Venous Excess Ultrasound Score Is Associated with Worsening Renal Function and Reduced Natriuretic Response in Patients with Acute Heart Failure
Abstract
:1. Introduction
2. Materials and Methods
2.1. Venous Excess Ultrasound Score
2.2. Study Endpoints
2.3. Statistical Analysis
3. Results
3.1. Association Between the VExUS Grade Score and WRF
3.2. Association Between the VExUS and Natriuretic Response
3.3. Association Between the VExUS Grade and Diuretic Resistance and the Need for Inotropic and/or Vasopressor Support
3.4. Association Between the VExUS and Hospital Mortality
4. Discussion
4.1. Worsening Renal Function
4.2. Natriuretic Response
4.3. Diuretic Resistance
4.4. Inotropes/Vasopressors
4.5. Mortality
4.6. Study Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- McDonagh, T.A.; Metra, M.; Adamo, M.; Gardner, R.S.; Baumbach, A.; Böhm, M.; Burri, H.; Butler, J.; Čelutkienė, J.; Chioncel, O.; et al. Corrigendum to: 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: Developed by the Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC) with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur. Heart J. 2021, 42, 4901. [Google Scholar] [PubMed]
- Boorsma, E.M.; ter Maaten, J.M.; Damman, K.; Dinh, W.; Gustafsson, F.; Goldsmith, S.; Burkhoff, D.; Zannad, F.; Udelson, J.E.; Voors, A.A. Congestion in heart failure: A contemporary look at physiology, diagnosis and treatment. Nat. Rev. Cardiol. 2020, 17, 641–655. [Google Scholar] [CrossRef] [PubMed]
- Girerd, N.; Seronde, M.-F.; Coiro, S.; Chouihed, T.; Bilbault, P.; Braun, F.; Kenizou, D.; Maillier, B.; Nazeyrollas, P.; Roul, G.; et al. Integrative Assessment of Congestion in Heart Failure TORoughout the Patient Journey. JACC Heart Fail. 2018, 6, 273–285. [Google Scholar] [CrossRef] [PubMed]
- Stevenson, L.W. The limited reliability of physical signs for estimating hemodynamics in cORonic heart failure. J. Am. Med. Assoc. 1989, 261, 884–888. [Google Scholar] [CrossRef]
- Mullens, W.; Damman, K.; Harjola, V.; Mebazaa, A.; Rocca, H.B.; Martens, P.; Testani, J.M.; Tang, W.W.; Orso, F.; Rossignol, P.; et al. The use of diuretics in heart failure with congestion—A position statement from the Heart Failure Association of the European Society of Cardiology. Eur. J. Heart Fail. 2019, 21, 137–155. [Google Scholar] [CrossRef]
- Beaubien-Souligny, W.; Rola, P.; Haycock, K.; Bouchard, J.; Lamarche, Y.; Spiegel, R.; Denault, A.Y. Quantifying systemic congestion with Point-Of-Care ultrasound: Development of the venous excess ultrasound grading system. Ultrasound J. 2020, 12, 16. [Google Scholar] [CrossRef]
- Inker, L.A.; Eneanya, N.D.; Coresh, J.; Tighiouart, H.; Wang, D.; Sang, Y.; Crews, D.C.; Doria, A.; Estrella, M.M.; Froissart, M.; et al. New Creatinine- and Cystatin C–Based Equations to Estimate GFR without Race. N. Engl. J. Med. 2021, 385, 1737–1749. [Google Scholar] [CrossRef]
- Thygesen, K. ‘Ten Commandments’ for the Fourth Universal Definition of Myocardial Infarction 2018. Eur. Heart J. 2019, 40, 226. [Google Scholar] [CrossRef]
- Shankar-Hari, M.; Phillips, G.S.; Levy, M.L.; Seymour, C.W.; Liu, V.X.; Deutschman, C.S.; Angus, D.C.; Rubenfeld, G.D.; Singer, M. Developing a New Definition and Assessing New Clinical Criteria for Septic Shock: For the Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). J. Am. Med. Assoc. 2016, 315, 775. [Google Scholar] [CrossRef]
- Pellegrino, M.; Villaschi, A.; Gasparini, G.; Maccallini, M.; Pinto, G.; Pini, D. Diuretic resistance in acute heart failure: Proposal for a new urinary sodium-based definition. Int. J. Cardiol. 2024, 415, 132456. [Google Scholar] [CrossRef]
- Bouabdallaoui, N.; Beaubien-Souligny, W.; Oussaïd, E.; Henri, C.; Racine, N.; Denault, A.Y.; Rouleau, J.L. Assessing Splanchnic Compartment Using Portal Venous Doppler and Impact of Adding It to the EVEREST Score for Risk Assessment in Heart Failure. CJC Open 2020, 2, 311–320. [Google Scholar] [CrossRef] [PubMed]
- Howitt, S.H.; Oakley, J.; Caiado, C.; Goldstein, M.; Malagon, I.; McCollum, C.; Grant, S.W. A Novel Patient-Specific Model for Predicting Severe Oliguria; Development and Comparison With Kidney Disease: Improving Global Outcomes Acute Kidney Injury Classification. Crit. Care Med. 2020, 48, e18–e25. [Google Scholar] [CrossRef] [PubMed]
- Kellum, J.A.; Lameire, N.; KDIGO AKI Guideline Work Group. Diagnosis, evaluation, and management of acute kidney injury: A KDIGO summary (Part 1). Crit. Care 2013, 17, 204. [Google Scholar] [CrossRef] [PubMed]
- Vaduganathan, M.; Kumar, V.; A Voors, A.; Butler, J. Unsolved challenges in diuretic therapy for acute heart failure: A focus on diuretic response. Expert Rev. Cardiovasc. Ther. 2015, 13, 1075–1078. [Google Scholar] [CrossRef]
- Beaubien-Souligny, W.; Benkreira, A.; Robillard, P.; Bouabdallaoui, N.; Chassé, M.; Desjardins, G.; Lamarche, Y.; White, M.; Bouchard, J.; Denault, A. Alterations in Portal Vein Flow and Intrarenal Venous Flow Are As-sociated With Acute Kidney Injury After Cardiac Surgery: A Prospective Observational Cohort Study. J. Am. Heart Assoc. 2018, 7, e009961. [Google Scholar] [CrossRef]
- Yamamoto, M.; Seo, Y.; Iida, N.; Ishizu, T.; Yamada, Y.; Nakatsukasa, T.; Nakagawa, D.; Kawamatsu, N.; Sato, K.; Machino-Ohtsuka, T.; et al. Prognostic Impact of Changes in Intrarenal Venous Flow Pattern in Patients With Heart Failure. J. Card. Fail. 2021, 27, 20–28. [Google Scholar] [CrossRef]
- Husain-Syed, F.; Birk, H.; Ronco, C.; Schörmann, T.; Tello, K.; Richter, M.J.; Wilhelm, J.; Sommer, N.; Steyerberg, E.; Bauer, P.; et al. Doppler-Derived Renal Venous Stasis Index in the Prognosis of Right Heart Failure. J. Am. Heart Assoc. 2019, 8, e013584. [Google Scholar] [CrossRef]
- de la Espriella, R.; Núñez-Marín, G.; Cobo, M.; de Castro Campos, D.; Llácer, P.; Manzano, L.; Zegrí, I.; Rodriguez-Pérez, Á.; Santas, E.; Lorenzo, M.; et al. Intrarenal Venous Flow Pattern Changes Do Relate With Renal Function Alterations in Acute Heart Failure. JACC Heart Fail. 2024, 12, 304–318. [Google Scholar] [CrossRef]
- Argaiz, E.R.; Rola, P.; Gamba, G. Dynamic Changes in Portal Vein Flow during Decongestion in Patients with Heart Failure and Cardio-Renal Syndrome: A POCUS Case Series. Cardiorenal Med. 2021, 11, 59–66. [Google Scholar] [CrossRef]
- Bhardwaj, V.; Vikneswaran, G.; Rola, P.; Raju, S.; Bhat, R.S.; Jayakumar, A.; Alva, A. Combination of Inferior Vena Cava Diameter, Hepatic Venous Flow, and Portal Vein Pulsatility Index: Venous Excess Ultrasound Score (VEXUS Score) in Predicting Acute Kidney Injury in Patients with Cardiorenal Syndrome: A Prospective Cohort Study. Indian J. Crit. Care Med. 2020, 24, 783–789. [Google Scholar] [CrossRef]
- Mullens, W.; Abrahams, Z.; Francis, G.S.; Sokos, G.; Taylor, D.O.; Starling, R.C.; Young, J.B.; Tang, W.W. Importance of Venous Congestion for Worsening of Renal Function in Advanced Decompensated Heart Failure. J. Am. Coll. Cardiol. 2009, 53, 589–596. [Google Scholar] [CrossRef] [PubMed]
- Mullens, W.; Nijst, P. Cardiac Output and Renal Dysfunction. J. Am. Coll. Cardiol. 2016, 67, 2209–2212. [Google Scholar] [CrossRef] [PubMed]
- Torres-Arrese, M.; Mata-Martínez, A.; Luordo-Tedesco, D.; García-Casasola, G.; Alonso-González, R.; Montero-Hernández, E.; Cobo-Marcos, M.; Sánchez-Sauce, B.; Cuervas-Mons, V.; Tung-Chen, Y. Usefulness of Systemic Venous Ultrasound Protocols in the Prognosis of Heart Failure Patients: Results from a Prospective Multicentric Study. J. Clin. Med. 2023, 12, 1281. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Rodríguez, C.; Tadeo-Espinoza, H.; Solis-Huerta, F.; Leal-Villarreal, M.A.d.J.; Guerrero-Cabrera, P.; Cruz, N.; Gaytan-Arocha, J.E.; Soto-Mota, A.; Vasquez, Z.; Gamba, G.; et al. Hemodynamic Evaluation of Right-Sided Congestion With Doppler Ultrasonography in Pulmonary Hypertension. Am. J. Cardiol. 2023, 203, 459–462. [Google Scholar] [CrossRef] [PubMed]
- Soliman-Aboumarie, H.; Denault, A.Y. How to assess systemic venous congestion with point of care ultrasound. Eur. Heart J. Cardiovasc. Imaging 2023, 24, 177–180. [Google Scholar] [CrossRef] [PubMed]
- Verbrugge, F.H.; Dupont, M.; Steels, P.; Grieten, L.; Swennen, Q.; Tang, W.W.; Mullens, W. The kidney in congestive heart failure: “Are natriuresis, sodium, and diuretics really the good, the bad and the ugly?”. Eur. J. Heart Fail. 2014, 16, 133–142. [Google Scholar] [CrossRef]
- Haddy, F.J.; Scott, J.; Fleishman, M.; Emanuel, D. Effect of change in renal venous pressure upon renal vascular resistance, urine and lymph flow rates. Am. J. Physiol. Content 1958, 195, 97–110. [Google Scholar] [CrossRef]
- Testani, J.M.; Hanberg, J.S.; Cheng, S.; Rao, V.; Onyebeke, C.; Laur, O.; Kula, A.; Chen, M.; Wilson, F.P.; Darlington, A.; et al. Rapid and Highly Accurate Prediction of Poor Loop Diuretic Natriuretic Response in Patients With Heart Failure. Circ. Heart Fail. 2016, 9, e002370. [Google Scholar] [CrossRef]
- Biegus, J.; Zymliński, R.; Sokolski, M.; Todd, J.; Cotter, G.; Metra, M.; Jankowska, E.A.; Banasiak, W.; Ponikowski, P. Serial assessment of spot urine sodium predicts effectiveness of decongestion and outcome in patients with acute heart failure. Eur. J. Heart Fail. 2019, 21, 624–633. [Google Scholar] [CrossRef]
- Nijst, P.; Martens, P.; Dupont, M.; Tang, W.H.W.; Mullens, W. Intrarenal Flow Alterations During Transition From Euvolemia to Intravascular Volume Expansion in Heart Failure Patients. JACC Heart Fail. 2017, 5, 672–681. [Google Scholar] [CrossRef]
- Rihl, M.F.; Pellegrini, J.A.S.; Boniatti, M.M. VExUS Score in the Management of Patients With Acute Kidney Injury in the Intensive Care Unit: AKIVEX Study. J. Ultrasound Med. 2023, 42, 2547–2556. [Google Scholar] [CrossRef] [PubMed]
- Islas-Rodríguez, J.P.; Miranda-Aquino, T.; Romero-González, G.; Rio, H.D.; Camacho-Guerrero, J.R.; Covarrubias-Villa, S.; Ivey-Miranda, J.B.; Chávez-Íñiguez, J.S. Effect on Kidney Function Recovery Guiding Deconges-tion with VExUS in Patients with Cardiorenal Syndrome 1: A Randomized Control Trial. Cardiorenal Med. 2023, 14, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Argaiz, E.R.; Romero-Gonzalez, G.; Rola, P.; Spiegel, R.; Haycock, K.H.; Koratala, A. Bedside Ultrasound in the Management of Cardiorenal Syndromes: An Updated Review. Cardiorenal Med. 2023, 13, 372–384. [Google Scholar] [CrossRef] [PubMed]
- Harjola, V.P.; Mebazaa, A.; Čelutkienė, J.; Bettex, D.; Bueno, H.; Chioncel, O.; Crespo-Leiro, M.G.; Falk, V.; Filippatos, G.; Gibbs, S.; et al. Contemporary management of acute right ventricular failure: A statement from the Heart Failure Association and the Working Group on Pulmonary Circulation and Right Ventricular Function of the Europe-an Society of Cardiology. Eur. J. Heart Fail. 2016, 18, 226–241. [Google Scholar] [CrossRef]
- Longino, A.; Martin, K.; Leyba, K.; Siegel, G.; Gill, E.; Douglas, I.S.; Burke, J. Correlation between the VExUS score and right atrial pressure: A pilot prospective observational study. Crit. Care 2023, 27, 205. [Google Scholar] [CrossRef]
- Iida, N.; Seo, Y.; Sai, S.; Machino-Ohtsuka, T.; Yamamoto, M.; Ishizu, T.; Kawakami, Y.; Aonuma, K. Clinical Implications of Intrarenal Hemodynamic Evaluation by Doppler Ultrasonography in Heart Failure. JACC Heart Fail. 2016, 4, 674–682. [Google Scholar] [CrossRef]
- Puzzovivo, A.; Monitillo, F.; Guida, P.; Leone, M.; Rizzo, C.; Grande, D.; Ciccone, M.M.; Iacoviello, M. Renal Venous Pattern: A New Parameter for Predicting Prognosis in Heart Failure Outpatients. J. Cardiovasc. Dev. Dis. 2018, 5, 52. [Google Scholar] [CrossRef]
- Turrini, F.; Galassi, M.; Sacchi, A.; Ricco, B.; Chester, J.; Famiglietti, E.; Messora, R.; Bertolotti, M.; Pinelli, G. Intrarenal Venous Doppler as a novel marker for optimal decongestion, patient management, and prognosis in Acute Decompensated Heart Failure. Eur. Heart J. Acute Cardiovasc. Care 2023, 12, 673–681. [Google Scholar] [CrossRef]
Total (n = 100) | VExUS Grade 0 (n = 36) | VExUS Grade 1 (n = 26) | VExUS Grade 2 (n = 12) | VExUS Grade 3 (n = 26) | p-Value | |
---|---|---|---|---|---|---|
Sociodemographic characteristic | ||||||
Age | 73.5 (64–81) | 73.5 (64.5–81) | 73.5 (64–83) | 74.5 (66.5–79) | 70.5 (60–81) | p = 0.886 |
Sex (female), n (%) | 40 (40) | 14 (39) | 11 (42) | 6 (50) | 9 (35) | p = 0.830 |
Body mass index, kg/m2 | 27.65 (24.85–30.1) | 27.45 (25.4–32.15) | 26.7 (22.8–29.9) | 27.9 (26.2–29.4) | 28.15 (25.9–30.1) | p = 0.584 |
Smoking, n (%) | 51 (51) | 14 (39) | 11 (42) | 6 (50) | 20 (77) | p = 0.018 |
Hypertension, n (%) | 96 (96) | 35 (97) | 25 (96) | 11 (92) | 25 (96) | p = 0.736 |
Diabetes mellitus, n (%) | 30 (30) | 12 (33) | 6 (23) | 5 (42) | 7 (27) | p = 0.628 |
Atrial fibrillation, n (%) | 62 (62) | 19 (53) | 16 (62) | 6 (50) | 21 (81) | p = 0.115 |
CAD a, n (%) | 75 (75) | 31 (86) | 21 (81) | 9 (75) | 14 (54) | p = 0.028 |
Previous myocardial infarction, n (%) | 72 (72) | 29 (81) | 20 (77) | 7 (58) | 16 (62) | p = 0.243 |
Valvular disease, n (%) | 6 (6) | 1 (3) | 2 (8) | 1 (8) | 2 (8) | p = 0.687 |
HFpEF, n (%) | 25 (25) | 7 (19) | 4 (15) | 4 (33) | 10 (39) | p = 0.195 |
NICM, n (%) | 8 (8) | 0 (0) | 4 (15) | 0 (0) | 4 (15) | p = 0.028 |
COPD, n (%) | 20 (20) | 7 (19) | 5 (19) | 2 (17) | 6 (23) | p = 0.969 |
Clinical characteristic | ||||||
Systolic blood pressure, mm Hg | 141.73 ± 34.35 | 155.44 ± 29.68 | 145.77 ± 35.68 | 139.5 ± 24.95 | 119.7 ± 33.17 | p < 0.001 |
Heart rate, bpm | 95.5 (79.5–111.5) | 100 (83–117) | 94 (80–110) | 86 (72.5–102.5) | 100 (79–115) | p = 0.212 |
Rhythm of AF at admission, n (%) | 48 (48) | 15 (42) | 11 (42) | 4 (33) | 18 (69) | p = 0.9 |
Signs and symptoms of congestion b | 1.33 (1–2.66) | 1 (1–1.33) | 1.33 (1–2) | 2.66 (2.17–2.66) | 2.66 (2–2.66) | p < 0.001 |
SOFA | 2 (1–4) | 1 (1–2.5) | 1 (1–3) | 2 (1–4) | 4 (3–5) | p < 0.001 |
Laboratory data | ||||||
NT-proBNP, pg/mL | 6115 (3669–12,477.5) | 3800 (3295.5–8175.5) | 4518 (3140.5–7248) | 12,883 (5171.5–17,871) | 9338 (6612–15,429) | p = 0.01 |
Serum potassium, mmol/L | 3.87 ± 0.76 | 3.67 ± 0.57 | 4.14 ± 0.82 | 3.81 ± 0.9 | 3.9 ± 0.81 | p = 0.106 |
Serum sodium, mmol/L | 137 (134–139) | 138 (136.2–140) | 136 (134–139) | 135.5 (133.5–140.5) | 134.1 (130–139) | p = 0.096 |
Hyponatremia <135 mmol/L, n (%) | 33 (33) | 7 (19) | 8 (31) | 6 (50) | 12 (46) | p = 0.087 |
Lactate, mmol/L | 2.3 (1.79–3.4) | 2.45 (1.85–3.4) | 2.1 (1.4–2.5) | 2.43 (2–3.1) | 2.4 (2–4.6) | p = 0.225 |
Hemoglobin, g/L | 129.68 ± 22.54 | 133.44 ± 17.36 | 127.85 ± 22.83 | 128.42 ± 24.06 | 126.88± 27.95 | p = 0.663 |
Anemia, n (%) | 38 (38) | 8 (22) | 12 (46) | 4 (33) | 14 (54) | p = 0.061 |
Leukocytes × 109/L | 9.25 (7.2–11.55) | 9.7 (8.2–11.7) | 8.65 (7.2–11.5) | 8.75 (7–10.9) | 9.45 (7.7–12) | p = 0.836 |
CRP, mg/ml | 12.46 (2.6–37.05) | 14.18 (2.65–39.85) | 11.15 (0.8–25.38) | 4.87 (0–26.8) | 13.8 (6.27–54) | p = 0.286 |
Albumin, g/L | 36.67 ± 5.61 | 38.43 ± 4.71 | 37.08 ± 4.71 | 35.32 ± 7.1 | 34.84 ± 6.29 | p = 0.087 |
Creatinine at admission, µmol/L | 106.9 (80.95–149.5) | 94.9 (80.8–116.2) | 86.95 (70–107.8) | 118.05 (76.75–138) | 166.3 (120–248) | p < 0.001 |
Maximum creatinine level, µmol/L | 125 (98–170.5) | 115.5 (101.5–140.5) | 102.5 (87.9–138) | 119.1 (91.7–141.5) | 213 (133–299) | p < 0.001 |
eGFR at admission, mL/min/1.73 m2 | 56.95 ± 25.5 | 62.23 ± 22.64 | 67.23 ± 26.2 | 57.33 ± 21.79 | 39.19 ± 22.02 | p < 0.001 |
eGFR < 60 mL/min/1.73 m2 at admission | 59 (59) | 19 (53) | 11 (42) | 8 (67) | 21 (81) | p = 0.028 |
Urea, mmol/L | 8.2 (6.75–11.5) | 7.6 (6.15–9.5) | 7.55 (5.2–11.1) | 9.4 (7.2–13.9) | 16.05 (8.2–24.1) | p < 0.001 |
Total bilirubin, mg/dL | 15.85 (9.75–22.3) | 11.25 (7.35–17.4) | 15.2 (11.7–25.7) | 16 (12.95–24.75) | 20.3 (15.2–29.6) | p = 0.005 |
ALT, IU/L | 25.35 (17.25–46.5) | 21.95 (16.85–33.75) | 24.75 (12.4–35.4) | 40.4 (19.4–59.8) | 26.85 (18.4–81) | p = 0.182 |
AST, IU/L | 30.35 (21.6–53.15) | 24.8 (18.45–33.5) | 29.5 (20–53) | 30 (22.5–59.25) | 45 (30.5–87) | p < 0.001 |
LDL, mmol/L | 2.425 (1.9–3.19) | 2.62 (1.91–3.4) | 2.35 (2–2.85) | 2.18 (1.8–2.49) | 2.61 (1.69–3.09) | p = 0.668 |
Sodium in spot urine sample, mmol/L | 114 (90–131) | 125 (112.5–134) | 122 (101–135) | 101.5 (90–116) | 68 (32–113) | p < 0.001 |
Sodium in spot urine <50 mmol/L | 15 (15) | 1 (3) | 0 (0) | 2 (17) | 12 (48) | p < 0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sovetova, S.; Charaya, K.; Erdniev, T.; Shchekochikhin, D.; Bogdanova, A.; Panov, S.; Plaksina, N.; Mutalieva, E.; Ananicheva, N.; Fomin, V.; et al. Venous Excess Ultrasound Score Is Associated with Worsening Renal Function and Reduced Natriuretic Response in Patients with Acute Heart Failure. J. Clin. Med. 2024, 13, 6272. https://doi.org/10.3390/jcm13206272
Sovetova S, Charaya K, Erdniev T, Shchekochikhin D, Bogdanova A, Panov S, Plaksina N, Mutalieva E, Ananicheva N, Fomin V, et al. Venous Excess Ultrasound Score Is Associated with Worsening Renal Function and Reduced Natriuretic Response in Patients with Acute Heart Failure. Journal of Clinical Medicine. 2024; 13(20):6272. https://doi.org/10.3390/jcm13206272
Chicago/Turabian StyleSovetova, Sofya, Kristina Charaya, Tamerlan Erdniev, Dmitry Shchekochikhin, Alexandra Bogdanova, Sergey Panov, Natalya Plaksina, Elmira Mutalieva, Natalia Ananicheva, Viktor Fomin, and et al. 2024. "Venous Excess Ultrasound Score Is Associated with Worsening Renal Function and Reduced Natriuretic Response in Patients with Acute Heart Failure" Journal of Clinical Medicine 13, no. 20: 6272. https://doi.org/10.3390/jcm13206272
APA StyleSovetova, S., Charaya, K., Erdniev, T., Shchekochikhin, D., Bogdanova, A., Panov, S., Plaksina, N., Mutalieva, E., Ananicheva, N., Fomin, V., & Andreev, D. (2024). Venous Excess Ultrasound Score Is Associated with Worsening Renal Function and Reduced Natriuretic Response in Patients with Acute Heart Failure. Journal of Clinical Medicine, 13(20), 6272. https://doi.org/10.3390/jcm13206272