. Real-Time Standard Scan Plane Detection and Localisation in Fetal Ultrasound Using Fully Convolutional Neural Networks. In Proceedings of the Medical Image Computing and Computer-Assisted Intervention—MICCAI, Athens, Greece, 17–21 October 2016; Springer: Cham, Switzerland, 2016. [Google Scholar]
- Sridar, P.; Kumar, A.; Quinton, A.; Nanan, R.; Kim, J.; Krishnakumar, R. Decision Fusion-Based Fetal Ultrasound Image Plane Classification Using Convolutional Neural Networks. Ultrasound Med. Biol. 2019, 45, 1259–1273. [Google Scholar] [CrossRef]
- Yaqub, M.; Kelly, B.; Papageorghiou, A.T.; Noble, J.A. A Deep Learning Solution for Automatic Fetal Neurosonographic Diagnostic Plane Verification Using Clinical Standard Constraints. Ultrasound Med. Biol. 2017, 43, 2925–2933. [Google Scholar] [CrossRef]
- Qu, R.; Xu, G.; Ding, C.; Jia, W.; Sun, M. Deep Learning-Based Methodology for Recognition of Fetal Brain Standard Scan Planes in 2D Ultrasound Images. IEEE Access 2020, 8, 44443–44451. [Google Scholar] [CrossRef]
- Huang, R.; Xie, W.; Alison Noble, J. VP-Nets: Efficient automatic localization of key brain structures in 3D fetal neurosonography. Med. Image Anal. 2018, 47, 127–139. [Google Scholar] [CrossRef] [PubMed]
- Huang, R.; Namburete, A.; Noble, A. Learning to segment key clinical anatomical structures in fetal neurosonography informed by a region-based descriptor. J. Med. Imaging 2018, 5, 014007. [Google Scholar] [CrossRef] [PubMed]
- van den Heuvel, T.L.A.; de Bruijn, D.; de Korte, C.L.; Ginneken, B.V. Automated measurement of fetal head circumference using 2D ultrasound images. PLoS ONE 2018, 13, e0200412. [Google Scholar] [CrossRef]
- Dou, H.; Yang, X.; Qian, J.; Xue, W.; Qin, H.; Wang, X.; Yu, L.; Wang, S.; Xiong, Y.; Heng, P.A.; et al. Agent with Warm Start and Active Termination for Plane Localization in 3D Ultrasound. In Proceedings of the Medical Image Computing and Computer Assisted Intervention—MICCAI, Shenzhen, China, 13–17 October 2019; Springer: Cham, Switzerland, 2019. [Google Scholar]
- Sahli, H.; Mouelhi, A.; Ben Slama, A.; Sayadi, M.; Rachdi, R. Supervised classification approach of biometric measures for automatic fetal defect screening in head ultrasound images. J. Med. Eng. Technol. 2019, 43, 279–286. [Google Scholar] [CrossRef]
- Alansary, A.; Oktay, O.; Li, Y.; Le Folgoc, L.; Hou, B.; Vaillant, G.; Kamnitsas, K.; Vlontzos, A.; Glocker, B.; Kainz, B.; et al. Evaluating reinforcement learning agents for anatomical landmark detection. Med. Image Anal. 2019, 53, 156–164. [Google Scholar] [CrossRef]
- Lin, Z.; Li, S.; Ni, D.; Liao, Y.; Wen, H.; Du, J.; Chen, S.; Wang, T.; Lei, B. Multi-task learning for quality assessment of fetal head ultrasound images. Med. Image Anal. 2019, 58, 101548. [Google Scholar] [CrossRef]
- Bastiaansen, W.A.P.; Rousian, M.; Steegers-Theunissen, R.P.M.; Niessen, W.J.; Koning, A.; Klein, S. Towards Segmentation and Spatial Alignment of the Human Embryonic Brain Using Deep Learning for Atlas-Based Registration. In Proceedings of the Biomedical Image Registration, Portorož, Slovenia, 1–2 December 2020; Springer: Cham, Switzerland, 2020. [Google Scholar]
- Xu, Y.; Lee, L.H.; Drukker, L.; Yaqub, M.; Papageorghiou, A.T.; Noble, A.J. Simulating realistic fetal neurosonography images with appearance and growth change using cycle-consistent adversarial networks and an evaluation. J. Med. Imaging 2020, 7, 057001. [Google Scholar] [CrossRef]
- Ramos, R.; Olveres, J.; Escalante-Ramírez, B.; Arámbula Cosío, F. Deep Learning Approach for Cerebellum Localization in Prenatal Ultrasound Images; SPIE: Bellingham, WA, USA, 2020; Volume 11353. [Google Scholar]
- Maraci, M.A.; Yaqub, M.; Craik, R.; Beriwal, S.; Self, A.; von Dadelszen, P.; Papageorghiou, A.; Noble, J.A. Toward point-of-care ultrasound estimation of fetal gestational age from the trans-cerebellar diameter using CNN-based ultrasound image analysis. J. Med. Imaging 2020, 7, 014501. [Google Scholar] [CrossRef]
- Chen, X.; He, M.; Dan, T.; Wang, N.; Lin, M.; Zhang, L.; Xian, J.; Cai, H.; Xie, H. Automatic Measurements of Fetal Lateral Ventricles in 2D Ultrasound Images Using Deep Learning. Front. Neurol. 2020, 11, 526. [Google Scholar] [CrossRef]
- Xie, B.; Lei, T.; Wang, N.; Cai, H.; Xian, J.; He, M.; Zhang, L.; Xie, H. Computer-aided diagnosis for fetal brain ultrasound images using deep convolutional neural networks. Int. J. Comput. Assist. Radiol. Surg. 2020, 15, 1303–1312. [Google Scholar] [CrossRef] [PubMed]
- Xie, H.N.; Wang, N.; He, M.; Zhang, L.H.; Cai, H.M.; Xian, J.B.; Lin, M.F.; Zheng, J.; Yang, Y.Z. Using deep-learning algorithms to classify fetal brain ultrasound images as normal or abnormal. Ultrasound Obstet. Gynecol. 2020, 56, 579–587. [Google Scholar] [CrossRef] [PubMed]
- Zeng, Y.; Tsui, P.H.; Wu, W.; Zhou, Z.; Wu, S. Fetal Ultrasound Image Segmentation for Automatic Head Circumference Biometry Using Deeply Supervised Attention-Gated V-Net. J. Digit. Imaging 2021, 34, 134–148. [Google Scholar] [CrossRef] [PubMed]
- Burgos-Artizzu, X.P.; Coronado-Gutiérrez, D.; Valenzuela-Alcaraz, B.; Vellvé, K.; Eixarch, E.; Crispi, F.; Bonet-Carne, E.; Bennasar, M.; Gratacos, E. Analysis of maturation features in fetal brain ultrasound via artificial intelligence for the estimation of gestational age. Am. J. Obstet. Gynecol. MFM 2021, 3, 100462. [Google Scholar] [CrossRef] [PubMed]
- Gofer, S.; Haik, O.; Bardin, R.; Gilboa, Y.; Perlman, S. Machine Learning Algorithms for Classification of First-Trimester Fetal Brain Ultrasound Images. J. Ultrasound Med. Off. J. Am. Inst. Ultrasound Med. 2022, 41, 1773–1779. [Google Scholar] [CrossRef]
- Skelton, E.; Matthew, J.; Li, Y.; Khanal, B.; Martinez, J.C.; Toussaint, N.; Gupta, C.; Knight, C.; Kainz, B.; Hajnal, J.; et al. Towards automated extraction of 2D standard fetal head planes from 3D ultrasound acquisitions: A clinical evaluation and quality assessment comparison. Radiography 2021, 27, 519–526. [Google Scholar] [CrossRef]
- Yeung, P.-H.; Aliasi, M.; Papageorghiou, A.T.; Haak, M.; Xie, W.; Namburete, A.I. Learning to map 2D ultrasound images into 3D space with minimal human annotation. Med. Image Anal. 2021, 70, 101998. [Google Scholar] [CrossRef]
- Montero, A.; Bonet-Carne, E.; Burgos-Artizzu, X.P. Generative Adversarial Networks to Improve Fetal Brain Fine-Grained Plane Classification. Sensors 2021, 21, 7975. [Google Scholar] [CrossRef]
- Moccia, S.; Fiorentino, M.C.; Frontoni, E. Mask-R2CNN: A distance-field regression version of Mask-RCNN for fetal-head delineation in ultrasound images. Int. J. Comput. Assist. Radiol. Surg. 2021, 16, 1711–1718. [Google Scholar] [CrossRef]
- Wyburd, M.K.; Hesse, L.S.; Aliasi, M.; Jenkinson, M.; Papageorghiou, A.T.; Haak, M.C.; Namburete, A.I. Assessment of Regional Cortical Development Through Fissure Based Gestational Age Estimation in 3D Fetal Ultrasound. In Proceedings of the Uncertainty for Safe Utilization of Machine Learning in Medical Imaging, and Perinatal Imaging, Placental and Preterm Image Analysis, Strasbourg, France, 1 October 2021; Springer: Cham, Switzerland, 2021. [Google Scholar]
- Shu, X.; Chang, F.; Zhang, X.; Shao, C.; Yang, X. ECAU-Net: Efficient channel attention U-Net for fetal ultrasound cerebellum segmentation. Biomed. Signal Process. Control. 2022, 75, 103528. [Google Scholar] [CrossRef]
- Hesse, L.S.; Aliasi, M.; Moser, F.; INTERGROWTH-21(st) Consortium; Haak, M.C.; Xie, W.; Jenkinson, M.; Namburete, A.I. Subcortical segmentation of the fetal brain in 3D ultrasound using deep learning. NeuroImage 2022, 254, 119117. [Google Scholar] [CrossRef]
- Di Vece, C.; Dromey, B.; Vasconcelos, F.; David, A.L.; Peebles, D.; Stoyanov, D. Deep learning-based plane pose regression in obstetric ultrasound. Int. J. Comput. Assist. Radiol. Surg. 2022, 17, 833–839. [Google Scholar] [CrossRef] [PubMed]
- Lin, M.; He, X.; Guo, H.; He, M.; Zhang, L.; Xian, J.; Lei, T.; Xu, Q.; Zheng, J.; Feng, J.; et al. Use of real-time artificial intelligence in detection of abnormal image patterns in standard sonographic reference planes in screening for fetal intracranial malformations. Ultrasound Obstet. Gynecol. 2022, 59, 304–316. [Google Scholar] [CrossRef] [PubMed]
- Sreelakshmy, R.; Titus, A.; Sasirekha, N.; Logashanmugam, E.; Begam, R.B.; Ramkumar, G.; Raju, R. An Automated Deep Learning Model for the Cerebellum Segmentation from Fetal Brain Images. BioMed Res. Int. 2022, 2022, 8342767. [Google Scholar] [CrossRef] [PubMed]
- Alzubaidi, M.; Agus, M.; Shah, U.; Makhlouf, M.; Alyafei, K.; Househ, M. Ensemble Transfer Learning for Fetal Head Analysis: From Segmentation to Gestational Age and Weight Prediction. Diagnostics 2022, 12, 2229. [Google Scholar] [CrossRef]
- Coronado-Gutiérrez, D.; Eixarch, E.; Monterde, E.; Matas, I.; Traversi, P.; Gratacós, E.; Bonet-Carne, E.; Burgos-Artizzu, X.P. Automatic Deep Learning-Based Pipeline for Automatic Delineation and Measurement of Fetal Brain Structures in Routine Mid-Trimester Ultrasound Images. Fetal Diagn. Ther. 2023, 50, 480–490. [Google Scholar] [CrossRef]
- Lin, M.; Zhou, Q.; Lei, T.; Shang, N.; Zheng, Q.; He, X.; Wang, N.; Xie, H. Deep learning system improved detection efficacy of fetal intracranial malformations in a randomized controlled trial. NPJ Digit. Med. 2023, 6, 191. [Google Scholar] [CrossRef]
- Rauf, F.; Khan, M.A.; Bashir, A.K.; Jabeen, K.; Hamza, A.; Alzahrani, A.I.; Alalwan, N.; Masood, A. Automated deep bottleneck residual 82-layered architecture with Bayesian optimization for the classification of brain and common maternal fetal ultrasound planes. Front. Med. 2023, 10, 1330218. [Google Scholar] [CrossRef]
- Alzubaidi, M.; Agus, M.; Makhlouf, M.; Anver, F.; Alyafei, K.; Househ, M. Large-scale annotation dataset for fetal head biometry in ultrasound images. Data Brief 2023, 51, 109708. [Google Scholar] [CrossRef]
- Alzubaidi, M.; Shah, U.; Agus, M.; Househ, M. FetSAM: Advanced Segmentation Techniques for Fetal Head Biometrics in Ultrasound Imagery. IEEE Open J. Eng. Med. Biol. 2024, 5, 281–295. [Google Scholar] [CrossRef]
- Di Vece, C.; Cirigliano, A.; Le Lous, M.; Napolitano, R.; David, A.L.; Peebles, D.; Jannin, P.; Vasconcelos, F.; Stoyanov, D. Measuring proximity to standard planes during fetal brain ultrasound scanning. arXiv 2024, arXiv:2404.07124. [Google Scholar]
- Yeung, P.-H.; Hesse, L.S.; Aliasi, M.; Haak, M.C.; Xie, W.; Namburete, A.I. Sensorless volumetric reconstruction of fetal brain freehand ultrasound scans with deep implicit representation. Med. Image Anal. 2024, 94, 103147. [Google Scholar] [CrossRef] [PubMed]
- Dubey, G.; Srivastava, S.; Jayswal, A.K.; Saraswat, M.; Singh, P.; Memoria, M. Fetal Ultrasound Segmentation and Measurements Using Appearance and Shape Prior Based Density Regression with Deep CNN and Robust Ellipse Fitting. J. Imaging Inform. Med. 2024, 37, 247–267. [Google Scholar] [CrossRef] [PubMed]
- Pokaprakarn, T.; Prieto, J.C.; Price, J.T.; Kasaro, M.P.; Sindano, N.; Shah, H.R.; Peterson, M.; Akapelwa, M.M.; Kapilya, F.M.; Sebastião, Y.V.; et al. AI Estimation of Gestational Age from Blind Ultrasound Sweeps in Low-Resource Settings. NEJM Evid. 2022, 1, EVIDoa2100058. [Google Scholar] [CrossRef] [PubMed]
- Lee, L.H.; Bradburn, E.; Craik, R.; Yaqub, M.; Norris, S.A.; Ismail, L.C.; Ohuma, E.O.; Barros, F.C.; Lambert, A.; Carvalho, M.; et al. Machine learning for accurate estimation of fetal gestational age based on ultrasound images. NPJ Digit. Med. 2023, 6, 36. [Google Scholar] [CrossRef]
- Lee, C.; Willis, A.; Chen, C.; Sieniek, M.; Watters, A.; Stetson, B.; Uddin, A.; Wong, J.; Pilgrim, R.; Chou, K.; et al. Development of a Machine Learning Model for Sonographic Assessment of Gestational Age. JAMA Netw. Open 2023, 6, e2248685. [Google Scholar] [CrossRef]
- Chen, C.; Yang, X.; Huang, Y.; Shi, W.; Cao, Y.; Luo, M.; Hu, X.; Zhu, L.; Yu, L.; Yue, K.; et al. FetusMapV2: Enhanced Fetal Pose Estimation in 3D Ultrasound. Medical Image Analysis. Med. Image Anal. 2024, 91, 103013. [Google Scholar] [CrossRef]
- Yeung, P.-H.; Aliasi, M.; Haak, M.; Xie, W.; Namburete, A.I.L. Adaptive 3D Localization of 2D Freehand Ultrasound Brain Images. In Proceedings of the Medical Image Computing and Computer Assisted Intervention—MICCAI, Singapore, 18–22 September 2022; Springer: Cham, Switzerland, 2022. [Google Scholar]
- Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative Adversarial Nets. In Proceedings of the Neural Information Processing Systems, Montreal, QC, Canada, 8–13 December 2014. [Google Scholar]
- Wang, R.; Bashyam, V.; Yang, Z.; Yu, F.; Tassopoulou, V.; Chintapalli, S.S.; Skampardoni, I.; Sreepada, L.P.; Sahoo, D.; Nikita, K.; et al. Applications of generative adversarial networks in neuroimaging and clinical neuroscience. Neuroimage 2023, 269, 119898. [Google Scholar] [CrossRef]
- Lasala, A.; Fiorentino, M.C.; Micera, S.; Bandini, A.; Moccia, S. Exploiting class activation mappings as prior to generate fetal brain ultrasound images with GANs. In Proceedings of the 2023 45th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Sydney, Australia, 24–27 July 2023; Volume 2023, pp. 1–4. [Google Scholar]
- Wolterink, J.M.; Mukhopadhyay, A.; Leiner, T.; Vogl, T.J.; Bucher, A.M.; Išgum, I. Generative Adversarial Networks: A Primer for Radiologists. RadioGraphics 2021, 41, 840–857. [Google Scholar] [CrossRef]
- Lasala, A.; Fiorentino, M.C.; Bandini, A.; Moccia, S. FetalBrainAwareNet: Bridging GANs with anatomical insight for fetal ultrasound brain plane synthesis. Comput. Med. Imaging Graph. 2024, 116, 102405. [Google Scholar] [CrossRef]
- Iskandar, M.; Mannering, H.; Sun, Z.; Matthew, J.; Kerdegari, H.; Peralta, L.; Xochicale, M. Towards Realistic Ultrasound Fetal Brain Imaging Synthesis. arXiv 2023, arXiv:2304.03941. [Google Scholar]
- Zhang, L.; Zhang, J. Ultrasound image denoising using generative adversarial networks with residual dense connectivity and weighted joint loss. PeerJ Comput. Sci. 2022, 8, e873. [Google Scholar] [CrossRef]
- Eid, M.C.; Yeung, P.-H.; Wyburd, M.K.; Henriques, J.F.; Namburete, A.I.L. RapidVol: Rapid Reconstruction of 3D Ultrasound Volumes from Sensorless 2D Scans. arXiv 2024, arXiv:2404.10766. [Google Scholar]
- Altmäe, S.; Sola-Leyva, A.; Salumets, A. Artificial intelligence in scientific writing: A friend or a foe? Reprod. Biomed. Online 2023, 47, 3–9. [Google Scholar] [CrossRef] [PubMed]
- Bhayana, R. Chatbots and Large Language Models in Radiology: A Practical Primer for Clinical and Research Applications. Radiology 2024, 310, e232756. [Google Scholar] [CrossRef] [PubMed]
- Grünebaum, A.; Chervenak, J.; Pollet, S.L.; Katz, A.; Chervenak, F.A. The exciting potential for ChatGPT in obstetrics and gynecology. Am. J. Obstet. Gynecol. 2023, 228, 696–705. [Google Scholar] [CrossRef]
- Lee, Y.; Kim, S.Y. Potential applications of ChatGPT in obstetrics and gynecology in Korea: A review article. Obstet. Gynecol. Sci. 2024, 67, 153–159. [Google Scholar] [CrossRef]
- Youssef, A. Unleashing the AI revolution: Exploring the capabilities and challenges of large language models and text-to-image AI programs. Ultrasound Obstet. Gynecol. 2023, 62, 308–312. [Google Scholar] [CrossRef]
- Titus, L.M. Does ChatGPT have semantic understanding? A problem with the statistics-of-occurrence strategy. Cogn. Syst. Res. 2024, 83, 101174. [Google Scholar] [CrossRef]
- Kopylov, L.G.; Goldrat, I.; Maymon, R.; Svirsky, R.; Wiener, Y.; Klang, E. Utilizing ChatGPT to facilitate referrals for fetal echocardiography. Fetal Diagn. Ther. 2024. [Google Scholar] [CrossRef]
- Braun, E.-M.; Juhasz-Böss, I.; Solomayer, E.-F.; Truhn, D.; Keller, C.; Heinrich, V.; Braun, B.J. Will I soon be out of my job? Quality and guideline conformity of ChatGPT therapy suggestions to patient inquiries with gynecologic symptoms in a palliative setting. Arch. Gynecol. Obstet. 2024, 309, 1543–1549. [Google Scholar] [CrossRef] [PubMed]
- Haverkamp, W.; Tennenbaum, J.; Strodthoff, N. ChatGPT fails the test of evidence-based medicine. Eur. Hear. J. Digit. Health 2023, 4, 366–367. [Google Scholar] [CrossRef] [PubMed]
- Fischer, A.; Rietveld, A.; Teunissen, P.; Hoogendoorn, M.; Bakker, P. What is the future of artificial intelligence in obstetrics? A qualitative study among healthcare professionals. BMJ Open 2023, 13, e076017. [Google Scholar] [CrossRef] [PubMed]
- Rahman, R.; Alam, M.G.R.; Reza, M.T.; Huq, A.; Jeon, G.; Uddin, Z.; Hassan, M.M. Demystifying evidential Dempster Shafer-based CNN architecture for fetal plane detection from 2D ultrasound images leveraging fuzzy-contrast enhancement and explainable AI. Ultrasonics 2023, 132, 107017. [Google Scholar] [CrossRef] [PubMed]
- Harikumar, A.; Surendran, S.; Gargi, S. Explainable AI in Deep Learning Based Classification of Fetal Ultrasound Image Planes. Procedia Comput. Sci. 2024, 233, 1023–1033. [Google Scholar] [CrossRef]
- Pegios, P.; Lin, M.; Weng, N.; Svendsen, M.B.S.; Bashir, Z.; Bigdeli, S.; Christensen, A.N.; Tolsgaard, M.; Feragen, A. Diffusion-based Iterative Counterfactual Explanations for Fetal Ultrasound Image Quality Assessment. arXiv 2024, arXiv:2403.08700. [Google Scholar]
- Chen, H.; Gomez, C.; Huang, C.-M.; Unberath, M. Explainable medical imaging AI needs human-centered design: Guidelines and evidence from a systematic review. NPJ Digit. Med. 2022, 5, 156. [Google Scholar] [CrossRef]
- Jin, W.; Li, X.; Fatehi, M.; Hamarneh, G. Guidelines and evaluation of clinical explainable AI in medical image analysis. Med Image Anal. 2023, 84, 102684. [Google Scholar] [CrossRef]
- Sendra-Balcells, C.; Campello, V.M.; Torrents-Barrena, J.; Ahmed, Y.A.; Elattar, M.; Ohene-Botwe, B.; Nyangulu, P.; Stones, W.; Ammar, M.; Benamer, L.N.; et al. Generalisability of fetal ultrasound deep learning models to low-resource imaging settings in five African countries. Sci. Rep. 2023, 13, 2728. [Google Scholar]
- Tonni, G.; Grisolia, G. Simulator, machine learning, and artificial intelligence: Time has come to assist prenatal ultrasound diagnosis. J. Clin. Ultrasound 2023, 51, 1164–1165. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Weichert, J.; Scharf, J.L. Advancements in Artificial Intelligence for Fetal Neurosonography: A Comprehensive Review. J. Clin. Med. 2024, 13, 5626. https://doi.org/10.3390/jcm13185626
Weichert J, Scharf JL. Advancements in Artificial Intelligence for Fetal Neurosonography: A Comprehensive Review. Journal of Clinical Medicine. 2024; 13(18):5626. https://doi.org/10.3390/jcm13185626
Chicago/Turabian StyleWeichert, Jan, and Jann Lennard Scharf. 2024. "Advancements in Artificial Intelligence for Fetal Neurosonography: A Comprehensive Review" Journal of Clinical Medicine 13, no. 18: 5626. https://doi.org/10.3390/jcm13185626
APA StyleWeichert, J., & Scharf, J. L. (2024). Advancements in Artificial Intelligence for Fetal Neurosonography: A Comprehensive Review. Journal of Clinical Medicine, 13(18), 5626. https://doi.org/10.3390/jcm13185626