Culture of Human Embryos at High and Low Oxygen Levels
Abstract
:1. Introduction
2. Oxygen Concentration in Female Reproductive Tract
3. The Effect of Oxygen Levels on Early Embryo Metabolism
4. Culture of Mammalian Embryos under Low Oxygen Levels
Study | Species | Objective | Primary Outcomes | Secondary Outcomes and Additional Remarks | Reproductive Method |
---|---|---|---|---|---|
Rinaudo et al. (2006) [38] | Mouse | Effect of oxygen levels (5% or 20%) on gene expression patterns |
|
| Not specified |
Quinn et al. (1978) [3] | Mouse | Effect of different oxygen levels on preimplantation embryo culture |
|
| Not specified |
Kishi et al. (1991) [42] | Rat | Effect of HECM-1 medium use on rat 1-cell embryo culture |
|
| Not specified |
McKiernan et al. (1990) [43] | Hamster | Effect of different parameters on hamster embryo culture |
|
| Not specified |
Li et al. (1993) [44] | Rabbit | Effect of different oxygen levels (1–20% O2) on progression to blastocyst and blastocyst-related parameters |
|
| Not specified |
Karja et al. (2004) [45] | Pig | Effect of different oxygen levels (8–10% or 20%) on oocyte characteristics and embryo quality parameters |
|
| IVM/IVF/in vitro culture |
Batt et al. (1991) [46] | Goat | Effect of different oxygen levels (7% or 20%) and different protein sources in the culture medium on preimplantation embryo parameters |
|
| Not specified |
Leoni et al. (2007) [47] | Ovine | Effect of oxygen levels (5% or 20%) on ovine embryo culture quality parameters |
|
| IVF |
Bean et al. (2002) [41] | Mouse | Effect of oxygen levels (5% or 20%) on genetic status |
|
| IVF |
Wale et al. (2010) [40] | Mouse | Effect of oxygen levels and oxygen level shifts on preimplantation embryo culture |
|
| Not specified |
He et al. (2020) [48] | Yak | Effect of different oxygen levels (20% O2, 10% O2, 5% O2 or 1% O2) on oocyte maturation, embryo preimplantation potential and other parameters |
|
| IVF |
Tkachenko et al. (2017) [49] | Marmoset | Effect of paired oxygen levels (8% O2–5% O2, 20% O2–20% O2, 20% O2–5% O2 and 8% O2–20% O2) on in vitro maturation (IVM) and in vitro fertilization (IVF), respectively. |
|
| IVM/IVF |
5. Culture of Human Embryos under Low Oxygen Levels
Study | Study Type | Objective | Study Population | Outcome | Reproductive Method |
---|---|---|---|---|---|
Dumoulin et al. (1995) [50] | Prospective randomized study | Evaluation of oxygen levels (5% CO2/5% O2/90% N2 or 5% CO2/20% O2) on fertilization rates, development during transfer day, implantation and pregnancy rates | 257 IVF cycles from 186 patients |
| IVF |
Dumoulin et al. (1999) [51] | Prospective randomized study | Evaluation of oxygen levels (5% O2 or 20% O2) on fertilization rates, implantation rates and development during 2nd or 3rd day | 1380 IVF cycles |
| IVF |
Bahceci et al. (2005) [61] | Prospective randomized study | Comparison of embryo culture under 5% O2 or 20% O2 in relation to the ICSI outcome | 822 oocyte retrieval cycles, 712 of which led to embryo transfer:
|
| ICSI |
Kea et al. (2007) [53] | Prospective randomized study | Evaluation of the oxygen levels’ effect (5% CO2/5% O2/90% N2 or 5% CO2) on fertilization rates, embryo development and pregnancy outcomes in IVF patients | 1045 oocyte retrievals from 106 patients:
|
| IVF/ICSI/IVF and ICSI (combination) |
Kovacic et al. (2008) [55] | Prospective randomized study | Effect of different oxygen levels (5% O2 or 20% O2) on sibling oocyte development until the blastocyst stage and evaluation of fertilization rate and the ratio of optimal embryos and blastocysts | 785 cumulus–oocyte complexes (COCs) in the IVF group:
|
| IVF/ICSI |
Ciray et al. (2009) [64] | Prospective randomized study | Evaluation of the oxygen levels’ effect (6% CO2/5% O2/89% N2 or 5% CO2/20% O2) on embryo qualities and blastocyst status | 75 oocyte retrieval cycles including 2061 oocytes, 74 of which led to embryo transfer:
|
| ICSI |
Meintjes et al. (2009) [54] | Prospective randomized study | Impact of low oxygen levels (5% O2) on pregnancy rates | 230 patients undergoing IVF or ICSI: 115 control group (20% O2). 115 group (5% O2). |
| IVF/ICSI |
Waldenstrom et al. (2009) [60] | Prospective randomized study | Effect of different oxygen levels (5% O2 vs. 19% O2) on birth rate | 396 patients: 197 patients for culture under 5% O2. 199 patients for culture under 19% O2. |
| IVF |
Nanassy et al. (2010) [56] | Retrospective study | Impact of oxygen levels’ shift (5% O2 and 20% O2) on embryo quality, implantation and pregnancy rate between the 3rd and the 5th day | 382 patients (until the 3rd day all cultures under 20% O2): 189 patients for culture under 5% O2 (after the 3rd day). 193 patients for culture under 20% O2 (after the 3rd day). |
| IVF |
Kovacic et al. (2010) [62] | Prospective randomized study | Impact of embryo culture under different oxygen levels (6% CO2/5% O2/89% N2 or 6% CO2/20% O2) on the ICSI outcome | 647 patients: 326 patients for culture under 5% O2. 321 patients for culture under 20% O2. |
| ICSI |
Sepulveda et al. (2011) [59] | Prospective randomized study | Comparison between embryo culture under 5% O2 or 20% O2 | 100 oocyte donation receivers randomized for culture under 5% O2 or 20% O2 |
| IVF (not directly mentioned) |
Sobrinho et al. (2011) [70] | Meta-analysis | Effect of low oxygen levels on fertilization, implantation and pregnancy rates | 7 included studies: Dumoulin et al.(1999) [51], Bahceci et al. (2005) [61], Kea et al. (2007) [53], Kovacic et al. (2008) [55], Ciray et al. (2009) [64], Meintjes et al. (2009) [54] and Kovacic et al. (2010) [62]. |
| IVF/ICSI |
Bontekoe et al. (2012) [71] | Review with quantitative synthesis | Assessment of 5% O2 levels on IVF- and ICSI-related parameters | 1382 patients from 4 included studies: Kovacic et al. (2008) [55], Meintjes et al. (2009) [54], Sepulveda et al. (2011) [59] and Waldestrom et al. (2011) [60]. |
| IVF/ICSI |
de los Santos MJ et al. (2013) [52] | Prospective randomized study | Evaluation of oxygen levels (5.5% CO2/6% O2/88.5% N2 or 5.5% CO2/20% O2) on ongoing pregnancies from oocyte donation cycles | 564 cycles under 6% O2. 561 cycles under 20% O2. |
| IVF/ICSI |
Kasterstein et al. (2013) [63] | Prospective randomized study | Evaluation of different oxygen levels (5% O2 or 20% O2) on embryo development and clinical outcome (in cycles with more than 8 oocytes collected) | 258 patients. 3638 mature oocytes retrieved. 1833 incubated under 5% O2. 1805 sibling oocytes incubated under 20% O2. |
| ICSI |
Paternot et al. (2013) [65] | 2 randomized controlled trials | Assessment of embryo incubation in a mini-incubator or a conventional incubator and effect of different oxygen levels (5% O2 and 20% O2) on embryo quality | 395 embryos in each group |
| IVF/ICSI |
Peng ZF et al. (2015) [57] | Randomized study | Evaluation of different oxygen levels on fertilization rates, implantation rates, pregnancy rates, multiple pregnancies and miscarriages | 3484 IVF and ICSI cycles: 1131 cycles cultured under 5% CO2 and 20% O2. 1258 cycles cultured at first under 5% CO2 and 20% O2 and after the 2nd day under 5% O2/5% CO2/90% N2 until the 3rd day. 1095 cycles cultured under 5% O2/5% CO2/90% N2. |
| IVF/ICSI |
Nastri et al. (2016) [72] | Systematic review and meta-analysis | Evaluation of different oxygen levels on embryo cultures | 21 included studies |
| IVF/ICSI |
Van Montfoort et al. (2020) [58] | Cohort study | Assessment of different oxygen levels’ potential involvement in embryo utilization, IVF success rates and birthweight | 871 patients. 195 cycles in the group under 5% O2 (1627 oocytes). 676 cycles in the group under 20% O2 (5448 oocytes). |
| IVF or IVF/ICSI |
Ruíz et al. (2020) [66] | Prospective randomized controlled trial | Assessment of the embryo culture under low oxygen levels (5% O2) in benchtop incubator on embryo-related parameters | 148 patients: 73 patients in the control group culture under 20% O2 and in large box-incubators. 75 patients in the study group (culture under 5% O2 and in benchtop incubators). |
| IVF |
Gelo et al. (2019) [67] | Prospective randomized controlled trial | Evaluation of embryo culture under 5% O2 in a benchtop incubator or 20% O2 in a classic incubator on embryo-related and clinical parameters | 393 patients: 198 patients in the 5% O2 group. 195 patients in the 20% O2 group. |
| IVF/ICSI |
Li et al. (2022) [68] | Randomized study | Assessment of ultra-low (2%) oxygen levels on embryo development and clinical parameters | 2298 oocytes from 152 patients |
| IVF |
Fawzy et al. (2017) [69] | Comparative study | Evaluation of low oxygen levels (3.5% O2) on embryo development and clinical parameters | 6024 oocytes from 558 patients: 3290 oocytes from 293 patients in the 3.5% O2 group. 2734 oocytes from 265 patients in the 5% O2 group. |
| ICSI |
Yang et al. (2016) [73] | Comparative study | Assessment of different oxygen levels (2% O2, 5% O2 and 20% O2) on embryo cultures until the blastocyst stage | 155 embryos from 21 couples (120 finally included): 46 embryos in the 2% O2 group. 44 embryos in the 5% O2 group. 30 embryos in the 20% O2 group. |
| IVF |
Kaser et al. (2018) [74] | Randomized controlled trial | Assessment of human preimplantation embryos’ culture under 2% O2 or 5% O2 | 203 zygotes: 102 zygotes for culture under 5% O2 for both periods (days 1 to 3 and days 3 to 5). 101 zygotes for culture under 5% O2 for days 1 to 3 and under 2% O2 for days 3 to 5. |
| IVF/ICSI |
De Munck et al. (2019) [75] | 2 prospective randomized controlled trial | Evaluation of the shift in oxygen concentration from 5% to 2% after the 3rd day on blastocyst parameters | 1811 embryos (direct exposure). 405 embryos for culture under 2% O2. 406 embryos for culture under 5% O2. 1144 embryos (gradual exposure). 572 embryos for culture under 2% O2. 572 embryos for culture under 5% O2. |
| IVF/ICSI |
Brouillet et al. (2021) [76] | Monocentric retrospective observational study | Evaluation of oxygen levels’ shift from 5% to 2% on embryo-related and clinical parameters | 120 couples. (1st IVF cycle with embryo culture under 5% O2 and 2nd IVF cycle with embryo culture under 5% O2 for the first 3 days and then under 2% O2 for days 3 to 5/6.) |
| IVF |
Li et al. (2022) [77] | Comparative study | Evaluation of oxygen levels’ shift from 5% to 2% in embryo-related and clinical parameters. | 510 embryos from 188 patients: 296 embryos from 106 patients for culture under 5% O2 after the 3rd day until the 5th or the 6th day. 214 embryos from 82 patients for culture under 2% O2 after the 3rd day until the 5th or the 6th day. |
| IVF/ICSI |
Patel et al. (2023) [78] | Retrospective cross-sectional study | Assessment of low (5% O2) and ultra-low (2% O2) oxygen levels on embryo-related and clinical parameters | 382 patients; 206 embryos for culture under 2% O2. 176 embryos for culture under 5% O2. |
| IVF |
Herbemont et al. (2021) [79] | Randomized controlled trial | Evaluation of the oxygen levels’ importance according to the embryo’s developmental stage | 773 IVF/ICSI cycles: 265 cycles in culture under 20% O2 and after the 2nd day, culture of the available good-quality embryos in 88 cycles under 20% O2. 508 cycles in culture under 5% O2, after the 2nd day either culture until the 6th day for 195 cycles or shift of the oxygen levels to 20% O2 until the 6th day for 94 cycles. |
| IVF/ICSI |
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Steptoe, P.C.; Edwards, R.G.; Purdy, J.M. Human Blastocysts grown in Culture. Nature 1971, 229, 132–133. [Google Scholar] [CrossRef] [PubMed]
- Sciorio, R.; Smith, G.D. Embryo culture at a reduced oxygen concentration of 5%: A mini review. Zygote 2019, 27, 355–361. [Google Scholar] [CrossRef] [PubMed]
- Quinn, P.; Harlow, G.M. The effect of oxygen on the development of preimplantation mouse embryos in vitro. J. Exp. Zool. 1978, 206, 73–80. [Google Scholar] [CrossRef] [PubMed]
- Higdon, H.L., 3rd; Blackhurst, D.W.; Boone, W.R. Incubator management in an assisted reproductive technology laboratory. Fertil. Steril. 2008, 89, 703–710. [Google Scholar] [CrossRef] [PubMed]
- Bedaiwy, M.A.; Falcone, T.; Mohamed, M.S.; Aleem, A.A.N.; Sharma, R.K.; Worley, S.E.; Thornton, J.; Agarwal, A. Differential growth of human embryos in vitro: Role of reactive oxygen species. Fertil. Steril. 2004, 82, 593–600. [Google Scholar] [CrossRef] [PubMed]
- Catt, J.W.; Henman, M. Toxic effects of oxygen on human embryo development. Hum. Reprod. 2000, 15 (Suppl. S2), 199–206. [Google Scholar] [CrossRef] [PubMed]
- Fischer, B.; Bavister, B.D. Oxygen tension in the oviduct and uterus of rhesus monkeys, hamsters and rabbits. J. Reprod. Fertil. 1993, 99, 673–679. [Google Scholar] [CrossRef] [PubMed]
- Mastroianni, L., Jr.; Jones, R. Oxygen Tension Within the rabbit fallopian tube. Reproduction 1965, 9, 99–102. [Google Scholar] [CrossRef] [PubMed]
- Ng, K.Y.B.; Mingels, R.; Morgan, H.; Macklon, N.; Cheong, Y. In vivo oxygen, temperature and pH dynamics in the female reproductive tract and their importance in human conception: A systematic review. Hum. Reprod. Updat. 2017, 24, 15–34. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, J.A.; Yochim, J.M. Measurement of Intrauterine Oxygen Tension in the Rat and Its Regulation by Ovarian Steroid Hormones. Endocrinology 1968, 83, 691–700. [Google Scholar] [CrossRef]
- Kaufman, D.L.; Mitchell, J.A. Intrauterine oxygen tension during the oestrous cycle in the hamster: Patterns of change. Comp. Biochem. Physiol. Part A Physiol. 1994, 107, 673–678. [Google Scholar] [CrossRef] [PubMed]
- Garris, D.R.; Mitchell, J.A. Intrauterine Oxygen Tension during the Estrous Cycle in the Guinea Pig: Its Relation to Uterine Blood Volume and Plasma Estrogen and Progesterone Levels. Biol. Reprod. 1979, 21, 149–159. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, J.A.; Van Kainen, B.R. Effects of Alcohol on Intrauterine Oxygen Tension in the Rat. Alcohol. Clin. Exp. Res. 1992, 16, 308–310. [Google Scholar] [CrossRef] [PubMed]
- Kigawa, J. Studies on the levels of pO2 and pCO2 in the uterine cavity and uterine tissue (author’s transl). Nihon Sanka Fujinka Gakkai Zasshi 1981, 33, 1646–1654. [Google Scholar] [PubMed]
- Yedwab, G.A.; Paz, G.; Homonnai, T.Z.; David, M.P.; Kraicer, P.F. The Temperature, pH, and Partial Pressure of Oxygen in the Cervix and Uterus of Women and Uterus of Rats During the Cycle. Fertil. Steril. 1976, 27, 304–309. [Google Scholar] [CrossRef] [PubMed]
- Ottosen, L.D.; Hindkjær, J.; Husth, M.; Petersen, D.E.; Kirk, J.; Ingerslev, H.J. Observations on intrauterine oxygen tension measured by fibre-optic microsensors. Reprod. Biomed. Online 2006, 13, 380–385. [Google Scholar] [CrossRef] [PubMed]
- Shalgi, R.; Kraicer, P.F.; Soferman, N. Gases and electrolytes of human follicular fluid. Reproduction 1972, 28, 335–340. [Google Scholar] [CrossRef] [PubMed]
- Gosden, R.; Byatt-Smith, J. Oxygen concentration gradient across the ovarian follicular epithelium: Model, predictions and implications. Hum. Reprod. 1986, 1, 65–68. [Google Scholar] [CrossRef] [PubMed]
- Clark, A.R.; Stokes, Y.M.; Lane, M.; Thompson, J.G. Mathematical modelling of oxygen concentration in bovine and murine cumulus–oocyte complexes. Reproduction 2006, 131, 999–1006. [Google Scholar] [CrossRef] [PubMed]
- Hardy, K.; Hooper, M.; Handyside, A.; Rutherford, A.; Winston, R.; Leese, H. Non-invasive measurement of glucose and pyruvate uptake by individual human oocytes and preimplantation embryos. Hum. Reprod. 1989, 4, 188–191. [Google Scholar] [CrossRef] [PubMed]
- Gott, A.; Hardy, K.; Winston, R.; Leese, H. Non-invasive measurement of pyruvate and glucose uptake and lactate production by sigle human preimplantation embryos. Hum. Reprod. 1990, 5, 104–108. [Google Scholar] [CrossRef] [PubMed]
- Leese, H.J. Metabolic control during preimplantation mammalian development. Hum. Reprod. Updat. 1995, 1, 63–72. [Google Scholar] [CrossRef] [PubMed]
- Leese, H.J.; Conaghan, J.; Martin, K.L.; Hardy, K. Early human embryo metabolism. BioEssays 1993, 15, 259–264. [Google Scholar] [CrossRef] [PubMed]
- Leese, H.J. Metabolism of the preimplantation embryo: 40 years on. Reproduction 2012, 143, 417–427. [Google Scholar] [CrossRef] [PubMed]
- Houghton, F.D. Energy metabolism of the inner cell mass and trophectoderm of the mouse blastocyst. Differentiation 2006, 74, 11–18. [Google Scholar] [CrossRef] [PubMed]
- Guérin, P.; El Mouatassim, S.; Ménézo, Y. Oxidative stress and protection against reactive oxygen species in the pre-implantation embryo and its surroundings. Hum. Reprod. Update 2001, 7, 175–189. [Google Scholar] [CrossRef] [PubMed]
- Guérin, P.; Ménézo, Y. Hypotaurine and taurine in gamete and embryo environments: De novo synthesis via the cysteine sulfinic acid pathway in oviduct cells. Zygote 1995, 3, 333–343. [Google Scholar] [CrossRef] [PubMed]
- Johnson, M.H.; Nasresfahani, M.H. Radical solutions and cultural problems: Could free oxygen radicals be responsible for the impaired development of preimplantation mammalian embryos in vitro? BioEssays 1994, 16, 31–38. [Google Scholar] [CrossRef] [PubMed]
- Goto, Y.; Noda, Y.; Mori, T.; Nakano, M. Increased generation of reactive oxygen species in embryos cultured in vitro. Free Radic. Biol. Med. 1993, 15, 69–75. [Google Scholar] [CrossRef] [PubMed]
- Kwon, H.-C.; Yang, H.-W.; Hwang, K.-J.; Yoo, J.-H.; Kim, M.-S.; Lee, C.-H.; Ryu, H.S.; Oh, K.S. Effects of Low Oxygen Condition on the Generation of Reactive Oxygen Species and the Development in Mouse Embryos Cultured in vitro. J. Obstet. Gynaecol. Res. 1999, 25, 359–366. [Google Scholar] [CrossRef] [PubMed]
- Nakayama, T.; Noda, Y.; Goto, Y.; Mori, T. Effects of visible light and other environmental factors on the production of oxygen radicals by hamster embryos. Theriogenology 1994, 41, 499–510. [Google Scholar] [CrossRef] [PubMed]
- Martín-Romero, F.J.; Miguel-Lasobras, E.M.; Domínguez-Arroyo, J.A.; González-Carrera, E.; Álvarez, I.S. Contribution of culture media to oxidative stress and its effect on human oocytes. Reprod. Biomed. Online 2008, 17, 652–661. [Google Scholar] [CrossRef] [PubMed]
- Wale, P.L.; Gardner, D.K. Oxygen Regulates Amino Acid Turnover and Carbohydrate Uptake During the Preimplantation Period of Mouse Embryo Development1. Biol. Reprod. 2012, 87, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Gu, T.-P.; Guo, F.; Yang, H.; Wu, H.-P.; Xu, G.-F.; Liu, W.; Xie, Z.-G.; Shi, L.; He, X.; Jin, S.-G.; et al. The role of Tet3 DNA dioxygenase in epigenetic reprogramming by oocytes. Nature 2011, 477, 606–610. [Google Scholar] [CrossRef] [PubMed]
- Morgan, H.D.; Santos, F.; Green, K.; Dean, W.; Reik, W. Epigenetic reprogramming in mammals. Hum. Mol. Genet. 2005, 14, R47–R58. [Google Scholar] [CrossRef] [PubMed]
- Marcho, C.; Cui, W.; Mager, J. Epigenetic dynamics during preimplantation development. Reproduction 2015, 150, R109–R120. [Google Scholar] [CrossRef] [PubMed]
- Katz-Jaffe, M.G.; Linck, D.W.; Schoolcraft, W.B.; Gardner, D.K. A proteomic analysis of mammalian preimplantation embryonic development. Reproduction 2005, 130, 899–905. [Google Scholar] [CrossRef] [PubMed]
- Rinaudo, P.F.; Giritharan, G.; Talbi, S.; Dobson, A.T.; Schultz, R.M. Effects of oxygen tension on gene expression in preimplantation mouse embryos. Fertil. Steril. 2006, 86, 1265.e1–1265.e36. [Google Scholar] [CrossRef] [PubMed]
- Otsuki, J.; Nagai, Y.; Chiba, K. Peroxidation of mineral oil used in droplet culture is detrimental to fertilization and embryo development. Fertil. Steril. 2007, 88, 741–743. [Google Scholar] [CrossRef] [PubMed]
- Wale, P.; Gardner, D. Time-lapse analysis of mouse embryo development in oxygen gradients. Reprod. Biomed. Online 2010, 21, 402–410. [Google Scholar] [CrossRef] [PubMed]
- Bean, C.J.; Hassold, T.J.; Judis, L.; Hunt, P.A. Fertilization in vitro increases non-disjunction during early cleavage divisions in a mouse model system. Hum. Reprod. 2002, 17, 2362–2367. [Google Scholar] [CrossRef] [PubMed]
- Kishi, J.; Noda, Y.; Narimoto, K.; Umaoka, Y.; Mori, T. Block to development in cultured rat 1-cell embryos is overcome using medium HECM-1. Hum. Reprod. 1991, 6, 1445–1448. [Google Scholar] [CrossRef] [PubMed]
- McKiernan, S.H.; Bavister, B.D. Environmental Variables Influencing in Vitro Development of Hamster 2-Cell Embryos to the Blastocyst Stage1. Biol. Reprod. 1990, 43, 404–413. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Foote, R.H. Culture of rabbit zygotes into blastocysts in protein-free medium with one to twenty per cent oxygen. Reproduction 1993, 98, 163–167. [Google Scholar] [CrossRef] [PubMed]
- Karja, N.W.K.; Wongsrikeao, P.; Murakami, M.; Agung, B.; Fahrudin, M.; Nagai, T.; Otoi, T. Effects of oxygen tension on the development and quality of porcine in vitro fertilized embryos. Theriogenology 2004, 62, 1585–1595. [Google Scholar] [CrossRef] [PubMed]
- Batt, P.; Gardner, D.; Cameron, A. Oxygen concentration and protein source affect the development of preimplantation goat embryos in vitro. Reprod. Fertil. Dev. 1991, 3, 601–607. [Google Scholar] [CrossRef] [PubMed]
- Leoni, G.; Rosati, I.; Succu, S.; Bogliolo, L.; Bebbere, D.; Berlinguer, F.; Ledda, S.; Naitana, S. A Low Oxygen Atmosphere during IVF Accelerates the Kinetic of Formation of In Vitro Produced Ovine Blastocysts. Reprod. Domest. Anim. 2007, 42, 299–304. [Google Scholar] [CrossRef] [PubMed]
- He, H.; Zhang, H.; Li, Q.; Fan, J.; Pan, Y.; Zhang, T.; Robert, N.; Zhao, L.; Hu, X.; Han, X.; et al. Low oxygen concentrations improve yak oocyte maturation and enhance the developmental competence of preimplantation embryos. Theriogenology 2020, 156, 46–58. [Google Scholar] [CrossRef] [PubMed]
- Tkachenko, O.Y.; Delimitreva, S.; Wedi, E.; Scheerer-Bernhard, J.U.; Valle, R.R.; Nayudu, P.L. Effects of oxygen concentration in IVM/IVF on marmoset monkey oocyte maturation and embryo development. Anim. Reprod. 2017, 14, 1170–1178. [Google Scholar] [CrossRef]
- Dumoulin, J.C.; Vanvuchelen, R.C.; Land, J.A.; Pieters, M.H.; Geraedts, J.P.; Evers, J.L. Effect of oxygen concentration on in vitro fertilization and embryo culture in the human and the mouse. Fertil. Steril. 1995, 63, 115–119. [Google Scholar] [CrossRef] [PubMed]
- Dumoulin, J.C.; Meijers, C.J.; Bras, M.; Coonen, E.; Geraedts, J.P.; Evers, J.L. Effect of oxygen concentration on human in-vitro fertilization and embryo culture. Hum. Reprod. 1999, 14, 465–469. [Google Scholar] [CrossRef] [PubMed]
- De los Santos, M.J.d.L.; Gámiz, P.; Albert, C.; Galán, A.; Viloria, T.; Pérez, S.; Romero, J.L.; Remohï, J. Reduced oxygen tension improves embryo quality but not clinical pregnancy rates: A randomized clinical study into ovum donation cycles. Fertil. Steril. 2013, 100, 402–407. [Google Scholar] [CrossRef] [PubMed]
- Kea, B.; Gebhardt, J.; Watt, J.; Westphal, L.M.; Lathi, R.B.; Milki, A.A.; Behr, B. Effect of reduced oxygen concentrations on the outcome of in vitro fertilization. Fertil. Steril. 2007, 87, 213–216. [Google Scholar] [CrossRef] [PubMed]
- Meintjes, M.; Chantilis, S.J.; Douglas, J.D.; Rodriguez, A.J.; Guerami, A.R.; Bookout, D.M.; Barnett, B.D.; Madden, J.D. A controlled randomized trial evaluating the effect of lowered incubator oxygen tension on live births in a predominantly blastocyst transfer program. Hum. Reprod. 2008, 24, 300–307. [Google Scholar] [CrossRef] [PubMed]
- Kovačič, B.; Vlaisavljević, V. Influence of atmospheric versus reduced oxygen concentration on development of human blastocysts in vitro: A prospective study on sibling oocytes. Reprod. Biomed. Online 2008, 17, 229–236. [Google Scholar] [CrossRef] [PubMed]
- Nanassy, L.; Wilcox, A.L.; Peterson, C.M.; Hammoud, A.; Carrell, D.T. Comparison of 5% and ambient oxygen during days 3–5 of in vitro culture of human embryos. Fertil. Steril. 2010, 93, 579–585. [Google Scholar] [CrossRef] [PubMed]
- Peng, Z.F.; Shi, S.L.; Jin, H.X.; Yao, G.D.; Wang, E.Y.; Yang, H.Y.; Song, W.; Sun, Y. Impact of oxygen concentrations on fertilization; cleavage; implantation; and pregnancy rates of in vitro generated human embryos. Int. J. Clin. Exp. Med. 2015, 8, 6179–6185. [Google Scholar] [PubMed]
- Van Montfoort, A.P.A.; Arts, E.; Wijnandts, L.; Sluijmer, A.; Pelinck, M.J.; Land, J.A.; Van Echten-Arends, J. Reduced oxygen concentration during human IVF culture improves embryo utilization and cumulative pregnancy rates per cycle. Hum. Reprod. Open 2020, 2020, hoz036. [Google Scholar] [CrossRef] [PubMed]
- Sepulveda, S.; Steurer, I.; Gazzo, E.; Escudero, E.; Noriega, L. Effect of oxygen conditions on the results of an oocyte donation program: A prospective randomized trial [Efeito das condicoes de oxigenio no resultado de um programa de ovo–doacao: Estudo prospectivo e randomizado]. J. Bras. De Reprod. Assist. 2011, 15, 32–33. [Google Scholar]
- Waldenström, U.; Engström, A.-B.; Hellberg, D.; Nilsson, S. Low-oxygen compared with high-oxygen atmosphere in blastocyst culture, a prospective randomized study. Fertil. Steril. 2009, 91, 2461–2465. [Google Scholar] [CrossRef] [PubMed]
- Bahçeci, M.; Çray, H.N.; Karagenc, L.; Ulug, U.; Bener, F. Effect of oxygen concentration during the incubation of embryos of women undergoing ICSI and embryo transfer: A prospective randomized study. Reprod. Biomed. Online 2005, 11, 438–443. [Google Scholar] [CrossRef] [PubMed]
- Kovačič, B.; Sajko, M.; Vlaisavljević, V. A prospective, randomized trial on the effect of atmospheric versus reduced oxygen concentration on the outcome of intracytoplasmic sperm injection cycles. Fertil. Steril. 2010, 94, 511–519. [Google Scholar] [CrossRef] [PubMed]
- Kasterstein, E.; Strassburger, D.; Komarovsky, D.; Bern, O.; Komsky, A.; Raziel, A.; Friedler, S.; Ron-El, R. The effect of two distinct levels of oxygen concentration on embryo development in a sibling oocyte study. J. Assist. Reprod. Genet. 2013, 30, 1073–1079. [Google Scholar] [CrossRef] [PubMed]
- Ciray, H.N.; Aksoy, T.; Yaramanci, K.; Karayaka, I.; Bahceci, M. In vitro culture under physiologic oxygen concentration improves blastocyst yield and quality: A prospective randomized survey on sibling oocytes. Fertil. Steril. 2009, 91, 1459–1461. [Google Scholar] [CrossRef] [PubMed]
- Paternot, G.; Debrock, S.; D’Hooghe, T.; Spiessens, C. Can embryo quality be improved by in vitro exposure to low oxygen concentration or by using a mini-incubator? two randomized controlled trials. Fertil. Steril. 2013, 100, S247–S248. [Google Scholar] [CrossRef]
- Ruíz, M.; Santamaría-López, E.; Blasco, V.; Hernáez, M.J.; Caligara, C.; Pellicer, A.; Fernández-Sánchez, M.; Prados, N. Effect of Group Embryo Culture under Low-Oxygen Tension in Benchtop Incubators on Human Embryo Culture: Prospective, Randomized, Controlled Trial. Reprod. Sci. 2020, 27, 1522–1533. [Google Scholar] [CrossRef] [PubMed]
- Gelo, N.; Kirinec, G.; Baldani, D.P.; Vrčić, H.; Ježek, D.; Milošević, M.; Stanić, P. Influence of human embryo cultivation in a classic CO2 incubator with 20% oxygen versus benchtop incubator with 5% oxygen on live births: The randomized prospective trial. Zygote 2019, 27, 131–136. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Wang, M.; Xue, X. Effect of ultra-low O2 (2%) tension on human in-vitro embryo development. Pak. J. Pharm. Sci. 2022, 35, 135–139. [Google Scholar]
- Fawzy, M.; Emad, M.; AbdelRahman, M.Y.; Abdelghafar, H.; Hafez, F.F.A.; Bedaiwy, M.A. Impact of 3.5% O2 culture on embryo development and clinical outcomes: A comparative study. Fertil. Steril. 2017, 108, 635–641. [Google Scholar] [CrossRef] [PubMed]
- Sobrinho, D.B.G.; Oliveira, J.B.A.; Petersen, C.G.; Mauri, A.L.; Silva, L.F.; Massaro, F.C.; Baruffi, R.L.; Cavagna, M.; Franco, J.G. IVF/ICSI outcomes after culture of human embryos at low oxygen tension: A meta-analysis. Reprod. Biol. Endocrinol. 2011, 9, 143. [Google Scholar] [CrossRef]
- Bontekoe, S.; Mantikou, E.; van Wely, M.; Seshadri, S.; Repping, S.; Mastenbroek, S. Low oxygen concentrations for embryo culture in assisted reproductive technologies. Cochrane Database Syst. Rev. 2012. [Google Scholar] [CrossRef] [PubMed]
- Nastri, C.O.; Nóbrega, B.N.; Teixeira, D.M.; Amorim, J.; Diniz, L.M.; Barbosa, M.W.; Giorgi, V.S.; Pileggi, V.N.; Martins, W.P. Low versus atmospheric oxygen tension for embryo culture in assisted reproduction: A systematic review and meta-analysis. Fertil. Steril. 2016, 106, 95–104.e17. [Google Scholar] [CrossRef]
- Yang, Y.; Xu, Y.; Ding, C.; Khoudja, R.Y.; Lin, M.; Awonuga, A.O.; Dai, J.; Puscheck, E.E.; Rappolee, D.A.; Zhou, C. Comparison of 2, 5, and 20% O2 on the development of post-thaw human embryos. J. Assist. Reprod. Genet. 2016, 33, 919–927. [Google Scholar] [CrossRef] [PubMed]
- Kaser, D.J.; Bogale, B.; Sarda, V.; Farland, L.V.; Williams, P.L.; Racowsky, C. Randomized controlled trial of low (5%) versus ultralow (2%) oxygen for extended culture using bipronucleate and tripronucleate human preimplantation embryos. Fertil. Steril. 2018, 109, 1030–1037.e2. [Google Scholar] [CrossRef] [PubMed]
- De Munck, N.; Janssens, R.; Segers, I.; Tournaye, H.; Van de Velde, H.; Verheyen, G. Influence of ultra-low oxygen (2%) tension on in-vitro human embryo development. Hum. Reprod. 2018, 34, 228–234. [Google Scholar] [CrossRef] [PubMed]
- Brouillet, S.; Baron, C.; Barry, F.; Andreeva, A.; Haouzi, D.; Gala, A.; Ferrières-Hoa, A.; Loup, V.; Anahory, T.; Ranisavljevic, N.; et al. Biphasic (5–2%) oxygen concentration strategy significantly improves the usable blastocyst and cumulative live birth rates in in vitro fertilization. Sci. Rep. 2021, 11, 7580. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Xue, X.; Shi, J. Ultralow Oxygen Tension (2%) Is Beneficial for Blastocyst Formation of In Vitro Human Low-Quality Embryo Culture. BioMed Res. Int. 2022, 2022, 9603185. [Google Scholar] [CrossRef] [PubMed]
- Patel, D.; Patel, R.G.; Patel, T.; Patel, N.; Maheshwari, N. Limited Effects of Ultra-low Oxygen Concentration during Extended Embryo Culture on In vitro Fertilisation Outcomes in Indian Women: A Retrospective Cross-sectional Study. J. Hum. Reprod. Sci. 2023, 16, 324–332. [Google Scholar] [CrossRef] [PubMed]
- Herbemont, C.; Labrosse, J.; Bennani-Smires, B.; Cedrin-Durnerin, I.; Peigne, M.; Sermondade, N.; Sarandi, S.; Vivot, A.; Vicaut, E.; Talib, Z.; et al. Impact of oxygen tension according to embryo stage of development: A prospective randomized study. Sci. Rep. 2021, 11, 22313. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Konstantogianni, O.; Panou, T.; Zikopoulos, A.; Skentou, C.; Stavros, S.; Asimakopoulos, B. Culture of Human Embryos at High and Low Oxygen Levels. J. Clin. Med. 2024, 13, 2222. https://doi.org/10.3390/jcm13082222
Konstantogianni O, Panou T, Zikopoulos A, Skentou C, Stavros S, Asimakopoulos B. Culture of Human Embryos at High and Low Oxygen Levels. Journal of Clinical Medicine. 2024; 13(8):2222. https://doi.org/10.3390/jcm13082222
Chicago/Turabian StyleKonstantogianni, Ourania, Theodoros Panou, Athanasios Zikopoulos, Charikleia Skentou, Sofoklis Stavros, and Byron Asimakopoulos. 2024. "Culture of Human Embryos at High and Low Oxygen Levels" Journal of Clinical Medicine 13, no. 8: 2222. https://doi.org/10.3390/jcm13082222
APA StyleKonstantogianni, O., Panou, T., Zikopoulos, A., Skentou, C., Stavros, S., & Asimakopoulos, B. (2024). Culture of Human Embryos at High and Low Oxygen Levels. Journal of Clinical Medicine, 13(8), 2222. https://doi.org/10.3390/jcm13082222