Assessment of Cardiovascular Risk Categories and Achievement of Therapeutic Targets in European Patients with Type 2 Diabetes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Patients
2.2. Patient Stratification
- i.
- Moderate risk category: LDL-C < 100 mg/dL, HbA1c < 7%, BP < 130/80 mmHg.
- ii.
- High risk category: LDL-C < 70 mg/dL, HbA1c < 7%, and BP < 130/80 mmHg.
- iii.
- Very high risk category: LDL-C < 55 mg/dL, HbA1c < 7%, and BP < 130/80 mmHg.
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- World Health Organization. Diabetes Key Facts. 2022. Available online: https://www.who.int/news-room/fact-sheets/detail/diabetes (accessed on 10 March 2024).
- Joseph, J.J.; Deedwania, P.; Acharya, T.; Aguilar, D.; Bhatt, D.L.; Chyun, D.A.; Di Palo, K.E.; Golden, S.H.; Sperling, L.S.; on behalf of the American Heart Association Diabetes Committee of the Council on Lifestyle and Cardiometabolic Health; et al. Comprehensive management of cardiovascular risk factors for adults with type 2 diabetes: A scientific statement from the American Heart Association. Circulation 2022, 145, e722–e759. [Google Scholar] [CrossRef] [PubMed]
- Mach, F.; Baigent, C.; Catapano, A.L.; Koskinas, K.C.; Casula, M.; Badimon, L.; Chapman, M.J.; De Backer, G.G.; Delgado, V.; Ference, B.A.; et al. 2019 ESC/EAS Guidelines for the management of dyslipidaemias: Lipid modification to reduce cardiovascular risk. Eur. Heart J. 2020, 41, 111–188. [Google Scholar] [CrossRef] [PubMed]
- Visseren, F.L.J.; Mach, F.; Smulders, Y.M.; Carballo, D.; Koskinas, K.C.; Bäck, M.; Benetos, A.; Biffi, A.; Boavida, J.M.; Capodanno, D.; et al. 2021 ESC Guidelines on cardiovascular disease prevention in clinical practice. Eur. Heart J. 2021, 42, 3227–3337. [Google Scholar] [CrossRef]
- Marx, N.; Federici, M.; Schütt, K.; Müller-Wieland, D.; Ajjan, R.A.; Antunes, M.J.; Christodorescu, R.M.; Crawford, C.; Di Angelantonio, E.; Eliasson, B.; et al. 2023 ESC Guidelines for the management of cardiovascular disease in patients with diabetes. Eur. Heart J. 2023, 44, 4043–4140. [Google Scholar] [PubMed]
- World Health Organization. The Top 10 Causes of Death. 2020. Available online: https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death (accessed on 10 March 2024).
- International Diabetes Federation. Diabetes and Cardiovascular Disease; International Diabetes Federation: Brussels, Belgium, 2016; Available online: www.idf.org/our-activities/care-prevention/cardiovascular-disease/cvd-report (accessed on 10 March 2024).
- Ma, C.-X.; Ma, X.-N.; Guan, C.-H.; Li, Y.-D.; Mauricio, D.; Fu, S.-B. Cardiovascular disease in type 2 diabetes mellitus: Progress toward personalized management. Cardiovasc. Diabetol. 2022, 21, 74. [Google Scholar] [CrossRef]
- Benedek, I.; Gyongyosi, M.; Benedek, T. A prospective regional registry of ST-elevation myocardial infarction in Central Romania: Impact of the Stent for Life Initiative recommendations on patient outcomes. Am. Heart J. 2013, 166, 457–465. [Google Scholar] [CrossRef]
- Bugiardini, R.; Manfrini, O.; Stakic, M.; Cenko, E.; Boytsov, S.; Merkely, B.; Becker, D.; Dilic, M.; Vasiljevic, Z.; Koller, A.; et al. Exploring In-hospital Death from Myocardial Infarction in Eastern Europe: From the International Registry of Acute Coronary Syndromes in Transitional Countries (ISACS-TC); on behalf of the Working Group on Coronary Pathophysiology & Microcirculation of the European Society of Cardiology. Curr. Vasc. Pharmacol. 2014, 12, 903–909. [Google Scholar]
- Cenko, E.; Manfrini, O.; Fabin, N.; Dorobantu, M.; Kedev, S.; Milicic, D.; Vasiljevic, Z.; Bugiardini, R. Clinical determinants of ischemic heart disease in Eastern Europe. Lancet Reg. Health Eur. 2023, 33, 100698. [Google Scholar] [CrossRef]
- Ganova-Iolovska, M.; Kalinov, K.; Geraedts, M. Quality of care of patients with acute myocardial infarction in Bulgaria: A cross-sectional study. BMC Health Serv. Res. 2009, 9, 15. [Google Scholar] [CrossRef]
- Hall, M.; Cenko, E.; Bueno, H.; Gale, C.P. Contemporary roles of registries in clinical cardiology: Insights from Western and Eastern European countries. Int. J. Cardiol. 2016, 217, S13–S15. [Google Scholar] [CrossRef]
- Kristensen, S.D.; Laut, K.G.; Fajadet, J.; Kaifoszova, Z.; Kala, P.; Di Mario, C.; Wijns, W.; Clemmensen, P.; Agladze, V.; Antoniades, L.; et al. Reperfusion therapy for ST elevation acute myocardial infarction 2010/2011: Current status in 37 ESC countries. Eur. Heart J. 2014, 35, 1957–1970. [Google Scholar] [CrossRef] [PubMed]
- Tatu-Chitoiu, G.; Cinteza, M.; Dorobantu, M.; Udeanu, M.; Manfrini, O.; Pizzi, C.; Vintila, M.; Ionescu, D.D.; Craiu, E.; Burghina, D.; et al. In-hospital case fatality rates for acute myocardial infarction in Romania. Can. Med. Assoc. J. 2009, 180, 1207–1213. [Google Scholar] [CrossRef] [PubMed]
- Vrablik, M.; Seifert, B.; Parkhomenko, A.; Banach, M.; Jóźwiak, J.J.; Kiss, R.G.; Gaita, D.; Rašlová, K.; Zachlederova, M.; Bray, S.; et al. Lipid-lowering therapy use in Central and Eastern Europe primary and secondary care: DA VINCI observational study. Atherosclerosis 2021, 334, 66–75. [Google Scholar] [CrossRef]
- Borén, J.; Chapman, M.J.; Krauss, R.M.; Packard, C.J.; Bentzon, J.F.; Binder, C.J.; Daemen, M.J.; Demer, L.L.; Hegele, R.A.; Nicholls, S.J.; et al. Low-density lipoproteins cause atherosclerotic cardiovascular disease: Pathophysiological, genetic, and therapeutic insights: A consensus statement from the European Atherosclerosis Society Consensus Panel. Eur. Heart J. 2020, 41, 2313–2330. [Google Scholar] [CrossRef] [PubMed]
- Mortensen, M.B.; Dzaye, O.; Bøtker, H.E.; Jensen, J.M.; Maeng, M.; Bentzon, J.F.; Kanstrup, H.; Sørensen, H.T.; Leipsic, J.; Blankstein, R.; et al. Low-Density Lipoprotein Cholesterol Is Predominantly Associated with Atherosclerotic Cardiovascular Disease Events in Patients with Evidence of Coronary Atherosclerosis: The Western Denmark Heart Registry. Circulation 2023, 147, 1053–1063. [Google Scholar] [CrossRef] [PubMed]
- Mota, M.; Popa, S.G.; Mota, E.; Mitrea, A.; Catrinoiu, D.; Cheta, D.M.; Guja, C.; Hancu, N.; Ionescu-Tirgoviste, C.; Lichiardopol, R.; et al. Prevalence of diabetes mellitus and prediabetes in the adult Romanian population: PREDATORR study. J. Diabetes 2016, 8, 336–344. [Google Scholar] [CrossRef]
- Ioacara, S.; Guja, C.; Ionescu-Tirgoviste, C.; Martin, S.; Tiu, C.; Fica, S. Rates and Causes of Death among Adult Diabetes Patients in Romania. Endocr. Res. 2019, 44, 81–86. [Google Scholar] [CrossRef]
- World Heart Federation. Country Profile ROMANIA. 2019. Available online: https://world-heart-federation.org/world-heart-observatory/countries/romania/ (accessed on 10 March 2024).
- ElSayed, N.A.; Aleppo, G.; Aroda, V.R.; Bannuru, R.R.; Brown, F.M.; Bruemmer, D.; Collins, B.S.; Das, S.R.; Hilliard, M.E.; Isaacs, D.; et al. 10. Cardiovascular Disease and Risk Management: Standards of Care in Diabetes—2023. Diabetes Care 2023, 46, S158–S190. [Google Scholar] [CrossRef]
- ElSayed, N.A.; Aleppo, G.; Aroda, V.R.; Bannuru, R.R.; Brown, F.M.; Bruemmer, D.; Collins, B.S.; Hilliard, M.E.; Isaacs, D.; Johnson, E.L.; et al. 1. Improving Care and Promoting Health in Populations: Standards of Care in Diabetes—2023. Diabetes Care 2023, 46, S10–S18. [Google Scholar] [CrossRef] [PubMed]
- ElSayed, N.A.; Aleppo, G.; Aroda, V.R.; Bannuru, R.R.; Brown, F.M.; Bruemmer, D.; Collins, B.S.; Hilliard, M.E.; Isaacs, D.; Johnson, E.L.; et al. 8. Obesity and Weight Management for the Prevention and Treatment of Type 2 Diabetes: Standards of Care in Diabetes—2023. Diabetes Care 2023, 46, S128–S139. [Google Scholar] [CrossRef]
- ElSayed, N.A.; Aleppo, G.; Aroda, V.R.; Bannuru, R.R.; Brown, F.M.; Bruemmer, D.; Collins, B.S.; Hilliard, M.E.; Isaacs, D.; Johnson, E.L.; et al. 9. Pharmacologic Approaches to Glycemic Treatment: Standards of Care in Diabetes—2023. Diabetes Care 2023, 46, S140–S157. [Google Scholar] [CrossRef] [PubMed]
- Populație Județul Iași. Available online: https://populatia.ro/populatie-judetul-iasi/ (accessed on 11 March 2024).
- Vintila, A.M.; Horumba, M.; Cimpu, C.; Dumitrescu, D.; Miron, P.; Alucai, A.; Cristea, G.; Tudorica, C.C.; Vintila, V.D. Target Achievement in Very High Risk Patients in Light of the New Dyslipidemia Guidelines. J. Hypertens. 2021, 39, e375. [Google Scholar] [CrossRef]
- Stival, C.; Lugo, A.; Odone, A.; van den Brandt, P.A.; Fernandez, E.; Tigova, O.; Soriano, J.B.; Lopez, M.J.; Scaglioni, S.; Gallus, S. Prevalence and Correlates of Overweight and Obesity in 12 European Countries in 2017–2018. Obes. Facts 2022, 15, 655–665. [Google Scholar] [CrossRef]
- Grant, B.; Sandelson, M.; Agyemang-Prempeh, B.; Zalin, A. Managing obesity in people with type 2 diabetes. Clin. Med. 2021, 21, e327. [Google Scholar] [CrossRef] [PubMed]
- Gatineau, M.; Hancock, C.; Holman, N.; Outhwaite, H.; Oldridge, L.; Christie, A.; Ells, L. Adult Obesity and Type 2 Diabetes; Public Health England: Oxford, UK, 2014; pp. 1–33. [Google Scholar]
- Hossain, P.; Kawar, B.; El Nahas, M. Obesity and Diabetes in the Developing World—A Growing Challenge. N. Engl. J. Med. 2007, 356, 213–215. [Google Scholar] [CrossRef] [PubMed]
- Colosia, A.; Khan, S.; Palencia, R. Prevalence of hypertension and obesity in patients with type 2 diabetes mellitus in observational studies: A systematic literature review. Diabetes Metab. Syndr. Obes. 2013, 6, 327–338. [Google Scholar] [CrossRef]
- Costache, I.I.; Miftode, E.; Mitu, O.; Costache, A.D.; Aursulesei, V. Arterial Hypertension Prevalence in a Romanian Rural Community—Correlations with Social and Economic Status, Age and Gender. Rev. Cercet. Interv. Soc. 2017, 59, 62–74. [Google Scholar]
- McGurnaghan, S.; Blackbourn, L.A.K.; Mocevic, E.; Haagen Panton, U.; McCrimmon, R.J.; Sattar, N.; Wild, S.; Colhoun, H.M. Cardiovascular disease prevalence and risk factor prevalence in Type 2 diabetes: A contemporary analysis. Diabet. Med. 2019, 36, 718–725. [Google Scholar] [CrossRef]
- Rungby, J.; Schou, M.; Warrer, P.; Ytte, L.; Andersen, G.S. Prevalence of cardiovascular disease and evaluation of standard of care in type 2 diabetes: A nationwide study in primary care. Cardiovasc. Endocrinol. 2017, 6, 145–151. [Google Scholar] [CrossRef]
- Ray, K.K.; Haq, I.; Bilitou, A.; Manu, M.C.; Burden, A.; Aguiar, C.; Arca, M.; Connolly, D.L.; Eriksson, M.; Ferrieres, J.; et al. Treatment gaps in the implementation of LDL cholesterol control among high- and very high-risk patients in Europe between 2020 and 2021: The multinational observational SANTORINI study. Lancet Reg. Health Eur. 2023, 29, 100624. [Google Scholar] [CrossRef]
- Morieri, M.L.; Avogaro, A.; Fadini, G.P. Cholesterol-lowering therapies and achievement of targets for primary and secondary cardiovascular prevention in type 2 diabetes: Unmet needs in a large population of outpatients at specialist clinics. Cardiovasc. Diabetol. 2020, 19, 190. [Google Scholar] [CrossRef] [PubMed]
- Cholesterol Treatment Trialists’ (CTT) Collaborators. The effects of lowering LDL cholesterol with statin therapy in people at low risk of vascular disease: Meta-analysis of individual data from 27 randomized trials. Lancet 2012, 380, 581–590. [Google Scholar] [CrossRef] [PubMed]
- Jellinger, P.S.; Handelsman, Y.; Rosenblit, P.D.; Bloomgarden, Z.T.; Fonseca, V.A.; Garber, A.J.; Grunberger, G.; Guerin, C.K.; Bell, D.S.H.; Mechanick, J.I.; et al. American Association of Clinical Endocrinologists and American College of Endocrinology Guidelines for Management of Dyslipidemia and Prevention of Cardiovascular Disease. Endocr. Pract. 2017, 23, 1–87. [Google Scholar] [CrossRef] [PubMed]
- Ministerul Sanatatii; CNAS. Ordinul MS/CNAS Nr 1301/500/2008—Lista Protocoalelor Terapeutice Aprobate prin Ordinul Ms/Cnas Nr 1301/500/2008 cu Modificarile si Completarile Ulterioare. 2018. Available online: http://cas.cnas.ro/media/pageFiles/Listei%20protocoalelor%20terapeutice%20%20-%20actualizata%20la%2003.09.2018.pdf (accessed on 10 March 2024).
- Vencio, S.; Alguwaihes, A.; Leon, J.L.A.; Bayram, F.; Darmon, P.; Dieuzeide, G.; Hettiarachchige, N.; Hong, T.; Kaltoft, M.S.; Lengyel, C.; et al. Contemporary use of diabetes medications with a cardiovascular indication in adults with type 2 diabetes: A secondary analysis of the multinational CAPTURE study. Diabetologia 2020, 63, A945. [Google Scholar]
- Arnold, S.V.; Tang, F.; Cooper, A.; Chen, H.; Gomes, M.B.; Rathmann, W.; Shimomura, I.; Vora, J.; Watada, H.; Khunti, K.; et al. Global use of SGLT2 inhibitors and GLP-1 receptor agonists in type 2 diabetes. Results from DISCOVER. BMC Endocr. Disord. 2022, 22, 111. [Google Scholar] [CrossRef] [PubMed]
- Banach, M.; Gaita, D.; Haluzik, M.; Janez, A.; Kamenov, Z.; Kempler, P.; Nebojsa, L.; Ales, L.; Dimitri, P.M.; Aleksandra, N.; et al. Cardio-Metabolic Academy Europe East. Adoption of the ADA/EASD guidelines in 10 Eastern and Southern European countries: Physician survey and good clinical practice recommendations from an international expert panel. Diabetes Res. Clin. Pract. 2021, 172, 108535. [Google Scholar] [CrossRef] [PubMed]
- Perone, F.; Bernardi, M.; Redheuil, A.; Mafrica, D.; Conte, E.; Spadafora, L.; Ecarnot, F.; Tokgozoglu, L.; Santos-Gallego, C.G.; Kaiser, S.E.; et al. Role of Cardiovascular Imaging in Risk Assessment: Recent Advances, Gaps in Evidence, and Future Directions. J. Clin. Med. 2023, 12, 5563. [Google Scholar] [CrossRef]
- Di Fusco, S.A.; Arca, M.; Scicchitano, P.; Alonzo, A.; Perone, F.; Gulizia, M.M.; Gabrielli, D.; Oliva, F.; Imperoli, G.; Colivicchi, F. Lipoprotein(a): A risk factor for atherosclerosis and an emerging therapeutic target. Heart 2022, 109, 18–25. [Google Scholar] [CrossRef]
Inclusion Criteria | Exclusion Criteria |
---|---|
Adults >18 years of age | <18 years of age |
Informed consent provided | Pregnant or breastfeeding females |
Positive diagnosis of T2DM for ≥3 months | Positive diagnostic different than T2DM (such as Type 1 DM, secondary diabetes, or latent autoimmune DM) |
Standard of care for the associated conditions for ≥3 months | Positive test for autoimmune markers (IA2A, ICA, GADA, ZnT8 AB antibodies) |
Declined to sign the informed consent form |
Characteristic | n = 885 |
---|---|
Demographics | |
Age (years), mean (SD) | 62.9 ± 7.7 |
Women, %, (n) | 53.7% (475) |
DM mean duration, mean (SD) | 9.0 ± 4.4 |
Risk factors | |
BMI (kg/m2), mean (SD) | 32.3 ± 5.3 |
Obesity, %, (n) | 64.6% (572) |
SBP (mm Hg), mean (SD) | 132 ± 16.2 |
DBP (mm Hg), mean (SD) | 80 ± 9.6 |
HBP, %, (n) | 83% (737) |
HbA1c (%), mean (SD) | 7.1 ± 1.3 |
Total-C (mg/dL), mean (SD) | 185.1 ± 43.3 |
HDL-C (mg/dL), mean (SD) | 44.9 ± 11.8 |
TG (mg/dL), median (interquartile range) | 142 (104 to 197) |
LDL-C (mg/dL), mean (SD) | 107.7 ± 36.0 |
Atherosclerotic CVD, %, (n) | 13.9% (123) |
eGFR (mL/min/1.73 m2) | 87.5 ± 20.6 |
LDL-C in very high CV risk category, (mg/dL), mean (SD) | 106.6 ± 35.6 |
LDL-C in high CV risk category, (mg/dL), mean (SD) | 113 ± 39.3 |
LDL-C in moderate CV risk category, (mg/dL), mean (SD) | 124.3 ± 38.3 |
Glucose-lowering medications usage | |
Insulin, %, (n) | 25.2% (223) |
Metformin, %, (n) | 87.0% (687) |
DPP-4i, %, (n) | 13.0% (115) |
GLP-1 RAs, %, (n) | 8.1% (71) |
SGLT2i, %, (n) | 3.9% (34) |
SU, %, (n) | 13.1% (116) |
Other therapies | |
ACEi/ARBs, %, (n) | 61.5% (544) |
Statin, %, (n) | 67.0% (593) |
Treatment Target for Patients with Very High CV Risk Category (n = 821) | Patients Achieving Target | Patients with SGLT2i Prescription | Patients with GLP-1 RAs Prescription | Patients with Statin Prescription |
---|---|---|---|---|
LDL-C < 55 mg/dL, %, (n) | 5.0% (41) | 0.3% (3) | 0.8% (7) | 2.7% (22) |
HbA1c < 7%, %, (n) | 50.4% (446) | 1.4% (12) | 2.7% (24) | 35.0% (310) |
BP < 130/80 mmHg, %, (n) | 27.5% (243) | 0.8% (7) | 2.4% (21) | 20.3% (180) |
LDL-C < 55 mg/dL + HbA1c < 7%, %, (n) | 2.3% (20) | 0.2% (2) | 0.5% (4) | 1.2% (11) |
HbA1c < 7% + BP < 130/80 mmHg, %, (n) | 15.5% (137) | 0.5% (4) | 0.6% (5) | 11.3% (100) |
LDL-C < 55 mg/dL+ BP < 130/80 mmHg, %, (n) | 1.5% (13) | 0.1% (1) | 0.3% (3) | 0.6% (5) |
LDL-C < 55 mg/dL + HbA1c < 7% + BP < 130/80 mmHg, %, (n) | 0.7% (6) | 0.1% (1) | 0.1% (1) | 0.2% (2) |
Treatment Target for Patients with High CV Risk Category (n = 10) | Patients Achieving Target | Patients with SGLT2i Prescription | Patients with GLP-1 RAs Prescription | Patients with Statin Prescription |
---|---|---|---|---|
LDL-C < 70 mg/dL, %, (n) | 0.2% (2) | 0 | 0 | 0 |
HbA1c < 7%, %, (n) | 0.9% (8) | 0 | 0 | 0.5% (4) |
BP < 130/80 mmHg, %, (n) | 0.7% (6) | 0 | 0 | 0.5% (4) |
LDL-C < 70 mg/dL + HbA1c< 7%, %, (n) | 0.2% (2) | 0 | 0 | 0 |
HbA1c < 7% + BP < 130/80 mmHg, %, (n) | 0.6% (5) | 0 | 0 | 0.3% (3) |
LDL-C < 70 mg/dL+ BP <130/80 mmHg, %, (n) | 0.2% (2) | 0 | 0 | 0 |
LDL-C < 70 mg/dL + HbA1c < 7% + BP < 130/80 mmHg, %, (n) | 0.2% (2) | 0 | 0 | 0 |
Treatment Target for Patients with Moderate CV Risk Category (n = 54) | Patients Achieving Target | Patients with SGLT2i Prescription | Patients with GLP-1 RAs Prescription | Patients with Statin Prescription |
---|---|---|---|---|
LDL-C < 100 mg/dL, %, (n) | 1.6% (14) | 0.1% (1) | 0% (0) | 0.7% (6) |
HbA1c < 7%, %, (n) | 3.6% (32) | 0 | 0.1% (1) | 1.9% (17) |
BP < 130/80 mmHg, %, (n) | 2.0% (18) | 0 | 0.2% (2) | 1.0% (9) |
LDL-C < 100 mg/dL + HbA1c < 7%, %, (n) | 0.8% (7) | 0 | 0 | 0.3% (3) |
HbA1c < 7% + BP < 130/80 mmHg, %, (n) | 1.2% (11) | 0) | 0.1% (1) | 0.6% (5) |
LDL-C < 100 mg/dL+ BP < 130/80 mmHg, %, (n) | 0.8% (7) | 0 | 0 | 0.3% (3) |
LDL-C < 100 mg/dL + HbA1c < 7% + BP < 130/80 mmHg, %, (n) | 0.6% (5) | 0 | 0 | 0.2% (2) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reurean-Pintilei, D.; Potcovaru, C.-G.; Salmen, T.; Mititelu-Tartau, L.; Cinteză, D.; Lazăr, S.; Pantea Stoian, A.; Timar, R.; Timar, B. Assessment of Cardiovascular Risk Categories and Achievement of Therapeutic Targets in European Patients with Type 2 Diabetes. J. Clin. Med. 2024, 13, 2196. https://doi.org/10.3390/jcm13082196
Reurean-Pintilei D, Potcovaru C-G, Salmen T, Mititelu-Tartau L, Cinteză D, Lazăr S, Pantea Stoian A, Timar R, Timar B. Assessment of Cardiovascular Risk Categories and Achievement of Therapeutic Targets in European Patients with Type 2 Diabetes. Journal of Clinical Medicine. 2024; 13(8):2196. https://doi.org/10.3390/jcm13082196
Chicago/Turabian StyleReurean-Pintilei, Delia, Claudia-Gabriela Potcovaru, Teodor Salmen, Liliana Mititelu-Tartau, Delia Cinteză, Sandra Lazăr, Anca Pantea Stoian, Romulus Timar, and Bogdan Timar. 2024. "Assessment of Cardiovascular Risk Categories and Achievement of Therapeutic Targets in European Patients with Type 2 Diabetes" Journal of Clinical Medicine 13, no. 8: 2196. https://doi.org/10.3390/jcm13082196
APA StyleReurean-Pintilei, D., Potcovaru, C. -G., Salmen, T., Mititelu-Tartau, L., Cinteză, D., Lazăr, S., Pantea Stoian, A., Timar, R., & Timar, B. (2024). Assessment of Cardiovascular Risk Categories and Achievement of Therapeutic Targets in European Patients with Type 2 Diabetes. Journal of Clinical Medicine, 13(8), 2196. https://doi.org/10.3390/jcm13082196