Therapeutic Interventions for Pseudomonas Infections in Cystic Fibrosis Patients: A Review of Phase IV Trials
Abstract
:1. Introduction
2. Overview of Phase IV Clinical Trials
3. Therapeutic Candidates at Phase IV for Management of Pa Infection in pwCF
3.1. Tobramycin
3.2. Colistin
3.3. Meropenem
3.4. Ceftolozane/Tazobactam
3.5. Azithromycin
3.6. Ciprofloxacin
3.7. Aztreonam
4. Treatment Approaches for Management of Pa Infections in pwCF
4.1. Systemic Drugs
4.2. Inhaled Drugs
4.3. Combination Therapies
4.4. Optimal Dosing
4.5. CFTR Modulators
5. Challenges and Limitations in Treatments
6. Emerging Treatments
7. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Quinton, P.M. Cystic fibrosis: Impaired bicarbonate secretion and mucoviscidosis. Lancet 2008, 372, 415–417. [Google Scholar] [CrossRef] [PubMed]
- Elborn, J.S. Cystic fibrosis. Lancet 2016, 388, 2519–2531. [Google Scholar] [CrossRef] [PubMed]
- Stephenson, A.L.; Stanojevic, S.; Sykes, J.; Burgel, P.-R. The changing epidemiology and demography of cystic fibrosis. Presse Med. 2017, 46, e87–e95. [Google Scholar] [CrossRef]
- Guo, J.; Garratt, A.; Hill, A. Worldwide rates of diagnosis and effective treatment for cystic fibrosis. J. Cyst. Fibros. 2022, 21, 456–462. [Google Scholar] [CrossRef]
- Castellani, C.; Massie, J.; Sontag, M.; Southern, K.W. Newborn screening for cystic fibrosis. Lancet Respir. Med. 2016, 4, 653–661. [Google Scholar] [CrossRef]
- Shteinberg, M.; Haq, I.J.; Polineni, D.; Davies, J.C. Cystic fibrosis. Lancet 2021, 397, 2195–2211. [Google Scholar] [CrossRef]
- Ratjen, F.; Bell, S.C.; Rowe, S.M.; Goss, C.H.; Quittner, A.L.; Bush, A. Cystic fibrosis. Nat. Rev. Dis. Primers 2015, 1, 15010–15044. [Google Scholar] [CrossRef]
- Grasemann, H.; Ratjen, F. Cystic Fibrosis. N. Engl. J. Med. 2023, 389, 1693–1707. [Google Scholar] [CrossRef]
- Sharma, N.; Cutting, G.R. The genetics and genomics of cystic fibrosis. J. Cyst. Fibros. 2020, 19 (Suppl. S1), S5–S9. [Google Scholar] [CrossRef]
- Grody, W.W.; Desnick, R.J. Cystic fibrosis population carrier screening: Here at last–are we ready? Genet. Med. 2001, 3, 87–90. [Google Scholar] [CrossRef]
- Ioannou, L.; McClaren, B.J.; Massie, J.; Lewis, S.; Metcalfe, S.A.; Forrest, L.; Delatycki, M.B. Population-based carrier screening for cystic fibrosis: A systematic review of 23 years of research. Genet. Med. 2014, 16, 207–216. [Google Scholar] [CrossRef] [PubMed]
- Miller, M.E.; Allen, V.M.; Brock, J.-A.K. Incidence and Carrier Frequency of CFTR Gene Mutations in Pregnancies with Echogenic Bowel in Nova Scotia and Prince Edward Island. J. Obstet. Gynaecol. Can. 2018, 40, 896–902. [Google Scholar] [CrossRef] [PubMed]
- Kharrazi, M.; Yang, J.; Bishop, T.; Lessing, S.; Young, S.; Graham, S.; Pearl, M.; Chow, H.; Ho, T.; Currier, R.; et al. California Cystic Fibrosis Newborn Screening Consortium Newborn Screening for Cystic Fibrosis in California. Pediatrics 2015, 136, 1062–1072. [Google Scholar] [CrossRef] [PubMed]
- Ogden, H.L.; Kim, H.; Wikenheiser-Brokamp, K.A.; Naren, A.P.; Mun, K.S. Cystic Fibrosis Human Organs-on-a-Chip. Micromachines 2021, 12, 747. [Google Scholar] [CrossRef]
- Hanssens, L.S.; Duchateau, J.; Casimir, G.J. CFTR Protein: Not Just a Chloride Channel? Cells 2021, 10, 2844. [Google Scholar] [CrossRef]
- Turcios, N.L. Cystic Fibrosis Lung Disease: An Overview. Respir. Care 2020, 65, 233–251. [Google Scholar] [CrossRef]
- Bergeron, C.; Cantin, A.M. Cystic Fibrosis: Pathophysiology of Lung Disease. Semin. Respir. Crit. Care Med. 2019, 40, 715–726. [Google Scholar] [CrossRef]
- Cantin, A.M.; Hartl, D.; Konstan, M.W.; Chmiel, J.F. Inflammation in cystic fibrosis lung disease: Pathogenesis and therapy. J. Cyst. Fibros. 2015, 14, 419–430. [Google Scholar] [CrossRef]
- Papayannopoulos, V. Neutrophil extracellular traps in immunity and disease. Nat. Rev. Immunol. 2018, 18, 134–147. [Google Scholar] [CrossRef]
- Bhagirath, A.Y.; Li, Y.; Somayajula, D.; Dadashi, M.; Badr, S.; Duan, K. Cystic fibrosis lung environment and Pseudomonas aeruginosa infection. BMC Pulm. Med. 2016, 16, 174. [Google Scholar] [CrossRef]
- Rumpf, C.; Lange, J.; Schwartbeck, B.; Kahl, B.C. Staphylococcus aureus and Cystic Fibrosis-A Close Relationship. What Can We Learn from Sequencing Studies? Pathogens 2021, 10, 1177. [Google Scholar] [CrossRef] [PubMed]
- Acosta, N.; Waddell, B.; Heirali, A.; Somayaji, R.; Surette, M.G.; Workentine, M.L.; Rabin, H.R.; Parkins, M.D. Cystic Fibrosis Patients Infected with Epidemic Pseudomonas aeruginosa Strains Have Unique Microbial Communities. Front. Cell. Inf. Microbio. 2020, 10, 173. [Google Scholar] [CrossRef] [PubMed]
- Schelstraete, P.; Haerynck, F.; Van daele, S.; Deseyne, S.; De Baets, F. Eradication therapy for Pseudomonas aeruginosa colonization episodes in cystic fibrosis patients not chronically colonized by P. aeruginosa. J. Cyst. Fibros. 2013, 12, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Crull, M.R.; Somayaji, R.; Ramos, K.J.; Caldwell, E.; Mayer-Hamblett, N.; Aitken, M.L.; Nichols, D.P.; Rowhani-Rahbar, A.; Goss, C.H. Changing Rates of Chronic Pseudomonas aeruginosa Infections in Cystic Fibrosis: A Population-Based Cohort Study. Clin. Infect. Dis. 2018, 67, 1089–1095. [Google Scholar] [CrossRef] [PubMed]
- Ramsey, D.M.; Wozniak, D.J. Understanding the control of Pseudomonas aeruginosa alginate synthesis and the prospects for management of chronic infections in cystic fibrosis. Mol. Microbiol. 2005, 56, 309–322. [Google Scholar] [CrossRef]
- Mahajan, S.; Sunsunwal, S.; Gautam, V.; Singh, M.; Ramya, T.N.C. Biofilm inhibitory effect of alginate lyases on mucoid P. aeruginosa from a cystic fibrosis patient. Biochem. Biophys. Rep. 2021, 26, 101028. [Google Scholar] [CrossRef]
- Keren, I.; Kaldalu, N.; Spoering, A.; Wang, Y.; Lewis, K. Persister cells and tolerance to antimicrobials. FEMS Microbiol. Lett. 2004, 230, 13–18. [Google Scholar] [CrossRef]
- Taccetti, G.; Sly, P.D. Early detection of infection with Pseudomonas aeruginosa in cystic fibrosis: The Holy Grail or an achievable goal? J. Cyst. Fibros. 2014, 13, 491–493. [Google Scholar] [CrossRef]
- Douglas, T.A.; Brennan, S.; Gard, S.; Berry, L.; Gangell, C.; Stick, S.M.; Clements, B.S.; Sly, P.D. Acquisition and eradication of P. aeruginosa in young children with cystic fibrosis. Eur. Respir. J. 2009, 33, 305–311. [Google Scholar] [CrossRef]
- Jackson, L.; Waters, V. Factors influencing the acquisition and eradication of early Pseudomonas aeruginosa infection in cystic fibrosis. J. Cyst. Fibros. 2021, 20, 8–16. [Google Scholar] [CrossRef]
- Kerem, E.; Corey, M.; Gold, R.; Levison, H. Pulmonary function and clinical course in patients with cystic fibrosis after pulmonary colonization with Pseudomonas aeruginosa. J. Pediatr. 1990, 116, 714–719. [Google Scholar] [CrossRef]
- Malhotra, S.; Hayes, D.; Wozniak, D.J. Cystic Fibrosis and Pseudomonas aeruginosa: The Host-Microbe Interface. Clin. Microbiol. Rev. 2019, 32, 1–46. [Google Scholar] [CrossRef] [PubMed]
- Mésinèle, J.; Ruffin, M.; Kemgang, A.; Guillot, L.; Boëlle, P.-Y.; Corvol, H. Risk factors for Pseudomonas aeruginosa airway infection and lung function decline in children with cystic fibrosis. J. Cyst. Fibros. 2022, 21, 45–51. [Google Scholar] [CrossRef] [PubMed]
- Zemanick, E.T.; Bell, S.C. Prevention of chronic infection with Pseudomonas aeruginosa infection in cystic fibrosis. Curr. Opin. Pulm. Med. 2019, 25, 636–645. [Google Scholar] [CrossRef]
- Antoniu, S.A. Investigational inhaled therapies for non-CF bronchiectasis. Expert. Opin. Investig. Drugs 2018, 27, 139–146. [Google Scholar] [CrossRef]
- Burgener, E.B.; Moss, R.B. Cystic fibrosis transmembrane conductance regulator modulators: Precision medicine in cystic fibrosis. Curr. Opin. Pediatr. 2018, 30, 372–377. [Google Scholar] [CrossRef]
- Singh, H.; Jani, C.; Marshall, D.C.; Franco, R.; Bhatt, P.; Podder, S.; Shalhoub, J.; Kurman, J.S.; Nanchal, R.; Uluer, A.Z.; et al. Cystic fibrosis-related mortality in the United States from 1999 to 2020: An observational analysis of time trends and disparities. Sci. Rep. 2023, 13, 15030. [Google Scholar] [CrossRef]
- Glasser, S.P.; Salas, M.; Delzell, E. Importance and challenges of studying marketed drugs: What is a phase IV study? Common clinical research designs, registries, and self-reporting systems. J. Clin. Pharmacol. 2007, 47, 1074–1086. [Google Scholar] [CrossRef]
- Suvarna, V. Phase IV of Drug Development. Perspect. Clin. Res. 2010, 1, 57–60. [Google Scholar] [CrossRef]
- Minneci, P.C.; Deans, K.J. Clinical trials. Semin. Pediatr. Surg. 2018, 27, 332–337. [Google Scholar] [CrossRef]
- Southern, K.W.; Addy, C.; Bell, S.C.; Bevan, A.; Borawska, U.; Brown, C.; Burgel, P.-R.; Button, B.; Castellani, C.; Chansard, A.; et al. Standards for the care of people with cystic fibrosis; establishing and maintaining health. J. Cyst. Fibros. 2024, 23, 12–28. [Google Scholar] [CrossRef] [PubMed]
- Allen, L.; Allen, L.; Carr, S.B.; Davies, G.; Downey, D.; Egan, M.; Forton, J.T.; Gray, R.; Haworth, C.; Horsley, A.; et al. Future therapies for cystic fibrosis. Nat. Commun. 2023, 14, 693. [Google Scholar] [CrossRef]
- Imperlini, E.; Papa, R. Clinical Advances in Cystic Fibrosis. J. Clin. Med. 2022, 11, 6306. [Google Scholar] [CrossRef]
- Dienstag, J.; Neu, H.C. In vitro studies of tobramycin, an aminoglycoside antibiotic. Antimicrob. Agents Chemother. 1972, 1, 41–45. [Google Scholar] [CrossRef]
- Rosalia, M.; Chiesa, E.; Tottoli, E.M.; Dorati, R.; Genta, I.; Conti, B.; Pisani, S. Tobramycin Nanoantibiotics and Their Advantages: A Minireview. Int. J. Mol. Sci. 2022, 23, 14080. [Google Scholar] [CrossRef]
- Kotra, L.P.; Haddad, J.; Mobashery, S. Aminoglycosides: Perspectives on mechanisms of action and resistance and strategies to counter resistance. Antimicrob. Agents Chemother. 2000, 44, 3249–3256. [Google Scholar] [CrossRef]
- Food and Drug Administration. TOPI® (Tobramycin Inhalation Solution), for Oral Inhalation Use Initial U.S. Approval: 1975. 2024; pp. 1–13. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2018/050753s022lbl.pdf (accessed on 10 October 2024).
- McDonald, E.M.; Ram, F.S.F.; Patel, D.V.; McGhee, C.N.J. Topical antibiotics for the management of bacterial keratitis: An evidence-based review of high quality randomised controlled trials. Br. J. Ophthalmol. 2014, 98, 1470–1477. [Google Scholar] [CrossRef]
- Barker, A.F.; Couch, L.; Fiel, S.B.; Gotfried, M.H.; Ilowite, J.; Meyer, K.C.; O’Donnell, A.; Sahn, S.A.; Smith, L.J.; Stewart, J.O.; et al. Tobramycin solution for inhalation reduces sputum Pseudomonas aeruginosa density in bronchiectasis. Am. J. Respir. Crit. Care Med. 2000, 162, 481–485. [Google Scholar] [CrossRef]
- Lam, J.; Vaughan, S.; Parkins, M.D. Tobramycin Inhalation Powder (TIP): An Efficient Treatment Strategy for the Management of Chronic Pseudomonas aeruginosa Infection in Cystic Fibrosis. Clin. Med. Insights Circ. Respir. Pulm. Med. 2013, 7, 61–77. [Google Scholar] [CrossRef]
- Banerjee, S.K.; Jagannath, C.; Hunter, R.L.; Dasgupta, A. Bioavailability of tobramycin after oral delivery in FVB mice using CRL-1605 copolymer, an inhibitor of P-glycoprotein. Life Sci. 2000, 67, 2011–2016. [Google Scholar] [CrossRef]
- Hennig, S.; McKay, K.; Vidmar, S.; O’Brien, K.; Stacey, S.; Cheney, J.; Wainwright, C.E. Safety of inhaled (Tobi®) and intravenous tobramycin in young children with cystic fibrosis. J. Cyst. Fibros. 2014, 13, 428–434. [Google Scholar] [CrossRef] [PubMed]
- Smith, A.L.; Ramsey, B.W.; Hedges, D.L.; Hack, B.; Williams-Warren, J.; Weber, A.; Gore, E.J.; Redding, G.J. Safety of aerosol tobramycin administration for 3 months to patients with cystic fibrosis. Pediatr. Pulmonol. 1989, 7, 265–271. [Google Scholar] [CrossRef]
- Ramsey, B.W.; Dorkin, H.L.; Eisenberg, J.D.; Gibson, R.L.; Harwood, I.R.; Kravitz, R.M.; Schidlow, D.V.; Wilmott, R.W.; Astley, S.J.; McBurnie, M.A. Efficacy of aerosolized tobramycin in patients with cystic fibrosis. N. Engl. J. Med. 1993, 328, 1740–1746. [Google Scholar] [CrossRef]
- Shteinberg, M.; Elborn, J.S. Use of inhaled tobramycin in cystic fibrosis. Adv. Ther. 2015, 32, 1–9. [Google Scholar] [CrossRef]
- Bowman, C.M. The long-term use of inhaled tobramycin in patients with cystic fibrosis. J. Cyst. Fibros. 2002, 1, 194–198. [Google Scholar] [CrossRef]
- Schwarz, C.; Taccetti, G.; Burgel, P.-R.; Mulrennan, S. Tobramycin safety and efficacy review article. Respir. Med. 2022, 195, 106778. [Google Scholar] [CrossRef]
- Bialvaei, A.Z.; Samadi Kafil, H. Colistin, mechanisms and prevalence of resistance. Curr. Med. Res. Opin. 2015, 31, 707–721. [Google Scholar] [CrossRef]
- Ito, M.; Aida, K.; Uemura, T. Biosynthesis of colistin by Bacillus colistinus Koyama. Biochim. Biophys. Acta 1970, 213, 244–247. [Google Scholar] [CrossRef]
- Bertani, B.; Ruiz, N. Function and Biogenesis of Lipopolysaccharides. EcoSal Plus 2018, 8, 1–33. [Google Scholar] [CrossRef]
- Liao, F.-H.; Wu, T.-H.; Yao, C.-N.; Kuo, S.-C.; Su, C.-J.; Jeng, U.-S.; Lin, S.-Y. A Supramolecular Trap to Increase the Antibacterial Activity of Colistin. Angew. Chem. Int. Ed. Engl. 2020, 59, 1430–1434. [Google Scholar] [CrossRef]
- El-Sayed Ahmed, M.A.E.-G.; Zhong, L.-L.; Shen, C.; Yang, Y.; Doi, Y.; Tian, G.-B. Colistin and its role in the Era of antibiotic resistance: An extended review (2000–2019). Emerg. Microbes Infect. 2020, 9, 868–885. [Google Scholar] [CrossRef] [PubMed]
- Jeannot, K.; Bolard, A.; Plésiat, P. Resistance to polymyxins in Gram-negative organisms. Int. J. Antimicrob. Agents 2017, 49, 526–535. [Google Scholar] [CrossRef] [PubMed]
- Srinivas, P.; Rivard, K. Polymyxin Resistance in Gram-negative Pathogens. Curr. Infect. Dis. Rep. 2017, 19, 38–39. [Google Scholar] [CrossRef]
- Dudhani, R.V.; Nation, R.L.; Li, J. Evaluating the stability of colistin and colistin methanesulphonate in human plasma under different conditions of storage. J. Antimicrob. Chemother. 2010, 65, 1412–1415. [Google Scholar] [CrossRef] [PubMed]
- Bergen, P.J.; Li, J.; Rayner, C.R.; Nation, R.L. Colistin methanesulfonate is an inactive prodrug of colistin against Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 2006, 50, 1953–1958. [Google Scholar] [CrossRef] [PubMed]
- Tewes, F.; Brillault, J.; Gregoire, N.; Olivier, J.-C.; Lamarche, I.; Adier, C.; Healy, A.-M.; Marchand, S. Comparison between Colistin Sulfate Dry Powder and Solution for Pulmonary Delivery. Pharmaceutics 2020, 12, 557. [Google Scholar] [CrossRef]
- Spapen, H.; Jacobs, R.; Van Gorp, V.; Troubleyn, J.; Honoré, P.M. Renal and neurological side effects of colistin in critically ill patients. Ann. Intensive Care 2011, 1, 14–17. [Google Scholar] [CrossRef]
- Wiseman, L.R.; Wagstaff, A.J.; Brogden, R.N.; Bryson, H.M. Meropenem. A review of its antibacterial activity, pharmacokinetic properties and clinical efficacy. Drugs 1995, 50, 73–101. [Google Scholar] [CrossRef]
- Aurilio, C.; Sansone, P.; Barbarisi, M.; Pota, V.; Giaccari, L.G.; Coppolino, F.; Barbarisi, A.; Passavanti, M.B.; Pace, M.C. Mechanisms of Action of Carbapenem Resistance. Antibiotics 2022, 11, 421. [Google Scholar] [CrossRef]
- Dhillon, S. Meropenem/Vaborbactam: A Review in Complicated Urinary Tract Infections. Drugs 2018, 78, 1259–1270. [Google Scholar] [CrossRef]
- Sanders, C.C.; Sanders, W.E.; Thomson, K.S.; Iaconis, J.P. Meropenem: Activity against resistant gram-negative bacteria and interactions with beta-lactamases. J. Antimicrob. Chemother. 1989, 24 (Suppl. A), 187–196. [Google Scholar] [CrossRef]
- Linden, P. Safety profile of meropenem: An updated review of over 6,000 patients treated with meropenem. Drug Saf. 2007, 30, 657–668. [Google Scholar] [CrossRef] [PubMed]
- Raza, A.; Ngieng, S.C.; Sime, F.B.; Cabot, P.J.; Roberts, J.A.; Popat, A.; Kumeria, T.; Falconer, J.R. Oral meropenem for superbugs: Challenges and opportunities. Drug Discov. Today 2021, 26, 551–560. [Google Scholar] [CrossRef] [PubMed]
- Norrby, S.R.; Gildon, K.M. Safety profile of meropenem: A review of nearly 5,000 patients treated with meropenem. Scand. J. Infect. Dis. 1999, 31, 3–10. [Google Scholar] [PubMed]
- Bachar, S.C.; Pal, T. Estimation of Meropenem in Human Plasma by HPLC-UV and its Application in Comparative Bioavailability Study. J. Anal. Chem. 2011, 1, 23–30. [Google Scholar]
- Bergan, T.; Nord, C.E.; Thorsteinsson, S.B. Effect of meropenem on the intestinal microflora. Eur. J. Clin. Microbiol. Infect. Dis. 1991, 10, 524–527. [Google Scholar] [CrossRef]
- Rafey, A.; Jahan, S.; Farooq, U.; Akhtar, F.; Irshad, M.; Nizamuddin, S.; Parveen, A. Antibiotics Associated with Clostridium difficile Infection. Cureus 2023, 15, e39029. [Google Scholar] [CrossRef]
- López Montesinos, I.; Montero, M.; Sorlí, L.; Horcajada, J.P. Ceftolozane-tazobactam: When, how and why using it? Rev. Esp. Quim. 2021, 34 (Suppl. S1), 35–37. [Google Scholar] [CrossRef]
- Lizza, B.D.; Betthauser, K.D.; Ritchie, D.J.; Micek, S.T.; Kollef, M.H. New Perspectives on Antimicrobial Agents: Ceftolozane-Tazobactam. Antimicrob. Agents Chemother. 2021, 65, e0231820. [Google Scholar] [CrossRef]
- Food and Drug Administration. ZERBAXA® (Ceftolozane and Tazobactam) for Injection, for Intravenous Use. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2022/206829s011s012lbl.pdf (accessed on 10 October 2024).
- European Medicines Agency. Zerbaxa, INN-Ceftolozane/Tazobactam. Available online: https://www.ema.europa.eu/en/documents/product-information/zerbaxa-epar-product-information_en.pdf (accessed on 10 October 2024).
- Solomkin, J.; Hershberger, E.; Miller, B.; Popejoy, M.; Friedland, I.; Steenbergen, J.; Yoon, M.; Collins, S.; Yuan, G.; Barie, P.S.; et al. Ceftolozane/Tazobactam Plus Metronidazole for Complicated Intra-abdominal Infections in an Era of Multidrug Resistance: Results from a Randomized, Double-Blind, Phase 3 Trial (ASPECT-cIAI). Clin. Infect. Dis. 2015, 60, 1462–1471. [Google Scholar] [CrossRef]
- Bakheit, A.H.H.; Al-Hadiya, B.M.H.; Abd-Elgalil, A.A. Azithromycin, 1st ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2014; Volume 39, pp. 1–40. [Google Scholar]
- Steingrimsson, O.; Olafsson, J.H.; Thorarinsson, H.; Ryan, R.W.; Johnson, R.B.; Tilton, R.C. Azithromycin in the treatment of sexually transmitted disease. J. Antimicrob. Chemother. 1990, 25 (Suppl. A), 109–114. [Google Scholar] [CrossRef] [PubMed]
- Parnham, M.J.; Erakovic Haber, V.; Giamarellos-Bourboulis, E.J.; Perletti, G.; Verleden, G.M.; Vos, R. Azithromycin: Mechanisms of action and their relevance for clinical applications. Pharmacol. Ther. 2014, 143, 225–245. [Google Scholar] [CrossRef] [PubMed]
- Goldstein, F.W.; Emirian, M.F.; Coutrot, A.; Acar, J.F. Bacteriostatic and bactericidal activity of azithromycin against Haemophilus influenzae. J. Antimicrob. Chemother. 1990, 25 (Suppl. A), 25–28. [Google Scholar] [CrossRef] [PubMed]
- Neu, H.C. Clinical microbiology of azithromycin. Am. J. Med. 1991, 91, 12S–18S. [Google Scholar] [CrossRef]
- Sun, J.; Li, Y. Long-term, low-dose macrolide antibiotic treatment in pediatric chronic airway diseases. Pediatr. Res. 2022, 91, 1036–1042. [Google Scholar] [CrossRef]
- Cramer, C.L.; Patterson, A.; Alchakaki, A.; Soubani, A.O. Immunomodulatory indications of azithromycin in respiratory disease: A concise review for the clinician. Postgrad. Med. 2017, 129, 493–499. [Google Scholar] [CrossRef]
- Stellari, F.F.; Sala, A.; Donofrio, G.; Ruscitti, F.; Caruso, P.; Topini, T.M.; Francis, K.P.; Li, X.; Carnini, C.; Civelli, M.; et al. Azithromycin inhibits nuclear factor-κB activation during lung inflammation: An in vivo imaging study. Pharmacol. Res. Perspect. 2014, 2, e00058. [Google Scholar] [CrossRef]
- Aghai, Z.H.; Kode, A.; Saslow, J.G.; Nakhla, T.; Farhath, S.; Stahl, G.E.; Eydelman, R.; Strande, L.; Leone, P.; Rahman, I. Azithromycin suppresses activation of nuclear factor-kappa B and synthesis of pro-inflammatory cytokines in tracheal aspirate cells from premature infants. Pediatr. Res. 2007, 62, 483–488. [Google Scholar] [CrossRef]
- Murphy, B.S.; Sundareshan, V.; Cory, T.J.; Hayes, D.; Anstead, M.I.; Feola, D.J. Azithromycin alters macrophage phenotype. J. Antimicrob. Chemother. 2008, 61, 554–560. [Google Scholar] [CrossRef]
- Feola, D.J.; Garvy, B.A.; Cory, T.J.; Birket, S.E.; Hoy, H.; Hayes, D.; Murphy, B.S. Azithromycin alters macrophage phenotype and pulmonary compartmentalization during lung infection with Pseudomonas. Antimicrob. Agents Chemother. 2010, 54, 2437–2447. [Google Scholar] [CrossRef]
- Bakar, O.; Demirçay, Z.; Yuksel, M.; Haklar, G.; Sanisoglu, Y. The effect of azithromycin on reactive oxygen species in rosacea. Clin. Exp. Dermatol. 2007, 32, 197–200. [Google Scholar] [CrossRef] [PubMed]
- Pollock, J.; Chalmers, J.D. The immunomodulatory effects of macrolide antibiotics in respiratory disease. Pulm. Pharmacol. Ther. 2021, 71, 102095. [Google Scholar] [CrossRef] [PubMed]
- Paris, R.; Confalonieri, M.; Dal Negro, R.; Ligia, G.P.; Mos, L.; Todisco, T.; Rastelli, V.; Perna, G.; Cepparulo, M. Efficacy and safety of azithromycin 1 g once daily for 3 days in the treatment of community-acquired pneumonia: An open-label randomised comparison with amoxicillin-clavulanate 875/125 mg twice daily for 7 days. J. Chemother. 2008, 20, 77–86. [Google Scholar] [CrossRef]
- Garey, K.W.; Amsden, G.W. Intravenous azithromycin. Ann. Pharmacother. 1999, 33, 218–228. [Google Scholar] [CrossRef]
- Amsden, G.W. Erythromycin, clarithromycin, and azithromycin: Are the differences real? Clin. Ther. 1996, 18, 56–72, discussion 55. [Google Scholar] [CrossRef]
- Hopkins, S. Clinical toleration and safety of azithromycin. Am. J. Med. 1991, 91, 40S–45S. [Google Scholar] [CrossRef]
- Sun, Y.-W.; Cen, Y.-H.; Chen, M.-H.; Yan, X.-K.; Jin, X.-F. Safety profiles and adverse reactions of azithromycin in the treatment of pediatric respiratory diseases: A systematic review and meta-analysis. Medicine 2023, 102, e36306. [Google Scholar] [CrossRef]
- Zhanel, G.G.; Walkty, A.; Vercaigne, L.; Karlowsky, J.A.; Embil, J.; Gin, A.S.; Hoban, D.J. The new fluoroquinolones: A critical review. Can. J. Infect. Dis. 1999, 10, 207–238. [Google Scholar] [CrossRef]
- King, D.E.; Malone, R.; Lilley, S.H. New classification and update on the quinolone antibiotics. Am. Fam. Physician 2000, 61, 2741–2748. [Google Scholar]
- Hooper, D.C.; Jacoby, G.A. Topoisomerase Inhibitors: Fluoroquinolone Mechanisms of Action and Resistance. Cold Spring Harb. Perspect. Med. 2016, 6, a025320. [Google Scholar] [CrossRef]
- Hooper, D.C. Mechanisms of action and resistance of older and newer fluoroquinolones. Clin. Infect. Dis. 2000, 31 (Suppl. S2), S24–S28. [Google Scholar] [CrossRef] [PubMed]
- Yudhawati, R.; Wicaksono, N.F. Immunomodulatory Effects of Fluoroquinolones in Community-Acquired Pneumonia-Associated Acute Respiratory Distress Syndrome. Biomedicines 2024, 12, 761. [Google Scholar] [CrossRef]
- Dorkin, H.L.; Staab, D.; Operschall, E.; Alder, J.; Criollo, M. Ciprofloxacin DPI: A randomised, placebo-controlled, phase IIb efficacy and safety study on cystic fibrosis. BMJ Open Respir. Res. 2015, 2, e000100. [Google Scholar] [CrossRef]
- Cao, D.; Shen, Y.; Huang, Y.; Chen, B.; Chen, Z.; Ai, J.; Liu, L.; Yang, L.; Wei, Q. Levofloxacin Versus Ciprofloxacin in the Treatment of Urinary Tract Infections: Evidence-Based Analysis. Front. Pharmacol. 2021, 12, 658095. [Google Scholar] [CrossRef]
- Tribble, D.R. Antibiotic Therapy for Acute Watery Diarrhea and Dysentery. Mil. Med. 2017, 182, 17–25. [Google Scholar] [CrossRef]
- Thai, T.; Salisbury, B.H.; Zito, P.M. Ciprofloxacin; StatPearls Publishing: Treasure Island, FL, USA, 2024; pp. 1–9. [Google Scholar]
- Ball, P. Ciprofloxacin: An overview of adverse experiences. J. Antimicrob. Chemother. 1986, 18 (Suppl. D), 187–193. [Google Scholar] [CrossRef]
- Agbaht, K.; Bitik, B.; Piskinpasa, S.; Bayraktar, M.; Topeli, A. Ciprofloxacin-associated seizures in a patient with underlying thyrotoxicosis: Case report and literature review. Int. J. Clin. Pharmacol. Ther. 2009, 47, 303–310. [Google Scholar] [CrossRef]
- Berger, F.A.; Monadian, N.; de Groot, N.M.S.; Santbergen, B.; van der Sijs, H.; Becker, M.L.; Broers, A.E.C.; van Gelder, T.; van den Bemt, P.M.L.A. QTc prolongation during ciprofloxacin and fluconazole combination therapy: Prevalence and associated risk factors. Br. J. Clin. Pharmacol. 2018, 84, 369–378. [Google Scholar] [CrossRef]
- Adefurin, A.; Sammons, H.; Jacqz-Aigrain, E.; Choonara, I. Ciprofloxacin safety in paediatrics: A systematic review. Arch. Dis. Child. 2011, 96, 874–880. [Google Scholar] [CrossRef]
- Yefet, E.; Schwartz, N.; Chazan, B.; Salim, R.; Romano, S.; Nachum, Z. The safety of quinolones and fluoroquinolones in pregnancy: A meta-analysis. BJOG 2018, 125, 1069–1076. [Google Scholar] [CrossRef]
- Ramsey, C.; MacGowan, A.P. A review of the pharmacokinetics and pharmacodynamics of aztreonam. J. Antimicrob. Chemother. 2016, 71, 2704–2712. [Google Scholar] [CrossRef] [PubMed]
- Stutman, H.R. Clinical experience with aztreonam. Pediatr. Infect. Dis. J. 1989, 8, S109–S112, discussion S128–S132. [Google Scholar] [CrossRef] [PubMed]
- Paul, M.; Carrara, E.; Retamar, P.; Tängdén, T.; Bitterman, R.; Bonomo, R.A.; de Waele, J.; Daikos, G.L.; Akova, M.; Harbarth, S.; et al. European Society of Clinical Microbiology and Infectious Diseases (ESCMID) guidelines for the treatment of infections caused by multidrug-resistant Gram-negative bacilli (endorsed by European society of intensive care medicine). Clin. Microbiol. Infect. 2022, 28, 521–547. [Google Scholar] [CrossRef]
- Crichton, M.L.; Lonergan, M.; Barker, A.F.; Sibila, O.; Goeminne, P.; Shoemark, A.; Chalmers, J.D. Inhaled aztreonam improves symptoms of cough and sputum production in patients with bronchiectasis: A post hocanalysis of the AIR-BX studies. Eur. Respir. J. 2020, 56, 1–9. [Google Scholar] [CrossRef]
- Delp, H.; Gibson, G.A.; Buckman, S.A. Aztreonam-avibactam for the treatment of intra-abdominal infections. Expert. Opin. Pharmacother. 2024, 25, 1867–1872. [Google Scholar] [CrossRef]
- Sattler, F.R.; Moyer, J.E.; Schramm, M.; Lombard, J.S.; Appelbaum, P.C. Aztreonam compared with gentamicin for treatment of serious urinary tract infections. Lancet 1984, 1, 1315–1318. [Google Scholar] [CrossRef]
- Newman, T.J.; Dreslinski, G.R.; Tadros, S.S. Safety profile of aztreonam in clinical trials. Rev. Infect. Dis. 1985, 7 (Suppl. S4), S648–S655. [Google Scholar] [CrossRef]
- Manos, J. Current and Emerging Therapies to Combat Cystic Fibrosis Lung Infections. Microorganisms 2021, 9, 1874. [Google Scholar] [CrossRef]
- Graña-Miraglia, L.; Morales-Lizcano, N.; Wang, P.W.; Hwang, D.M.; Yau, Y.C.W.; Waters, V.J.; Guttman, D.S. Predictive modeling of antibiotic eradication therapy success for new-onset Pseudomonas aeruginosa pulmonary infections in children with cystic fibrosis. PLoS Comput. Biol. 2023, 19, e1011424. [Google Scholar] [CrossRef]
- Taccetti, G.; Campana, S.; Festini, F.; Mascherini, M.; Döring, G. Early eradication therapy against Pseudomonas aeruginosa in cystic fibrosis patients. Eur. Respir. J. 2005, 26, 458–461. [Google Scholar] [CrossRef]
- Jones, A.M. Eradication therapy for early Pseudomonas aeruginosa infection in CF: Many questions still unanswered. Eur. Respir. J. 2005, 26, 373–375. [Google Scholar] [CrossRef] [PubMed]
- Akkerman-Nijland, A.M.; Yousofi, M.; Rottier, B.L.; Van der Vaart, H.; Burgerhof, J.G.M.; Frijlink, H.W.; Touw, D.J.; Koppelman, G.H.; Akkerman, O.W. Eradication of Pseudomonas aeruginosa in cystic fibrosis patients with inhalation of dry powder tobramycin. Ther. Adv. Respir. Dis. 2020, 14, 1753466620905279-5. [Google Scholar] [CrossRef] [PubMed]
- Ratjen, F.; Munck, A.; Kho, P.; Angyalosi, G.; ELITE Study Group. Treatment of early Pseudomonas aeruginosa infection in patients with cystic fibrosis: The ELITE trial. Thorax 2010, 65, 286–291. [Google Scholar] [CrossRef]
- Conceição, M.; Shteinberg, M.; Goeminne, P.; Altenburg, J.; Chalmers, J.D. Eradication treatment for Pseudomonas aeruginosa infection in adults with bronchiectasis: A systematic review and meta-analysis. Eur. Respir. Rev. 2024, 33, 1–9. [Google Scholar] [CrossRef]
- McCarthy, K.; Avent, M. Oral or intravenous antibiotics? Aust. Prescr. 2020, 43, 45–48. [Google Scholar] [CrossRef]
- Molinelli, E.; De Simoni, E.; Candelora, M.; Sapigni, C.; Brisigotti, V.; Rizzetto, G.; Offidani, A.; Simonetti, O. Systemic Antibiotic Therapy in Hidradenitis Suppurativa: A Review on Treatment Landscape and Current Issues. Antibiotics 2023, 12, 978. [Google Scholar] [CrossRef]
- Yuan, X.; Zhou, F.; Wang, H.; Xu, X.; Xu, S.; Zhang, C.; Zhang, Y.; Lu, M.; Zhang, Y.; Zhou, M.; et al. Systemic antibiotics increase microbiota pathogenicity and oral bone loss. Int. J. Oral. Sci. 2023, 15, 4–14. [Google Scholar] [CrossRef]
- Gounden, R.; Bamford, C.; van Zyl-Smit, R.; Cohen, K.; Maartens, G. Safety and effectiveness of colistin compared with tobramycin for multi-drug resistant Acinetobacter baumannii infections. BMC Infect. Dis. 2009, 9, 26. [Google Scholar] [CrossRef]
- McWilliam, S.J.; Antoine, D.J.; Smyth, R.L.; Pirmohamed, M. Aminoglycoside-induced nephrotoxicity in children. Pediatr. Nephrol. 2017, 32, 2015–2025. [Google Scholar] [CrossRef]
- Spencer, S.; Ipema, H.; Hartke, P.; Krueger, C.; Rodriguez, R.; Gross, A.E.; Gabay, M. Intravenous Push Administration of Antibiotics: Literature and Considerations. Hosp. Pharm. 2018, 53, 157–169. [Google Scholar] [CrossRef]
- Ordooei Javan, A.; Shokouhi, S.; Sahraei, Z. A review on colistin nephrotoxicity. Eur. J. Clin. Pharmacol. 2015, 71, 801–810. [Google Scholar] [CrossRef] [PubMed]
- Glass, S.; Plant, N.D.; Spencer, D.A. The effects of intravenous tobramycin on renal tubular function in children with cystic fibrosis. J. Cyst. Fibros. 2005, 4, 221–225. [Google Scholar] [CrossRef] [PubMed]
- Özkarakaş, H.; Köse, I.; Zincircioğlu, Ç.; Ersan, S.; Ersan, G.; Şenoğlu, N.; Köse, Ş.; Erbay, R.H. Risk factors for colistin-associated nephrotoxicity and mortality in critically ill patients. Turk. J. Med. Sci. 2017, 47, 1165–1172. [Google Scholar] [CrossRef] [PubMed]
- Nation, R.L.; Li, J. Colistin in the 21st century. Curr. Opin. Infect. Dis. 2009, 22, 535–543. [Google Scholar] [CrossRef]
- Falagas, M.E.; Kasiakou, S.K.; Tsiodras, S.; Michalopoulos, A. The use of intravenous and aerosolized polymyxins for the treatment of infections in critically ill patients: A review of the recent literature. Clin. Med. Res. 2006, 4, 138–146. [Google Scholar] [CrossRef]
- Hartzell, J.D.; Neff, R.; Ake, J.; Howard, R.; Olson, S.; Paolino, K.; Vishnepolsky, M.; Weintrob, A.; Wortmann, G. Nephrotoxicity associated with intravenous colistin (colistimethate sodium) treatment at a tertiary care medical center. Clin. Infect. Dis. 2009, 48, 1724–1728. [Google Scholar] [CrossRef]
- Koomanachai, P.; Tiengrim, S.; Kiratisin, P.; Thamlikitkul, V. Efficacy and safety of colistin (colistimethate sodium) for therapy of infections caused by multidrug-resistant Pseudomonas aeruginosa and Acinetobacter baumannii in Siriraj Hospital, Bangkok, Thailand. Int. J. Infect. Dis. 2007, 11, 402–406. [Google Scholar] [CrossRef]
- Minejima, E.; Choi, J.; Beringer, P.; Lou, M.; Tse, E.; Wong-Beringer, A. Applying new diagnostic criteria for acute kidney injury to facilitate early identification of nephrotoxicity in vancomycin-treated patients. Antimicrob. Agents Chemother. 2011, 55, 3278–3283. [Google Scholar] [CrossRef]
- Ramsey, B.W.; Pepe, M.S.; Quan, J.M.; Otto, K.L.; Montgomery, A.B.; Williams-Warren, J.; Vasiljev-K, M.; Borowitz, D.; Bowman, C.M.; Marshall, B.C.; et al. Intermittent administration of inhaled tobramycin in patients with cystic fibrosis. Cystic Fibrosis Inhaled Tobramycin Study Group. N. Engl. J. Med. 1999, 340, 23–30. [Google Scholar] [CrossRef]
- Anderson, S.; Atkins, P.; Bäckman, P.; Cipolla, D.; Clark, A.; Daviskas, E.; Disse, B.; Entcheva-Dimitrov, P.; Fuller, R.; Gonda, I.; et al. Inhaled Medicines: Past, Present, and Future. Pharmacol. Rev. 2022, 74, 48–118. [Google Scholar] [CrossRef]
- Sommerwerck, U.; Virella-Lowell, I.; Angyalosi, G.; Viegas, A.; Cao, W.; Debonnett, L. Long-term safety of tobramycin inhalation powder in patients with cystic fibrosis: Phase IV (ETOILES) study. Curr. Med. Res. Opin. 2016, 32, 1789–1795. [Google Scholar] [CrossRef] [PubMed]
- Konstan, M.W.; Geller, D.E.; Minić, P.; Brockhaus, F.; Zhang, J.; Angyalosi, G. Tobramycin inhalation powder for P. aeruginosa infection in cystic fibrosis: The EVOLVE trial. Pediatr. Pulmonol. 2011, 46, 230–238. [Google Scholar] [CrossRef] [PubMed]
- Konstan, M.W.; Flume, P.A.; Kappler, M.; Chiron, R.; Higgins, M.; Brockhaus, F.; Zhang, J.; Angyalosi, G.; He, E.; Geller, D.E. Safety, efficacy and convenience of tobramycin inhalation powder in cystic fibrosis patients: The EAGER trial. J. Cyst. Fibros. 2011, 10, 54–61. [Google Scholar] [CrossRef] [PubMed]
- Chalmers, J.D.; Smith, M.P.; McHugh, B.J.; Doherty, C.; Govan, J.R.; Hill, A.T. Short- and long-term antibiotic treatment reduces airway and systemic inflammation in non-cystic fibrosis bronchiectasis. Am. J. Respir. Crit. Care Med. 2012, 186, 657–665. [Google Scholar] [CrossRef]
- Cordeiro, R.; Choi, H.; Haworth, C.S.; Chalmers, J.D. The Efficacy and Safety of Inhaled Antibiotics for the Treatment of Bronchiectasis in Adults: Updated Systematic Review and Meta-Analysis. CHEST 2024, 166, 61–80. [Google Scholar] [CrossRef]
- Wenzler, E.; Fraidenburg, D.R.; Scardina, T.; Danziger, L.H. Inhaled Antibiotics for Gram-Negative Respiratory Infections. Clin. Microbiol. Rev. 2016, 29, 581–632. [Google Scholar] [CrossRef]
- Thompson, V.; Mayer-Hamblett, N.; Kloster, M.; Bilton, D.; Flume, P.A. Risk of hemoptysis in cystic fibrosis clinical trials: A retrospective cohort study. J. Cyst. Fibros. 2015, 14, 632–638. [Google Scholar] [CrossRef]
- Maselli, D.J.; Keyt, H.; Restrepo, M.I. Inhaled Antibiotic Therapy in Chronic Respiratory Diseases. Int. J. Mol. Sci. 2017, 18, 1062. [Google Scholar] [CrossRef]
- Greenwood, J.; Schwarz, C.; Sommerwerck, U.; Nash, E.F.; Tamm, M.; Cao, W.; Mastoridis, P.; Debonnett, L.; Hamed, K. Ease of use of tobramycin inhalation powder compared with nebulized tobramycin and colistimethate sodium: A crossover study in cystic fibrosis patients with pulmonary Pseudomonas aeruginosa infection. Ther. Adv. Respir. Dis. 2017, 11, 249–260. [Google Scholar] [CrossRef]
- Harrison, M.J.; McCarthy, M.; Fleming, C.; Hickey, C.; Shortt, C.; Eustace, J.A.; Murphy, D.M.; Plant, B.J. Inhaled versus nebulised tobramycin: A real world comparison in adult cystic fibrosis (CF). J. Cyst. Fibros. 2014, 13, 692–698. [Google Scholar] [CrossRef]
- von Schantz, S.; Katajavuori, N.; Antikainen, O.; Juppo, A. Evaluation of dry powder inhalers with a focus on ease of use and user preference in inhaler-naïve individuals. Int. J. Pharm. 2016, 509, 50–58. [Google Scholar] [CrossRef] [PubMed]
- Schuster, A.; Haliburn, C.; Döring, G.; Goldman, M.H.; Freedom Study Group. Safety, efficacy and convenience of colistimethate sodium dry powder for inhalation (Colobreathe DPI) in patients with cystic fibrosis: A randomised study. Thorax 2013, 68, 344–350. [Google Scholar] [CrossRef] [PubMed]
- Galeva, I.; Konstan, M.W.; Higgins, M.; Angyalosi, G.; Brockhaus, F.; Piggott, S.; Thomas, K.; Chuchalin, A.G. Tobramycin inhalation powder manufactured by improved process in cystic fibrosis: The randomized EDIT trial. Curr. Med. Res. Opin. 2013, 29, 947–956. [Google Scholar] [CrossRef] [PubMed]
- de la Rosa-Carrillo, D.; Suárez-Cuartín, G.; Sibila, O.; Golpe, R.; Girón, R.-M.; Martinez-García, M.A. Efficacy and Safety of Dry Powder Antibiotics: A Narrative Review. J. Clin. Med. 2023, 12, 3577. [Google Scholar] [CrossRef] [PubMed]
- Geller, D.E.; Weers, J.; Heuerding, S. Development of an inhaled dry-powder formulation of tobramycin using PulmoSphere™ technology. J. Aerosol Med. Pulm. Drug Deliv. 2011, 24, 175–182. [Google Scholar] [CrossRef]
- Conole, D.; Keating, G.M. Colistimethate sodium dry powder for inhalation: A review of its use in the treatment of chronic Pseudomonas aeruginosa infection in patients with cystic fibrosis. Drugs 2014, 74, 377–387. [Google Scholar] [CrossRef]
- Coates, A.R.M.; Hu, Y.; Holt, J.; Yeh, P. Antibiotic combination therapy against resistant bacterial infections: Synergy, rejuvenation and resistance reduction. Expert. Rev. Anti-Infect. Ther. 2020, 18, 5–15. [Google Scholar] [CrossRef]
- Nick, J.A.; Moskowitz, S.M.; Chmiel, J.F.; Forssén, A.V.; Kim, S.H.; Saavedra, M.T.; Saiman, L.; Taylor-Cousar, J.L.; Nichols, D.P. Azithromycin may antagonize inhaled tobramycin when targeting Pseudomonas aeruginosa in cystic fibrosis. Ann. Am. Thorac. Soc. 2014, 11, 342–350. [Google Scholar] [CrossRef]
- Nichols, D.P.; Singh, P.K.; Baines, A.; Caverly, L.J.; Chmiel, J.F.; Gibson, R.L.; Lascano, J.; Morgan, S.J.; Retsch-Bogart, G.; Saiman, L.; et al. Testing the effects of combining azithromycin with inhaled tobramycin for P. aeruginosa in cystic fibrosis: A randomised, controlled clinical trial. Thorax 2022, 77, 581–588. [Google Scholar] [CrossRef]
- Mayer-Hamblett, N.; Retsch-Bogart, G.; Kloster, M.; Accurso, F.; Rosenfeld, M.; Albers, G.; Black, P.; Brown, P.; Cairns, A.; Davis, S.D.; et al. Azithromycin for Early Pseudomonas Infection in Cystic Fibrosis. The OPTIMIZE Randomized Trial. Am. J. Respir. Crit. Care Med. 2018, 198, 1177–1187. [Google Scholar] [CrossRef]
- Equi, A.; Balfour-Lynn, I.M.; Bush, A.; Rosenthal, M. Long term azithromycin in children with cystic fibrosis: A randomised, placebo-controlled crossover trial. Lancet 2002, 360, 978–984. [Google Scholar] [CrossRef] [PubMed]
- Clement, A.; Tamalet, A.; Leroux, E.; Ravilly, S.; Fauroux, B.; Jais, J.-P. Long term effects of azithromycin in patients with cystic fibrosis: A double blind, placebo controlled trial. Thorax 2006, 61, 895–902. [Google Scholar] [CrossRef] [PubMed]
- Stick, S.M.; Foti, A.; Ware, R.S.; Tiddens, H.A.W.M.; Clements, B.S.; Armstrong, D.S.; Selvadurai, H.; Tai, A.; Cooper, P.J.; Byrnes, C.A.; et al. The effect of azithromycin on structural lung disease in infants with cystic fibrosis (COMBAT CF): A phase 3, randomised, double-blind, placebo-controlled clinical trial. Lancet Respir. Med. 2022, 10, 776–784. [Google Scholar] [CrossRef]
- Hennig, S.; Standing, J.F.; Staatz, C.E.; Thomson, A.H. Population pharmacokinetics of tobramycin in patients with and without cystic fibrosis. Clin. Pharmacokinet. 2013, 52, 289–301. [Google Scholar] [CrossRef]
- Parker, E.M.; Hutchison, M.; Blumer, J.L. The pharmacokinetics of meropenem in infants and children: A population analysis. J. Antimicrob. Chemother. 1995, 36 (Suppl. A), 63–71. [Google Scholar] [CrossRef]
- Pettit, R.S.; Neu, N.; Cies, J.J.; Lapin, C.; Muhlebach, M.S.; Novak, K.J.; Nguyen, S.T.; Saiman, L.; Nicolau, D.P.; Kuti, J.L. Population pharmacokinetics of meropenem administered as a prolonged infusion in children with cystic fibrosis. J. Antimicrob. Chemother. 2016, 71, 189–195. [Google Scholar] [CrossRef]
- Du, X.; Li, C.; Kuti, J.L.; Nightingale, C.H.; Nicolau, D.P. Population pharmacokinetics and pharmacodynamics of meropenem in pediatric patients. J. Clin. Pharmacol. 2006, 46, 69–75. [Google Scholar] [CrossRef]
- Ikawa, K.; Morikawa, N.; Ikeda, K.; Miki, M.; Kobayashi, M. Population pharmacokinetics and pharmacodynamics of meropenem in Japanese pediatric patients. J. Infect. Chemother. 2010, 16, 139–143. [Google Scholar] [CrossRef]
- Monogue, M.L.; Pettit, R.S.; Muhlebach, M.; Cies, J.J.; Nicolau, D.P.; Kuti, J.L. Population Pharmacokinetics and Safety of Ceftolozane-Tazobactam in Adult Cystic Fibrosis Patients Admitted with Acute Pulmonary Exacerbation. Antimicrob. Agents Chemother. 2016, 60, 6578–6584. [Google Scholar] [CrossRef]
- Zhanel, G.G.; Chung, P.; Adam, H.; Zelenitsky, S.; Denisuik, A.; Schweizer, F.; Lagacé-Wiens, P.R.S.; Rubinstein, E.; Gin, A.S.; Walkty, A.; et al. Ceftolozane/tazobactam: A novel cephalosporin/β-lactamase inhibitor combination with activity against multidrug-resistant gram-negative bacilli. Drugs 2014, 74, 31–51. [Google Scholar] [CrossRef]
- Chandorkar, G.; Xiao, A.; Mouksassi, M.-S.; Hershberger, E.; Krishna, G. Population pharmacokinetics of ceftolozane/tazobactam in healthy volunteers, subjects with varying degrees of renal function and patients with bacterial infections. J. Clin. Pharmacol. 2015, 55, 230–239. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.B.; McLearn-Montz, A.J.; Milavetz, F.; Gates, L.K.; Fox, C.; Murry, L.T.; Sabus, A.; Porterfield, H.S.; Fischer, A.J. Pathogen acquisition in patients with cystic fibrosis receiving ivacaftor or lumacaftor/ivacaftor. Pediatr. Pulmonol. 2019, 54, 1200–1208. [Google Scholar] [CrossRef] [PubMed]
- Ledger, E.L.; Smith, D.J.; Teh, J.J.; Wood, M.E.; Whibley, P.E.; Morrison, M.; Goldberg, J.B.; Reid, D.W.; Wells, T.J. Impact of CFTR Modulation on Pseudomonas aeruginosa Infection in People with Cystic Fibrosis. J. Infect. Dis. 2024, 230, e536–e547. [Google Scholar] [CrossRef]
- Guimbellot, J.S.; Baines, A.; Paynter, A.; Heltshe, S.L.; VanDalfsen, J.; Jain, M.; Rowe, S.M.; Sagel, S.D.; GOAL-e2 Investigators. Long term clinical effectiveness of ivacaftor in people with the G551D CFTR mutation. J. Cyst. Fibros. 2021, 20, 213–219. [Google Scholar] [CrossRef]
- Deeks, E.D. Ivacaftor: A review of its use in patients with cystic fibrosis. Drugs 2013, 73, 1595–1604. [Google Scholar] [CrossRef]
- Deeks, E.D. Lumacaftor/Ivacaftor: A Review in Cystic Fibrosis. Drugs 2016, 76, 1191–1201. [Google Scholar] [CrossRef]
- Markussen, T.; Marvig, R.L.; Gómez-Lozano, M.; Aanæs, K.; Burleigh, A.E.; Høiby, N.; Johansen, H.K.; Molin, S.; Jelsbak, L. Environmental heterogeneity drives within-host diversification and evolution of Pseudomonas aeruginosa. mBio 2014, 5, e01592-14. [Google Scholar] [CrossRef]
- Pereira, S.G.; Cardoso, O. Mobile genetic elements of Pseudomonas aeruginosa isolates from hydrotherapy facility and respiratory infections. Clin. Microbiol. Infect. 2014, 20, O203–O206. [Google Scholar] [CrossRef]
- Waine, D.J.; Honeybourne, D.; Smith, E.G.; Whitehouse, J.L.; Dowson, C.G. Cross-sectional and longitudinal multilocus sequence typing of Pseudomonas aeruginosa in cystic fibrosis sputum samples. J. Clin. Microbiol. 2009, 47, 3444–3448. [Google Scholar] [CrossRef]
- Mowat, E.; Paterson, S.; Fothergill, J.L.; Wright, E.A.; Ledson, M.J.; Walshaw, M.J.; Brockhurst, M.A.; Winstanley, C. Pseudomonas aeruginosa population diversity and turnover in cystic fibrosis chronic infections. Am. J. Respir. Crit. Care Med. 2011, 183, 1674–1679. [Google Scholar] [CrossRef]
- Schick, A.; Shewaramani, S.; Kassen, R. Genomics of Diversification of Pseudomonas aeruginosa in Cystic Fibrosis Lung-like Conditions. Genome Biol. Evol. 2022, 14, evac074. [Google Scholar] [CrossRef] [PubMed]
- Martin, L.W.; Gray, A.R.; Brockway, B.; Lamont, I.L. Pseudomonas aeruginosa is oxygen-deprived during infection in cystic fibrosis lungs, reducing the effectiveness of antibiotics. FEMS Microbiol. Lett. 2023, 370, fnad076. [Google Scholar] [CrossRef] [PubMed]
- Faure, E.; Kwong, K.; Nguyen, D. Pseudomonas aeruginosa in Chronic Lung Infections: How to Adapt Within the Host? Front. Immunol. 2018, 9, 2416. [Google Scholar] [CrossRef]
- Gibson, R.L.; Burns, J.L.; Ramsey, B.W. Pathophysiology and management of pulmonary infections in cystic fibrosis. Am. J. Respir. Crit. Care Med. 2003, 168, 918–951. [Google Scholar] [CrossRef]
- Sunman, B.; Emiralioglu, N.; Hazirolan, G.; Şener, B.; Ozsezen, B.; Tural, D.A.; Buyuksahin, H.N.; Guzelkas, I.; Yalcin, E.; Dogru, D.; et al. Effectiveness of different eradication treatment protocols for new-onset Pseudomonas aeruginosa in children with cystic fibrosis. Pediatr. Pulmonol. 2022, 57, 1456–1465. [Google Scholar] [CrossRef]
- Akkerman-Nijland, A.M.; Akkerman, O.W.; Grasmeijer, F.; Hagedoorn, P.; Frijlink, H.W.; Rottier, B.L.; Koppelman, G.H.; Touw, D.J. The pharmacokinetics of antibiotics in cystic fibrosis. Expert. Opin. Drug Metab. Toxicol. 2021, 17, 53–68. [Google Scholar] [CrossRef]
- Cogen, J.D.; Sanders, D.B.; Slaven, J.E.; Faino, A.V.; Somayaji, R.; Gibson, R.L.; Hoffman, L.R.; Ren, C.L. Antibiotic Regimen Changes during Cystic Fibrosis Pediatric Pulmonary Exacerbation Treatment. Ann. Am. Thorac. Soc. 2023, 20, 1293–1298. [Google Scholar] [CrossRef]
- Lewis, R.H.; Sharpe, J.P.; Swanson, J.M.; Fabian, T.C.; Croce, M.A.; Magnotti, L.J. Reinventing the wheel: Impact of prolonged antibiotic exposure on multidrug-resistant ventilator-associated pneumonia in trauma patients. J. Trauma. Acute Care Surg. 2018, 85, 256–262. [Google Scholar] [CrossRef]
- Zhao, A.; Sun, J.; Liu, Y. Understanding bacterial biofilms: From definition to treatment strategies. Front. Cell. Inf. Microbio. 2023, 13, 1137947-23. [Google Scholar] [CrossRef]
- Ciofu, O.; Rojo-Molinero, E.; Macià, M.D.; Oliver, A. Antibiotic treatment of biofilm infections. APMIS 2017, 125, 304–319. [Google Scholar] [CrossRef]
- Macia, M.D.; Rojo-Molinero, E.; Oliver, A. Antimicrobial susceptibility testing in biofilm-growing bacteria. Clin. Microbiol. Infect. 2014, 20, 981–990. [Google Scholar] [CrossRef] [PubMed]
- Kwong, K.; Benedetti, A.; Yau, Y.; Waters, V.; Nguyen, D. Failed Eradication Therapy of New-Onset Pseudomonas aeruginosa Infections in Children with Cystic Fibrosis Is Associated with Bacterial Resistance to Neutrophil Functions. J. Infect. Dis. 2022, 225, 1886–1895. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Clemente, M.; de la Rosa, D.; Máiz, L.; Girón, R.; Blanco, M.; Olveira, C.; Canton, R.; Martinez-García, M.A. Impact of Pseudomonas aeruginosa Infection on Patients with Chronic Inflammatory Airway Diseases. J. Clin. Med. 2020, 9, 3800. [Google Scholar] [CrossRef] [PubMed]
- Emerson, J.; Rosenfeld, M.; McNamara, S.; Ramsey, B.; Gibson, R.L. Pseudomonas aeruginosa and other predictors of mortality and morbidity in young children with cystic fibrosis. Pediatr. Pulmonol. 2002, 34, 91–100. [Google Scholar] [CrossRef]
- Stanford, G.E.; Dave, K.; Simmonds, N.J. Pulmonary Exacerbations in Adults with Cystic Fibrosis: A Grown-up Issue in a Changing Cystic Fibrosis Landscape. CHEST 2021, 159, 93–102. [Google Scholar] [CrossRef]
- Goss, C.H. Acute Pulmonary Exacerbations in Cystic Fibrosis. Semin. Respir. Crit. Care Med. 2019, 40, 792–803. [Google Scholar] [CrossRef]
- Liou, T.G.; Adler, F.R.; Fitzsimmons, S.C.; Cahill, B.C.; Hibbs, J.R.; Marshall, B.C. Predictive 5-year survivorship model of cystic fibrosis. Am. J. Epidemiol. 2001, 153, 345–352. [Google Scholar] [CrossRef]
- Mayer-Hamblett, N.; Rosenfeld, M.; Emerson, J.; Goss, C.H.; Aitken, M.L. Developing cystic fibrosis lung transplant referral criteria using predictors of 2-year mortality. Am. J. Respir. Crit. Care Med. 2002, 166, 1550–1555. [Google Scholar] [CrossRef]
- Bhatt, J.M. Treatment of pulmonary exacerbations in cystic fibrosis. Eur. Respir. Rev. 2013, 22, 205–216. [Google Scholar] [CrossRef]
- Hahn, A.; Sami, I.; Chaney, H.; Koumbourlis, A.C.; Del Valle Mojica, C.; Cochrane, C.; Chan, B.K.; Koff, J.L. Bacteriophage Therapy for Pan-Drug-Resistant Pseudomonas aeruginosa in Two Persons with Cystic Fibrosis. J. Investig. Med. High. Impact Case Rep. 2023, 11. [Google Scholar] [CrossRef]
- Yang, Q.; Le, S.; Zhu, T.; Wu, N. Regulations of phage therapy across the world. Front. Microbiol. 2023, 14, 1250848. [Google Scholar] [CrossRef] [PubMed]
- Żaczek, M.; Weber-Dąbrowska, B.; Międzybrodzki, R.; Łusiak-Szelachowska, M.; Górski, A. Phage Therapy in Poland—A Centennial Journey to the First Ethically Approved Treatment Facility in Europe. Front. Microbiol. 2020, 11, 1056. [Google Scholar] [CrossRef] [PubMed]
- Tao, S.; Chen, H.; Li, N.; Liang, W. The Application of the CRISPR-Cas System in Antibiotic Resistance. Infect. Drug Resist. 2022, 15, 4155–4168. [Google Scholar] [CrossRef]
- Maule, G.; Arosio, D.; Cereseto, A. Gene Therapy for Cystic Fibrosis: Progress and Challenges of Genome Editing. Int. J. Mol. Sci. 2020, 21, 3903. [Google Scholar] [CrossRef]
- Wang, G. Genome Editing for Cystic Fibrosis. Cells 2023, 12, 1555. [Google Scholar] [CrossRef]
- Mayorga-Ramos, A.; Zúñiga-Miranda, J.; Carrera-Pacheco, S.E.; Barba-Ostria, C.; Guamán, L.P. CRISPR-Cas-Based Antimicrobials: Design, Challenges, and Bacterial Mechanisms of Resistance. ACS Infect. Dis. 2023, 9, 1283–1302. [Google Scholar] [CrossRef]
- Martin, I.; Waters, V.; Grasemann, H. Approaches to Targeting Bacterial Biofilms in Cystic Fibrosis Airways. Int. J. Mol. Sci. 2021, 22, 2155. [Google Scholar] [CrossRef]
- Roy, R.; Tiwari, M.; Donelli, G.; Tiwari, V. Strategies for combating bacterial biofilms: A focus on anti-biofilm agents and their mechanisms of action. Virulence 2018, 9, 522–554. [Google Scholar] [CrossRef]
- Louis, M.; Clamens, T.; Tahrioui, A.; Desriac, F.; Rodrigues, S.; Rosay, T.; Harmer, N.; Diaz, S.; Barreau, M.; Racine, P.-J.; et al. Pseudomonas aeruginosa Biofilm Dispersion by the Human Atrial Natriuretic Peptide. Adv. Sci. 2022, 9, e2103262. [Google Scholar] [CrossRef]
Pre-Clinical | Phase I | Phase II | Phase III | Phase IV |
---|---|---|---|---|
Involves laboratory and animal studies to evaluate the safety, biological effects, and therapeutic potential of a new drug or treatment. Aims Identifies possible toxicities and pharmacokinetic profiles. Determines if a drug is suitable for human trials. | The initial phase of human testing. Typically involves 10–80 healthy volunteers. Aims Assess the safety of a new drug. Establish safe dosage levels. Observe any early signs of adverse effects. | Includes a larger group of patients (100–300) with the condition the drug aims to treat. Aims Evaluates the drug’s effectiveness. Refines the dosing regimen. Continues to assess its safety profile. | Conducted with larger patient populations (1000–3000+). Aims Verifies the treatment’s efficacy. Monitor for side effects. Compares the new drug to existing standard therapies. Provides comprehensive data for regulatory approval. | Started after the drug approval and is available to the public. Aims Focuses on long-term safety, effectiveness. Identifies any rare side effects that may emerge with widespread use of a drug. Ensures the drug’s continued safety in a diverse patient population. |
No | Study Title | Accession Number | Treatments | N | Start Date | Completion Date | Primary Measures (Endpoint) | Main Findings | Time Frame |
---|---|---|---|---|---|---|---|---|---|
1 | Long Term Safety of Tobramycin Inhalation Powder in Patients with Cystic Fibrosis | NCT01519661 PMID(27435882) | Tobramycin inhalation powder (TIP) | 157 | 01-2012 | 01-2014 | The proportion of participants experiencing treatment-emergent adverse events (AEs), serious adverse events (SAEs), and deaths. | No new safety concerns emerged, and the intervention maintained its effectiveness throughout the study period | 337 days |
2 | Ext. Long-term Safety Study in CF Patients: Single Arm TIP 1 | NCT01775137 | Tobramycin inhalation powder (TIP) | 45 | 02-2013 | 11-2014 | To determine the number of participants with AEs, SAEs, and AEs/SAEs leading to discontinuation of the study drug, and deaths across 12 treatment cycles. | The adverse event profile was similar to the core study. | 673 days |
3 | IV Colistin for Pulmonary Exacerbations: Improving Safety and Efficacy | NCT02918409 | Colistin Tobramycin | 51 | 08-2016 | 11-2021 | To evaluate the efficacy and safety of standard colistin dosing (2.5 mg/kg/day, administered three times daily, or TID) compared with a pharmacokinetically (PK)-adjusted colistin regimen administered twice daily (BID) at 5 mg/kg/day in adult cystic fibrosis (CF) patients with acute pulmonary exacerbation (APE). To assess the efficacy and safety of PK-adjusted BID colistin dosing compared with standard once-daily tobramycin dosing (8–10 mg/kg) in adult CF patients with APE. | Notable safety concerns were observed. IV tobramycin resulted in more renal toxicity events compared with other study arms. Both tobramycin and colistin resulted in an improvement in lung function. | Up to 14 days |
4 | Ease of Use and Microbial Contamination of Tobramycin Inhalation Powder (TIP) Versus Nebulised Tobramycin Inhalation Solution (TIS) and Nebulised Colistimethate (COLI) | NCT01844778 PMID(28614995) | Tobramycin inhalation powder (TIP) Tobramycin inhalation solution (TIS) Colistimethate | 60 | 08-2013 | 10-2015 | To evaluate the mean administration time of TIP using the T-326 inhaler compared with the total administration time of COLI or TIS. | The T-326 inhaler for TIP administration demonstrated ease of use, reduced total delivery time, and significantly lowered contamination rates compared with nebulizers. | Days 1, 28, 57, 84, 112 |
5 | Population Pharmacokinetics of Prolonged Infusion Meropenem in Cystic Fibrosis (CF) Children | NCT01429259 PMID(26416780) | Meropenem | 30 | 02-2012 | 01-2014 | To determine total body clearance of meropenem at different concentrations by analyzing the pharmacokinetics of the study population. To determine the central compartment volume of meropenem at different concentrations by analyzing the pharmacokinetics of the study population. | Cystic fibrosis (CF) children exhibited higher meropenem clearance compared with previously reported values in non-CF children. Prolonged infusion improved drug exposure against pathogens with minimum inhibitory concentrations (MICs) ≥ 1 mg/L. | 8-h dosing interval after 3rd meropenem dose /14–21 days |
6 | Population Pharmacokinetics and Safety of Intravenous Ceftolozane/Tazobactam in Adult Cystic Fibrosis Patients | NCT02421120 PMID(27550351) | Ceftolozane/Tazobactam | 21 | 09-2015 | 10-2016 | To evaluate the clearance of ceftolozane and tazobactam during an 8 h dosing interval. To assess the volume of distribution of ceftolozane and tazobactam over the same 8 h dosing interval. | Ceftolozane-tazobactam demonstrated good tolerability in this study. Ceftolozane and tazobactam clearance in cystic fibrosis (CF) patients was comparable to non-CF adult populations. AEs associated with ceftolozane-tazobactam were mild and potentially attributable to co-administered medications in most cases. | 0, 1–1.08, 1.25–1.5, 2–3, 4–5, and 7–8 h after start of final dose/3 days |
7 | Testing the Effect of Adding Chronic Oral Azithromycin to Inhaled Tobramycin in People with Cystic Fibrosis (CF) | NCT02677701 | Azithromycin plus inhaled tobramycin | 119 | 10-2016 | 02-2020 | To assess the effects of long-term oral azithromycin combined with inhaled tobramycin in adolescents and adults with CF and chronic Pa infections | No significant improvements in lung function were detected with the addition of Azithromycin. | 6 weeks |
8 | Scandinavian Cystic Fibrosis Azithromycin Study | NCT00411736 | Azithromycin plus inhaled colistin and ciprofloxacin | 45 | 05-2008 | 03-2014 | To assess if adding low-dose azithromycin to standard inhaled colistin and oral ciprofloxacin for treating intermittent Pseudomonas airway infections can delay recurrence and prevent progression to chronic airway infection. | No results reported. | Up to 5 Years |
9 | Comparison of 2 Treatment Regimens for Eradication of P Aeruginosa Infection in Children with Cystic Fibrosis | NCT01400750 | Tobramycin inhalation solution (TIS) Inhaled colistimethate sodium plus oral ciprofloxacin (CC) | 61 | 08-2001 | 05-2011 | To compare the ability of two regimens to successfully achieve Pa eradication at the end of their treatment plans. | No results reported. | 1 months for TIS 3 months for CC |
10 | Aztreonam for Inhalation Solution (AZLI) for the Treatment of Exacerbations of Cystic Fibrosis | NCT02894684 | Aztreonam inhalation solution (AZLI) | 16 | 01-2017 | 09-2019 | To assess the clinical efficacy of AZLI in treating acute pulmonary exacerbations. | No results reported. | 14 days |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alqasmi, M. Therapeutic Interventions for Pseudomonas Infections in Cystic Fibrosis Patients: A Review of Phase IV Trials. J. Clin. Med. 2024, 13, 6530. https://doi.org/10.3390/jcm13216530
Alqasmi M. Therapeutic Interventions for Pseudomonas Infections in Cystic Fibrosis Patients: A Review of Phase IV Trials. Journal of Clinical Medicine. 2024; 13(21):6530. https://doi.org/10.3390/jcm13216530
Chicago/Turabian StyleAlqasmi, Mohammed. 2024. "Therapeutic Interventions for Pseudomonas Infections in Cystic Fibrosis Patients: A Review of Phase IV Trials" Journal of Clinical Medicine 13, no. 21: 6530. https://doi.org/10.3390/jcm13216530
APA StyleAlqasmi, M. (2024). Therapeutic Interventions for Pseudomonas Infections in Cystic Fibrosis Patients: A Review of Phase IV Trials. Journal of Clinical Medicine, 13(21), 6530. https://doi.org/10.3390/jcm13216530