The Tinetti Balance Test Is an Effective Predictor of Functional Decline in Non-Hospitalized Post-COVID-19 Individuals: A Cross-Sectional Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design, Participants, and Ethical Aspects
2.2. Assessments
2.2.1. Postural Balance Assessment
2.2.2. Assessment of Functional Status in Post-COVID-19
2.3. Statistical Analysis
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- del Rio, C.; Collins, L.F.; Malani, P. Long-Term Health Consequences of COVID-19. JAMA 2020, 324, 1723. [Google Scholar] [CrossRef] [PubMed]
- Subramanian, A.; Nirantharakumar, K.; Hughes, S.; Myles, P.; Williams, T.; Gokhale, K.M.; Taverner, T.; Chandan, J.S.; Brown, K.; Simms-Williams, N.; et al. Symptoms and Risk Factors for Long COVID in Non-Hospitalized Adults. Nat. Med. 2022, 28, 1706–1714. [Google Scholar] [CrossRef] [PubMed]
- Tudoran, C.; Tudoran, M.; Pop, G.N.; Giurgi-Oncu, C.; Cut, T.G.; Lazureanu, V.E.; Oancea, C.; Parv, F.; Ciocarlie, T.; Bende, F. Associations between the Severity of the Post-Acute COVID-19 Syndrome and Echocardiographic Abnormalities in Previously Healthy Outpatients Following Infection with SARS-CoV-2. Biology 2021, 10, 469. [Google Scholar] [CrossRef] [PubMed]
- Nopp, S.; Moik, F.; Klok, F.A.; Gattinger, D.; Petrovic, M.; Vonbank, K.; Koczulla, A.R.; Ay, C.; Zwick, R.H. Outpatient Pulmonary Rehabilitation in Patients with Long COVID Improves Exercise Capacity, Functional Status, Dyspnea, Fatigue, and Quality of Life. Respiration 2022, 101, 593–601. [Google Scholar] [CrossRef] [PubMed]
- Machado, F.V.C.; Meys, R.; Delbressine, J.M.; Vaes, A.W.; Goërtz, Y.M.J.; van Herck, M.; Houben-Wilke, S.; Boon, G.J.A.M.; Barco, S.; Burtin, C.; et al. Construct Validity of the Post-COVID-19 Functional Status Scale in Adult Subjects with COVID-19. Health Qual. Life Outcomes 2021, 19, 40. [Google Scholar] [CrossRef]
- Klok, F.A.; Boon, G.J.A.M.; Barco, S.; Endres, M.; Geelhoed, J.J.M.; Knauss, S.; Rezek, S.A.; Spruit, M.A.; Vehreschild, J.; Siegerink, B. The Post-COVID-19 Functional Status Scale: A Tool to Measure Functional Status over Time after COVID-19. Eur. Respir. J. 2020, 56, 2001494. [Google Scholar] [CrossRef]
- Benkalfate, N.; Eschapasse, E.; Georges, T.; Leblanc, C.; Dirou, S.; Melscoet, L.; Chéné, A.-L.; Horeau-Langlard, D.; Bry, C.; Chambellan, A.; et al. Evaluation of the Post-COVID-19 Functional Status (PCFS) Scale in a Cohort of Patients Recovering from Hypoxemic SARS-CoV-2 Pneumonia. BMJ Open Respir. Res. 2022, 9, e001136. [Google Scholar] [CrossRef]
- Horak, F.B. Postural Orientation and Equilibrium: What Do We Need to Know about Neural Control of Balance to Prevent Falls? Age Ageing 2006, 35, 7–11. [Google Scholar] [CrossRef]
- Giardini, M.; Arcolin, I.; Guglielmetti, S.; Godi, M.; Capelli, A.; Corna, S. Balance Performance in Patients with Post-Acute COVID-19 Compared to Patients with an Acute Exacerbation of Chronic Obstructive Pulmonary Disease and Healthy Subjects. Int. J. Rehabil. Res. 2022, 45, 47–52. [Google Scholar] [CrossRef]
- Guzik, A.; Wolan-Nieroda, A.; Kochman, M.; Perenc, L.; Drużbicki, M. Impact of Mild COVID-19 on Balance Function in Young Adults, a Prospective Observational Study. Sci. Rep. 2022, 12, 12181. [Google Scholar] [CrossRef]
- Dzięcioł-Anikiej, Z.; Dakowicz, A.; Dzięcioł, J.; Kopko, S.; Moskal-Jasińska, D.; Gawlikowska-Sroka, A.; Kuryliszyn-Moskal, A.; Kostro, A.M. Balance Disorders in People with History of COVID-19 in Light of Posturographic Tests. J. Clin. Med. 2023, 12, 4461. [Google Scholar] [CrossRef] [PubMed]
- Corrêa, B.D.C.; Santos, E.G.R.; Belgamo, A.; Pinto, G.H.L.; Xavier, S.S.; Silva, C.C.; Dias, Á.R.N.; Paranhos, A.C.M.; dos Cabral, A.S.; Callegari, B.; et al. Smartphone-Based Evaluation of Static Balance and Mobility in Long-Lasting COVID-19 Patients. Front. Neurol. 2023, 14, 1277408. [Google Scholar] [CrossRef] [PubMed]
- de Sousa, K.C.A.; Gardel, D.G.; Lopes, A.J. Postural Balance and Its Association with Functionality and Quality of Life in Non-Hospitalized Patients with Post-Acute COVID-19 Syndrome. Physiother. Res. Int. 2022, 27, e1967. [Google Scholar] [CrossRef] [PubMed]
- Augustin, M.; Schommers, P.; Stecher, M.; Dewald, F.; Gieselmann, L.; Gruell, H.; Horn, C.; Vanshylla, K.; Cristanziano, V.D.; Osebold, L.; et al. Post-COVID Syndrome in Non-Hospitalised Patients with COVID-19: A Longitudinal Prospective Cohort Study. Lancet Reg. Heal.-Eur. 2021, 6, 100122. [Google Scholar] [CrossRef] [PubMed]
- Karuka, A.H.; Silva, J.A.M.G.; Navega, M.T. Analysis of Agreement of Assessment Tools of Body Balance in the Elderly. Braz. J. Phys. Ther. 2011, 15, 460–466. [Google Scholar] [CrossRef]
- Bischoff, H.A. Identifying a Cut-off Point for Normal Mobility: A Comparison of the Timed “up and Go” Test in Community-Dwelling and Institutionalised Elderly Women. Age Ageing 2003, 32, 315–320. [Google Scholar] [CrossRef]
- Duncan, R.P.; Earhart, G.M. Should One Measure Balance or Gait to Best Predict Falls among People with Parkinson Disease? Parkinsons. Dis. 2012, 2012, 1–6. [Google Scholar] [CrossRef]
- Mitchell, K.D.; Newton, R.A. Performance-Oriented Mobility Assessment (POMA) Balance Score Indicates Need for Assistive Device. Disabil. Rehabil. Assist. Technol. 2006, 1, 183–189. [Google Scholar] [CrossRef]
- Portnoy, S.; Reif, S.; Mendelboim, T.; Rand, D. Postural Control of Individuals with Chronic Stroke Compared to Healthy Participants: Timed-Up-and-Go, Functional Reach Test and Center of Pressure Movement. Eur. J. Phys. Rehabil. Med. 2017, 53, 685–693. [Google Scholar] [CrossRef]
- Martinez, B.P.; Gomes, I.B.; de Oliveira, C.S.; Ramos, I.R.; Rocha, M.D.M.; Júnior, L.A.F.; Camelier, F.W.R.; Camelier, A.A. Accuracy of the Timed Up and Go Test for Predicting Sarcopenia in Elderly Hospitalized Patients. Clinics 2015, 70, 369–372. [Google Scholar] [CrossRef]
- Podsiadlo, D.; Richardson, S. The Timed “Up & Go”: A Test of Basic Functional Mobility for Frail Elderly Persons. J. Am. Geriatr. Soc. 1991, 39, 142–148. [Google Scholar] [CrossRef] [PubMed]
- Postigo-Martin, P.; Cantarero-Villanueva, I.; Lista-Paz, A.; Castro-Martín, E.; Arroyo-Morales, M.; Seco-Calvo, J. A COVID-19 Rehabilitation Prospective Surveillance Model for Use by Physiotherapists. J. Clin. Med. 2021, 10, 1691. [Google Scholar] [CrossRef] [PubMed]
- Berg, K.O.; Wood-Dauphinee, S.L.; Williams, J.I.; Maki, B. Measuring Balance in the Elderly: Validation of an Instrument. Can. J. Public Health 1992, 83, S7–S11. [Google Scholar] [PubMed]
- Shumway-Cook, A.; Woollacott, M.H. Motor Control: Translating Research into Clinical Practice; Lippincoot Williams & Wilkins: Philadelphia, PA, USA, 2011. [Google Scholar]
- Tinetti, M.E. Performance-Oriented Assessment of Mobility Problems in Elderly Patients. J. Am. Geriatr. Soc. 1986, 34, 119–126. [Google Scholar] [CrossRef] [PubMed]
- Franchignoni, F.; Horak, F.; Godi, M.; Nardone, A.; Giordano, A. Using Psychometric Techniques to Improve the Balance Evaluation Systems Test: The Mini-BESTest. J. Rehabil. Med. 2010, 42, 323–331. [Google Scholar] [CrossRef]
- de Facio, C.A.; Guimarães, F.S.; da Cruz, A.G.T.; Bomfim, R.F.; Miranda, S.R.A.P.; Viana, D.R.; dos Santos Couto Paz, C.C.; de Sato, T.O.; Lorenzo, V.A.P. Di Post-COVID-19 Functional Status Scale: Cross-Cultural Adaptation and Measurement Properties of the Brazilian Portuguese Version. Brazilian J. Phys. Ther. 2023, 27, 100503. [Google Scholar] [CrossRef]
- Dawson-Saunders, B.; Trapp, R.G. Basic & Clinical Biostatistics, 2nd ed.; Appleton & Lange: New York, NY, USA, 1994; ISBN 0838505422. [Google Scholar]
- Gervasoni, F.; LoMauro, A.; Ricci, V.; Salce, G.; Andreoli, A.; Visconti, A.; Pantoni, L. Balance and Visual Reliance in Post-COVID Syndrome Patients Assessed with a Robotic System: A Multi-Sensory Integration Deficit. Neurol. Sci. 2022, 43, 85–88. [Google Scholar] [CrossRef]
- Orellana, J.D.Y.; da Cunha, G.M.; Marrero, L.; da Leite, I.C.; Domingues, C.M.A.S.; Horta, B.L. Changes in the Pattern of COVID-19 Hospitalizations and Deaths after Substantial Vaccination of the Elderly in Manaus, Amazonas State, Brazil. Cad. Saude Publica 2022, 38, PT192321. [Google Scholar] [CrossRef]
Post-COVID-19 Group (n = 30) | Control Group (n = 30) | |
---|---|---|
Sociodemographic data | ||
Female/Male | 20/10 | 19/11 |
Age (years) | 46.13 ± 14.32 | 49.53 ± 18.34 |
Anthropometric data | ||
Body mass (kg) | 72.44 ± 12.37 | 67.84 ± 13.32 |
Height (m) | 1.61 ± 0.08 | 1.61 ± 0.09 |
BMI (kg/m2) | 27.75 ± 4.32 | 26.62 ± 4.52 |
Pre-existing comorbidities, n (%) | ||
Hypertension | 9 (30.00%) | 9 (30.00%) |
Diabetes Mellitus | 4 (13.33%) | 1 (3.33%) |
Disk herniation | 3 (10.00%) | 0 (0.00%) |
Bariatric surgery | 1 (3.33%) | 2 (6.67%) |
Post-operative breast surgery | 1 (3.33%) | 1 (3.33%) |
Arthrosis | 1 (3.33%) | 1 (3.33%) |
Not reported | 14 (46.67%) | 9 (30.00%) |
Actual symptoms, n (%) | ||
Anxiety | 4 (13.33%) | 0 (0.00%) |
Depression | 2 (6.67%) | 0 (0.00%) |
Headache | 6 (20.00%) | 4 (13.33%) |
Joint pain | 8 (26.67%) | 10 (33.34%) |
Back pain | 5 (16.67%) | 15 (50.00%) |
Fatigue | 5 (16.67%) | 1 (3.33%) |
Dyspnea | 2 (6.67%) | 0 (0.00%) |
Memory loss | 2 (6.67%) | 0 (0.00%) |
Post-COVID-19 Group | |
---|---|
PCFS | |
Grade 0—No functional limitation | 13 (43.34%) |
Grade 1—Very light functional limitation | 10 (33.33%) |
Grade 2—Light functional limitation | 5 (16.66%) |
Grade 3—Moderate functional limitation | 2 (6.66) |
Grade 4—Severe functional limitation | 0 (0.00%) |
Variables | R2 | Adjusted R2 | Unstandardized Β | Standard Error | Standardized β | t | p |
---|---|---|---|---|---|---|---|
Model #1 | 0.590 | 0.434 | |||||
Sex | −0.946 | 0.360 | −0.484 | −2.626 | 0.016 | ||
Age (years) | 0.003 | 0.015 | 0.043 | 0.192 | 0.849 | ||
BMI (kg/m2) | 0.023 | 0.034 | 0.107 | 0.681 | 0.503 | ||
Tinetti | −0.132 | 0.068 | −0.544 | −1.949 | 0.065 | ||
FRT | −0.020 | 0.035 | −0.139 | −0.562 | 0.580 | ||
MBT | −0.012 | 0.063 | −0.060 | −0.191 | 0.850 | ||
Berg | 0.050 | 0.061 | 0.441 | 0.811 | 0.427 | ||
TUG | 0.084 | 0.088 | 0.459 | 0.959 | 0.348 | ||
Model #2 | 0.589 | 0.458 | |||||
Sex | −0.981 | 0.301 | −0.502 | −3.265 | 0.004 | ||
Age (years) | 0.004 | 0.013 | 0.065 | 0.334 | 0.741 | ||
BMI (kg/m2) | 0.022 | 0.033 | 0.102 | 0.673 | 0.508 | ||
Tinetti | −0.134 | 0.065 | −0.555 | −2.077 | 0.050 | ||
FRT | −0.022 | 0.032 | −0.156 | −0.688 | 0.498 | ||
Berg | 0.043 | 0.049 | 0.380 | 0.881 | 0.388 | ||
TUG | 0.074 | 0.070 | 0.406 | 1.061 | 0.300 | ||
Model #3 | 0.587 | 0.479 | |||||
Sex | −0.957 | 0.286 | −0.490 | −3.349 | 0.003 | ||
BMI (kg/m2) | 0.024 | 0.032 | 0.111 | 0.757 | 0.457 | ||
Tinetti | −0.134 | 0.063 | −0.555 | −2.117 | 0.045 | ||
FRT | −0.026 | 0.030 | −0.183 | −0.883 | 0.386 | ||
Berg | 0.044 | 0.047 | 0.392 | 0.931 | 0.361 | ||
TUG | 0.079 | 0.067 | 0.433 | 1.180 | 0.250 | ||
Model #4 | 0.577 | 0.489 | |||||
Sex | −0.962 | 0.283 | −0.492 | −3.399 | 0.002 | ||
Tinetti | −0.136 | 0.063 | −0.561 | −2.163 | 0.041 | ||
FRT | −0.031 | 0.028 | −0.220 | −1.104 | 0.280 | ||
Berg | 0.053 | 0.046 | 0.472 | 1.167 | 0.255 | ||
TUG | 0.093 | 0.064 | 0.507 | 1.448 | 0.160 | ||
Model #5 | 0.555 | 0.484 | |||||
Sex | −0.969 | 0.284 | −0.496 | −3.410 | 0.002 | ||
Tinetti | −0.176 | 0.052 | −0.727 | −3.412 | 0.002 | ||
Berg | 0.057 | 0.046 | 0.503 | 1.241 | 0.226 | ||
TUG | 0.100 | 0.064 | 0.543 | 1.550 | 0.134 | ||
Model #6 | 0.528 | 0.473 | |||||
Sex | −0.906 | 0.283 | −0.464 | −3.207 | 0.004 | ||
Tinetti | −0.139 | 0.042 | −0.573 | −3.274 | 0.003 | ||
TUG | 0.031 | 0.034 | 0.171 | 0.932 | 0.360 | ||
Model #7 | 0.512 | 0.476 | |||||
Sex | −0.827 | 0.269 | −0.423 | −3.077 | 0.005 | ||
Tinetti | −0.163 | 0.033 | −0.673 | −4.895 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bastos, J.R.M.; Ferreira, A.S.; Lopes, A.J.; Pinto, T.P.; Rodrigues, E.; dos Anjos, F.V. The Tinetti Balance Test Is an Effective Predictor of Functional Decline in Non-Hospitalized Post-COVID-19 Individuals: A Cross-Sectional Study. J. Clin. Med. 2024, 13, 6626. https://doi.org/10.3390/jcm13216626
Bastos JRM, Ferreira AS, Lopes AJ, Pinto TP, Rodrigues E, dos Anjos FV. The Tinetti Balance Test Is an Effective Predictor of Functional Decline in Non-Hospitalized Post-COVID-19 Individuals: A Cross-Sectional Study. Journal of Clinical Medicine. 2024; 13(21):6626. https://doi.org/10.3390/jcm13216626
Chicago/Turabian StyleBastos, Janice R. M., Arthur S. Ferreira, Agnaldo J. Lopes, Talita P. Pinto, Erika Rodrigues, and Fabio V. dos Anjos. 2024. "The Tinetti Balance Test Is an Effective Predictor of Functional Decline in Non-Hospitalized Post-COVID-19 Individuals: A Cross-Sectional Study" Journal of Clinical Medicine 13, no. 21: 6626. https://doi.org/10.3390/jcm13216626
APA StyleBastos, J. R. M., Ferreira, A. S., Lopes, A. J., Pinto, T. P., Rodrigues, E., & dos Anjos, F. V. (2024). The Tinetti Balance Test Is an Effective Predictor of Functional Decline in Non-Hospitalized Post-COVID-19 Individuals: A Cross-Sectional Study. Journal of Clinical Medicine, 13(21), 6626. https://doi.org/10.3390/jcm13216626