Associations Between High-Density Lipoprotein Cholesterol Efflux and Brain Grey Matter Volume
Abstract
:1. Introduction
2. Materials and Methods
2.1. Lipoprotein Characterization and HDL-Cholesterol Efflux Capacity (HDL-CEC)
2.2. Brain Magnetic Resonance Imaging (Brain MRI)
2.3. The Montreal Cognitive Assessment (MoCA)
2.4. Physical Activity Assessment
2.5. Apolipoprotein E (ApoE) Genotyping
2.6. Statistical Analysis
3. Results
3.1. Participant Characteristics
3.2. Association between HDL Measures and Brain Structure
3.3. Association Between HDL Measures and Cognitive Function
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Yaffe, K.; Vittinghoff, E.; Pletcher, M.J.; Hoang, T.D.; Launer, L.J.; Whitmer, R.A.; Coker, L.H.; Sidney, S. Early Adult to Midlife Cardiovascular Risk Factors and Cognitive Function. Circulation 2014, 129, 1560–1567. [Google Scholar] [CrossRef] [PubMed]
- Gottesman, R.F.; Schneider, A.L.C.; Zhou, Y.; Coresh, J.; Green, E.; Gupta, N.; Knopman, D.S.; Mintz, A.; Rahmim, A.; Sharrett, A.R.; et al. Association Between Midlife Vascular Risk Factors and Estimated Brain Amyloid Deposition. JAMA 2017, 317, 1443–1450. [Google Scholar] [CrossRef] [PubMed]
- Kivipelto, M.; Helkala, E.-L.; Laakso, M.P.; Hänninen, T.; Hallikainen, M.; Alhainen, K.; Soininen, H.; Tuomilehto, J.; Nissinen, A. Midlife vascular risk factors and Alzheimer’s disease in later life: Longitudinal, population based study. BMJ 2001, 322, 1447–1451. [Google Scholar] [CrossRef]
- Solomon, A.; Kivipelto, M.; Wolozin, B.; Zhou, J.; Whitmer, R.A. Midlife Serum Cholesterol and Increased Risk of Alzheimer’s and Vascular Dementia Three Decades Later. Dement. Geriatr. Cogn. Disord. 2009, 28, 75–80. [Google Scholar] [CrossRef]
- Bates, K.A.; Sohrabi, H.R.; Rainey-Smith, S.R.; Weinborn, M.; Bucks, R.S.; Rodrigues, M.; Beilby, J.; Howard, M.; Taddei, K.; Martins, G.; et al. Serum high-density lipoprotein is associated with better cognitive function in a cross-sectional study of aging women. Int. J. Neurosci. 2016, 127, 243–252. [Google Scholar] [CrossRef]
- Crichton, G.E.; Elias, M.F.; Davey, A.; Sullivan, K.J.; Robbins, M.A. Higher HDL Cholesterol Is Associated with Better Cognitive Function: The Maine-Syracuse Study. J. Int. Neuropsychol. Soc. 2014, 20, 961–970. [Google Scholar] [CrossRef]
- Iqbal, G.; Braidy, N.; Ahmed, T. Blood-Based Biomarkers for Predictive Diagnosis of Cognitive Impairment in a Pakistani Population. Front. Aging Neurosci. 2020, 12, 223. [Google Scholar] [CrossRef] [PubMed]
- Reed, B.; Villeneuve, S.; Mack, W.; DeCarli, C.; Chui, H.C.; Jagust, W. Associations Between Serum Cholesterol Levels and Cerebral Amyloidosis. JAMA Neurol. 2014, 71, 195–200. [Google Scholar] [CrossRef] [PubMed]
- Armstrong, N.M.; An, Y.; Beason-Held, L.; Doshi, J.; Erus, G.; Ferrucci, L.; Davatzikos, C.; Resnick, S.M. Predictors of neurodegeneration differ between cognitively normal and subsequently impaired older adults. Neurobiol. Aging 2018, 75, 178–186. [Google Scholar] [CrossRef]
- Turri, M.; Marchi, C.; Adorni, M.P.; Calabresi, L.; Zimetti, F. Emerging role of HDL in brain cholesterol metabolism and neurodegenerative disorders. Biochim. Biophys. Acta (BBA)—Mol. Cell Biol. Lipids 2022, 1867, 159123. [Google Scholar] [CrossRef]
- Peters, R.; Xu, Y.; Antikainen, R.; Beckett, N.; Gussekloo, J.; Jagger, C.; Jukema, J.W.; Keinanen-Kiukaanniemi, S.; Rydén, L.; Skoog, I.; et al. Evaluation of High Cholesterol and Risk of Dementia and Cognitive Decline in Older Adults Using Individual Patient Meta-Analysis. Dement. Geriatr. Cogn. Disord. 2021, 50, 318–325. [Google Scholar] [CrossRef] [PubMed]
- Iwagami, M.; Qizilbash, N.; Gregson, J.; Douglas, I.; Johnson, M.; Pearce, N.; Evans, S.; Pocock, S. Blood cholesterol and risk of dementia in more than 1·8 million people over two decades: A retrospective cohort study. Lancet Health. Longev. 2021, 2, e498–e506. [Google Scholar] [CrossRef] [PubMed]
- Schilling, S.; Tzourio, C.; Soumaré, A.; Kaffashian, S.; Dartigues, J.-F.; Ancelin, M.-L.; Samieri, C.; Dufouil, C.; Debette, S. Differential associations of plasma lipids with incident dementia and dementia subtypes in the 3C Study: A longitudinal, population-based prospective cohort study. PLoS Med. 2017, 14, e1002265. [Google Scholar] [CrossRef] [PubMed]
- Rohatgi, A.; Westerterp, M.; von Eckardstein, A.; Remaley, A.; Rye, K.-A. HDL in the 21st Century: A Multifunctional Roadmap for Future HDL Research. Circulation 2021, 143, 2293–2309. [Google Scholar] [CrossRef]
- Rohatgi, A.; Khera, A.; Berry, J.D.; Givens, E.G.; Ayers, C.R.; Wedin, K.E.; Neeland, I.J.; Yuhanna, I.S.; Rader, D.R.; de Lemos, J.A.; et al. HDL Cholesterol Efflux Capacity and Incident Cardiovascular Events. N. Engl. J. Med. 2014, 371, 2383–2393. [Google Scholar] [CrossRef]
- Ye, H.; Xu, G.; Ren, L.; Peng, J. Cholesterol efflux capacity in coronary artery disease: A meta-analysis. Coron. Artery Dis. 2020, 31, 642–649. [Google Scholar] [CrossRef]
- Abramov, A.Y.; Ionov, M.; Pavlov, E.; Duchen, M.R. Membrane cholesterol content plays a key role in the neurotoxicity of β-amyloid: Implications for Alzheimer’s disease. Aging Cell 2011, 10, 595–603. [Google Scholar] [CrossRef]
- Ko, Y.-A.; Billheimer, J.T.; Lyssenko, N.N.; Kueider-Paisley, A.; Wolk, D.A.; Arnold, S.E.; Leung, Y.Y.; Shaw, L.M.; Trojanowski, J.Q.; Kaddurah-Daouk, R.F.; et al. ApoJ/Clusterin concentrations are determinants of cerebrospinal fluid cholesterol efflux capacity and reduced levels are associated with Alzheimer’s disease. Alzheimer’s Res. Ther. 2022, 14, 1–12. [Google Scholar] [CrossRef]
- Marchi, C.; Adorni, M.P.; Caffarra, P.; Ronda, N.; Spallazzi, M.; Barocco, F.; Galimberti, D.; Bernini, F.; Zimetti, F. ABCA1- and ABCG1-mediated cholesterol efflux capacity of cerebrospinal fluid is impaired in Alzheimer’s disease. J. Lipid Res. 2019, 60, 1449–1456. [Google Scholar] [CrossRef]
- Yassine, H.N.; Feng, Q.; Chiang, J.; Petrosspour, L.M.; Fonteh, A.N.; Chui, H.C.; Harrington, M.G. ABCA1-Mediated Cholesterol Efflux Capacity to Cerebrospinal Fluid Is Reduced in Patients With Mild Cognitive Impairment and Alzheimer’s Disease. J. Am. Hear. Assoc. 2016, 5. [Google Scholar] [CrossRef]
- Lakoski, S.G.; Kozlitina, J. Ethnic Differences in Physical Activity and Metabolic Risk. Med. Sci. Sports Exerc. 2014, 46, 1124–1132. [Google Scholar] [CrossRef] [PubMed]
- Victor, R.G.; Haley, R.W.; Willett, D.L.; Peshock, R.M.; Vaeth, P.C.; Leonard, D.; Basit, M.; Cooper, R.S.; Iannacchione, V.G.; Visscher, W.A.; et al. The Dallas Heart Study: A population-based probability sample for the multidisciplinary study of ethnic differences in cardiovascular health. Am. J. Cardiol. 2004, 93, 1473–1480. [Google Scholar] [CrossRef] [PubMed]
- Sankaranarayanan, S.; Kellner-Weibel, G.; de la Llera-Moya, M.; Phillips, M.C.; Asztalos, B.F.; Bittman, R.; Rothblat, G.H. A sensitive assay for ABCA1-mediated cholesterol efflux using BODIPY-cholesterol. J. Lipid Res. 2011, 52, 2332–2340. [Google Scholar] [CrossRef] [PubMed]
- Gupta, M.; King, K.S.; Srinivasa, R.; Weiner, M.F.; Hulsey, K.; Ayers, C.R.; Whittemore, A.; McColl, R.W.; Rossetti, H.C.; Peshock, R.M. Association of 3.0-T Brain Magnetic Resonance Imaging Biomarkers With Cognitive Function in the Dallas Heart Study. JAMA Neurol. 2015, 72, 170–175. [Google Scholar] [CrossRef] [PubMed]
- Woolrich, M.W.; Jbabdi, S.; Patenaude, B.; Chappell, M.; Makni, S.; Behrens, T.; Beckmann, C.F.; Jenkinson, M.; Smith, S.M. Bayesian analysis of neuroimaging data in FSL. NeuroImage 2009, 45, S173–S186. [Google Scholar] [CrossRef]
- Smith, S.M.; Jenkinson, M.; Woolrich, M.W.; Beckmann, C.F.; Behrens, T.E.; Johansen-Berg, H.; Bannister, P.R.; De Luca, M.; Drobnjak, I.; Flitney, D.E.; et al. Advances in functional and structural MR image analysis and implementation as FSL. NeuroImage 2004, 23, S208–S219. [Google Scholar] [CrossRef]
- Rossetti, H.C.; Lacritz, L.H.; Hynan, L.S.; Cullum, C.M.; Van Wright, A.; Weiner, M.F. Montreal Cognitive Assessment Performance among Community-Dwelling African Americans. Arch. Clin. Neuropsychol. 2016, 32, 238–244. [Google Scholar] [CrossRef]
- Nasreddine, Z.S.; Phillips, N.A.; Bédirian, V.; Charbonneau, S.; Whitehead, V.; Collin, I.; Cummings, J.L.; Chertkow, H. The Montreal Cognitive Assessment, MoCA: A Brief Screening Tool For Mild Cognitive Impairment. J. Am. Geriatr. Soc. 2005, 53, 695–699. [Google Scholar] [CrossRef]
- Mahinrad, S.; Kurian, S.; Garner, C.R.; Sedaghat, S.; Nemeth, A.J.; Moscufo, N.; Higgins, J.P.; Jacobs , D.R., Jr.; Hausdorff, J.M.; Lloyd-Jones, D.M.; et al. Cumulative Blood Pressure Exposure During Young Adulthood and Mobility and Cognitive Function in Midlife. Circulation 2020, 141, 712–724. [Google Scholar] [CrossRef]
- Navar-Boggan, A.M.; Peterson, E.D.; D’agostino, R.B.; Neely, B.; Sniderman, A.D.; Pencina, M.J. Hyperlipidemia in Early Adulthood Increases Long-Term Risk of Coronary Heart Disease. Circulation 2015, 131, 451–458. [Google Scholar] [CrossRef]
- Henderson, V.W.; Guthrie, J.R.; Dennerstein, L. Serum lipids and memory in a population based cohort of middle age women. J. Neurol. Neurosurg. Psychiatry 2003, 74, 1530–1535. [Google Scholar] [CrossRef] [PubMed]
- Reitz, C.; Tang, M.-X.; Manly, J.; Schupf, N.; Mayeux, R.; Luchsinger, J.A. Plasma Lipid Levels in the Elderly Are Not Associated with the Risk of Mild Cognitive Impairment. Dement. Geriatr. Cogn. Disord. 2008, 25, 232–237. [Google Scholar] [CrossRef] [PubMed]
- Sáiz-Vazquez, O.; Puente-Martínez, A.; Ubillos-Landa, S.; Pacheco-Bonrostro, J.; Santabárbara, J. Cholesterol and Alzheimer’s Disease Risk: A Meta-Meta-Analysis. Brain Sci. 2020, 10, 386. [Google Scholar] [CrossRef] [PubMed]
- Reitz, C.; Tang, M.-X.; Schupf, N.; Manly, J.J.; Mayeux, R.; Luchsinger, J.A. Association of Higher Levels of High-Density Lipoprotein Cholesterol in Elderly Individuals and Lower Risk of Late-Onset Alzheimer Disease. Arch. Neurol. 2010, 67, 1491–1497. [Google Scholar] [CrossRef] [PubMed]
- van de Mortel, L.A.; Initiative, F.T.A.D.N.; Thomas, R.M.; van Wingen, G.A. Grey Matter Loss at Different Stages of Cognitive Decline: A Role for the Thalamus in Developing Alzheimer’s Disease. J. Alzheimer’s Dis. 2021, 83, 705–720. [Google Scholar] [CrossRef]
- Martinez, A.E.; Weissberger, G.; Kuklenyik, Z.; He, X.; Meuret, C.; Parekh, T.; Rees, J.C.; Parks, B.A.; Gardner, M.S.; King, S.M.; et al. The small HDL particle hypothesis of Alzheimer’s disease. Alzheimer’s Dement. 2022, 19, 391–404. [Google Scholar] [CrossRef]
- Borràs, C.; Mercer, A.; Sirisi, S.; Alcolea, D.; Escolà-Gil, J.C.; Blanco-Vaca, F.; Tondo, M. HDL-like-Mediated Cell Cholesterol Trafficking in the Central Nervous System and Alzheimer’s Disease Pathogenesis. Int. J. Mol. Sci. 2022, 23, 9356. [Google Scholar] [CrossRef]
- Eckert, G.; Cairns, N.; Maras, A.; Gattaz, W.; Müller, W. Cholesterol Modulates the Membrane- Disordering Effects of Beta-Amyloid Peptides in the Hippocampus: Specific Changes in Alzheimer’s Disease. Dement. Geriatr. Cogn. Disord. 2000, 11, 181–186. [Google Scholar] [CrossRef]
- Wang, H.; Kulas, J.A.; Wang, C.; Holtzman, D.M.; Ferris, H.A.; Hansen, S.B. Regulation of beta-amyloid production in neurons by astrocyte-derived cholesterol. Proc. Natl. Acad. Sci. USA 2021, 118, e2102191118. [Google Scholar] [CrossRef]
- Koudinov, A.R.; Koudinova, N.V. Essential role for cholesterol in synaptic plasticity and neuronal degeneration. FASEB J. 2001, 15, 1858–1860. [Google Scholar] [CrossRef]
- Pedrini, S.; Hone, E.; Gupta, V.B.; James, I.; Teimouri, E.; Bush, A.I.; Rowe, C.C.; Villemagne, V.L.; Ames, D.; Masters, C.L.; et al. Plasma High Density Lipoprotein Small Subclass is Reduced in Alzheimer’s Disease Patients and Correlates with Cognitive Performance. J. Alzheimer’s Dis. 2020, 77, 733–744. [Google Scholar] [CrossRef] [PubMed]
- Wardlaw, J.M.; Hernández, M.C.V.; Muñoz-Maniega, S. What are White Matter Hyperintensities Made of? J. Am. Hear. Assoc. 2015, 4, 001140. [Google Scholar] [CrossRef]
- Karas, G.; Scheltens, P.; Rombouts, S.; Visser, P.; van Schijndel, R.; Fox, N.; Barkhof, F. Global and local gray matter loss in mild cognitive impairment and Alzheimer’s disease. NeuroImage 2004, 23, 708–716. [Google Scholar] [CrossRef] [PubMed]
- European Alzheimer’s & Dementia Biobank Mendelian Randomization (EADB-MR) Collaboration; Luo, J.; Thomassen, J.Q.; Bellenguez, C.; Grenier-Boley, B.; de Rojas, I.; Castillo, A.; Parveen, K.; Küçükali, F.; Nicolas, A.; et al. Genetic Associations Between Modifiable Risk Factors and Alzheimer Disease. JAMA Netw. Open 2023, 6, e2313734. [Google Scholar] [CrossRef]
- Ferguson, E.L.; Zimmerman, S.C.; Jiang, C.; Choi, M.; Swinnerton, K.; Choudhary, V.; Meyers, T.J.; Hoffmann, T.J.; Gilsanz, P.; Oni-Orisan, A.; et al. Low- and High-Density Lipoprotein Cholesterol and Dementia Risk Over 17 Years of Follow-up Among Members of a Large Health Care Plan. Neurology 2023, 101, E2172–E2184. [Google Scholar] [CrossRef]
- Neufeld, N.; Parker, A.F.; Kwan, H.; Mazerolle, E.L.; Gawryluk, J.R. Longitudinal changes in grey matter and cognitive performance over four years of healthy aging. Neuroimage Rep. 2022, 2, 100140. [Google Scholar] [CrossRef]
Variable | DHS-1 | DHS-2 | Average (DHS-1 and DHS-2) |
---|---|---|---|
Female (%) | 1060 (58%) | ||
Black participants | 863 (47%) | ||
Age (years old) | 43.7 ± 9.8 | 51.0 ± 9.7 | |
BMI (kg/m2) | 30.5 ± 7.4 | 31.2 ± 7.4 | 30.9 ± 7.2 |
Fasting plasma glucose | 100.2 ± 36.0 | 102.0 ± 34.0 | 101.1 ± 30.8 |
eGFR (mL/min per 1.73 m2) | 99.2 ± 22.7 | 93.1 ± 26.5 | 96.2 ± 22.7 |
Systolic blood pressure (mm Hg) | 123 ± 18 | 132 ± 19 | 128 ± 16 |
HDL particle, μmol/L | 20.9 ± 3.9 | 22.7 ± 3.6 | 21.8 ± 3.2 |
Small HDL particle, μmol/L | 15.0 ± 3.5 | 15.0 ± 3.6 | 15.0 ± 3.0 |
Medium HDL particle, μmol/L | 3.7 ± 2.8 | 5.6 ± 2.6 | 4.7 ± 2.4 |
Large HDL particle, μmol/L | 2.2 ± 1.6 | 2.1 ± 1.5 | 2.2 ± 1.4 |
HDL cholesterol, mg/dL | 51.1 ± 14.7 | 55.7 ± 13.2 | 53.4 ± 12.8 |
Apolipoprotein A-I, mg/dL | 127.6 ± 29.6 | 142.9 ± 26.4 | 135.3 ± 25.3 |
HDL cholesterol efflux capacity (AU) | 1.03 ± 0.32 | 0.83 ± 0.24 | 0.93 ± 0.21 |
Current smoker (%) | 440 (24.1%) | 384 (21.3%) | |
MVPA (min/day) | 39 (95% CI 37.2–40.7) | ||
ApoE-ε4 carrier (%) | 566 (31.5%) | ||
Education Status | |||
Less than high school | 257 (14%) | ||
High school | 434 (24%) | ||
College level | 957 (53%) | ||
Above college | 172 (10%) |
Outcome: Log GMV/TCV for Whole Cohort (n = 1010) | |||
---|---|---|---|
Variable | Β a | 95% CI | p-value |
Total HDL-P | 0.011 | −0.039, 0.060 | 0.668 |
Small HDL-P | 0.063 | 0.014, 0.111 | 0.012 b |
Medium HDL-P | −0.045 | −0.095, 0.004 | 0.072 |
Large HDL-P | −0.041 | −0.094, 0.012 | 0.130 |
HDL-C | −0.040 | −0.092, 0.014 | 0.149 |
ApoAI | −0.020 | −0.070, 0.035 | 0.516 |
HDL-CEC * | 0.078 | 0.029, 0.126 | 0.002 b |
Outcome: Log WMH/TCV for Whole Cohort (n = 1010) | |||
HDL-P | 0.003 | −0.055, 0.061 | 0.920 |
Small HDL-P | −0.014 | −0.072, 0.043 | 0.623 |
Medium HDL-P | 0.0001 | −0.058, 0.058 | 0.997 |
Large HDL-P | 0.042 | −0.020, 0.105 | 0.181 |
HDL-C | 0.018 | −0.045, 0.081 | 0.573 |
ApoAI | 0.012 | −0.050, 0.073 | 0.713 |
HDL-CEC * | 0.033 | −0.024, 0.091 | 0.256 |
Outcome: MoCA for Whole Cohort (n = 1176) | |||
HDL-P | 0.021 | −0.028, 0.070 | 0.408 |
Small HDL-P | −0.005 | −0.054, 0.044 | 0.844 |
Medium HDL-P | 0.017 | −0.032, 0.067 | 0.498 |
Large HDL-P | 0.033 | −0.020, 0.086 | 0.218 |
HDL-C | 0.044 | −0.009, 0.097 | 0.103 |
ApoAI | 0.036 | −0.016, 0.088 | 0.171 |
HDL-CEC * | −0.009 | −0.059, 0.042 | 0.737 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Giacona, J.M.; Wang, J.; Zhang, R.; Kelley, B.J.; Hajjar, I.; Thomas, B.P.; Yu, F.F.; de Lemos, J.A.; Rohatgi, A.; Vongpatanasin, W. Associations Between High-Density Lipoprotein Cholesterol Efflux and Brain Grey Matter Volume. J. Clin. Med. 2024, 13, 6218. https://doi.org/10.3390/jcm13206218
Giacona JM, Wang J, Zhang R, Kelley BJ, Hajjar I, Thomas BP, Yu FF, de Lemos JA, Rohatgi A, Vongpatanasin W. Associations Between High-Density Lipoprotein Cholesterol Efflux and Brain Grey Matter Volume. Journal of Clinical Medicine. 2024; 13(20):6218. https://doi.org/10.3390/jcm13206218
Chicago/Turabian StyleGiacona, John M., Jijia Wang, Rong Zhang, Brendan J. Kelley, Ihab Hajjar, Binu P. Thomas, Fang F. Yu, James A. de Lemos, Anand Rohatgi, and Wanpen Vongpatanasin. 2024. "Associations Between High-Density Lipoprotein Cholesterol Efflux and Brain Grey Matter Volume" Journal of Clinical Medicine 13, no. 20: 6218. https://doi.org/10.3390/jcm13206218
APA StyleGiacona, J. M., Wang, J., Zhang, R., Kelley, B. J., Hajjar, I., Thomas, B. P., Yu, F. F., de Lemos, J. A., Rohatgi, A., & Vongpatanasin, W. (2024). Associations Between High-Density Lipoprotein Cholesterol Efflux and Brain Grey Matter Volume. Journal of Clinical Medicine, 13(20), 6218. https://doi.org/10.3390/jcm13206218