Retinal Vessel Analysis and Microvascular Abnormalities in Patients with Philadelphia-Negative Chronic Myeloproliferative Neoplasms
Abstract
:1. Introduction
2. Materials and Methods
2.1. Inclusion Criteria
- Had an established diagnosis of chronic myeloproliferative neoplasia;
- Aged over 18 years;
- Provided informed consent.
2.2. Exclusion Criteria
- Affected by congenital hypercholesterolemia;
- Affected by a known serious cardiovascular pathology;
- Affected by a known thrombophilic state;
- Under 18 years old.
2.3. Statistical Analyses
2.4. OCT Parameters
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mroczkowska-Bękarciak, A.; Wróbel, T. BCR::ABL1-negative myeloproliferative neoplasms in the era of next-generation sequencing. Front. Genet. 2023, 14, 1241912. [Google Scholar] [CrossRef] [PubMed]
- Krecak, I.; Verstovsek, S.; Lucijanic, M. Reappraisal of cardiovascular risk factors in patients with chronic myeloproliferative neoplasms. Clin. Adv. Hematol. Oncol. 2023, 21, 541–548. [Google Scholar]
- Wille, K.; Deventer, E.; Sadjadian, P.; Becker, T.; Kolatzki, V.; Hünerbein, K.; Meixner, R.; Jiménez-Muñoz, M.; Fuchs, C.; Griesshammer, M. Arterial and Venous Thromboembolic Complications in 832 Patients with BCR-ABL-Negative Myeloproliferative Neoplasms. Hamostaseologie 2023. Epub ahead of print. [Google Scholar] [CrossRef]
- Tefferi, A.; Thiele, J.; Vannucchi, A.M.; Barbui, T. An overview on CALR and CSF3R mutations and a proposal for revision of WHO diagnostic criteria for myeloproliferative neoplasms. Leukemia 2014, 28, 1407–1413. [Google Scholar] [CrossRef] [PubMed]
- Johnson, S.M.; Haberberger, J.; Galeotti, J.; Ramkissoon, L.; Coombs, C.C.; Richardson, D.R.; Foster, M.C.; Duncan, D.; Montgomery, N.D.; Ferguson, N.L.; et al. Comprehensive genomic profiling reveals molecular subsets of ASXL1-mutated myeloid neoplasms. Leuk. Lymphoma 2023, 65, 209–218. [Google Scholar] [CrossRef] [PubMed]
- Garrote, M.; López-Guerra, M.; Arellano-Rodrigo, E.; Rozman, M.; Carbonell, S.; Guijarro, F.; Santaliestra, M.; Triguero, A.; Colomer, D.; Cervantes, F.; et al. Clinical Characteristics and Outcomes of Patients with Primary and Secondary Myelofibrosis According to the Genomic Classification Using Targeted Next-Generation Sequencing. Cancers 2023, 15, 3904. [Google Scholar] [CrossRef] [PubMed]
- Loscocco, G.G.; Guglielmelli, P.; Vannucchi, A.M. Impact of Mutational Profile on the Management of Myeloproliferative Neoplasms: A Short Review of the Emerging Data. Onco Targets Ther. 2020, 13, 12367–12382. [Google Scholar] [CrossRef] [PubMed]
- Debureaux, P.E.; Cassinat, B.; Soret-Dulphy, J.; Mora, B.; Verger, E.; Maslah, N.; Plessier, A.; Rautou, P.E.; Ollivier-Hourman, I.; De Ledinghen, V.; et al. Molecular profiling and risk classification of patients with myeloproliferative neoplasms and splanchnic vein thromboses. Blood Adv. 2020, 4, 3708–3715. [Google Scholar] [CrossRef] [PubMed]
- Bakhoum, C.Y.; Madala, S.; Lando, L.; Yarmohammadi, A.; Long, C.P.; Miguez, S.; Chan, A.X.; Singer, M.; Jin, A.; Steren, B.J.; et al. Retinal Ischemic Perivascular Lesions in Individuals with Atrial Fibrillation. J. Am. Heart Assoc. 2023, 12, e028853. [Google Scholar] [CrossRef]
- Azanan, M.S.; Chandrasekaran, S.; Rosli, E.S.; Chua, L.L.; Oh, L.; Chin, T.F.; Yap, T.Y.; Rajagopal, R.; Rajasuriar, R.; MacGillivray, T.; et al. Retinal Vessel Analysis as a Novel Screening Tool to Identify Childhood Acute Lymphoblastic Leukemia Survivors at Risk of Cardiovascular Disease. J. Pediatr. Hematol. Oncol. 2020, 42, e394–e400. [Google Scholar] [CrossRef]
- Bek, T. Diameter Changes of Retinal Vessels in Diabetic Retinopathy. Curr. Diab. Rep. 2017, 17, 82. [Google Scholar] [CrossRef] [PubMed]
- Drobnjak, D.; Munch, I.C.; Glümer, C.; Faerch, K.; Kessel, L.; Larsen, M.; Veiby, N.C. Retinal Vessel Diameters and Their Relationship with Cardiovascular Risk and All-Cause Mortality in the Inter99 Eye Study: A 15-Year Follow-Up. J. Ophthalmol. 2016, 2016, 6138659. [Google Scholar] [CrossRef]
- Heitmar, R.; Lip, G.Y.H.; Ryder, R.E.; Blann, A.D. Retinal vessel diameters and reactivity in diabetes mellitus and/or cardiovascular disease. Cardiovasc. Diabetol. 2017, 16, 56. [Google Scholar] [CrossRef] [PubMed]
- Wong, T.Y.; Klein, R.; Couper, D.J.; Cooper, L.S.; Shahar, E.; Hubbard, L.D.; Wofford, M.R.; Sharrett, A.R. Retinal microvascular abnormalities, and incident stroke: The Atherosclerosis Risk in Communities Study. Lancet 2001, 358, 1134–1140. [Google Scholar] [CrossRef] [PubMed]
- McGeechan, K.; Liew, G.; Macaskill, P.; Irwig, L.; Klein, R.; Klein, B.E.; Wang, J.J.; Mitchell, P.; Vingerling, J.R.; Dejong, P.T.; et al. Meta-analysis: Retinal vessel caliber and risk for coronary heart disease. Ann. Intern. Med. 2009, 151, 404–413. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.H.; Fang, J.; Schieb, L.; Park, S.; Casper, M.; Gillespie, C. Prevalence and Trends of Coronary Heart Disease in the United States, 2011 to 2018. JAMA Cardiol. 2022, 7, 459–462. [Google Scholar] [CrossRef] [PubMed]
- Liisborg, C.; Skov, V.; Kjær, L.; Hasselbalch, H.C.; Sørensen, T.L. Patients with MPNs and retinal drusen show signs of complement system dysregulation and a high degree of chronic low-grade inflammation. EClinicalMedicine 2021, 43, 101248. [Google Scholar] [CrossRef] [PubMed]
- Lee, W.H.; Na, Y.J.; Lim, H.B.; Sung, J.Y.; Kim, J.Y.; Lee, M.W. Analyses of the ratio of ganglion cell-inner plexiform layer thickness to vessel density according to age in healthy eyes. PLoS ONE 2023, 18, e0292942. [Google Scholar] [CrossRef]
- Lal, B.; Alonso-Caneiro, D.; Read, S.A.; Carkeet, A. Changes in retinal and choroidal optical coherence tomography angiography indices among young adults and children over 1 year. Clin. Exp. Optom. 2023. Epub ahead of print. [Google Scholar] [CrossRef]
- Chu, Z.; Gregori, G.; Rosenfeld, P.J.; Wang, R.K. Quantification of Choriocapillaris with Optical Coherence Tomography Angiography: A Comparison Study. Am. J. Ophthalmol. 2019, 208, 111–123. [Google Scholar] [CrossRef]
- Arrigo, A.; Aragona, E.; Perra, C.; Saladino, A.; Amato, A.; Bianco, L.; Pina, A.; Basile, G.; Bandello, F.; Battaglia Parodi, M. Morphological and functional involvement of the inner retina in retinitis pigmentosa. Eye 2023, 37, 1424–1431. [Google Scholar] [CrossRef] [PubMed]
- Parodi, M.B.; Arrigo, A.; Calamuneri, A.; Aragona, E.; Bandello, F. Multimodal imaging in subclinical best vitelliform macular dystrophy. Br. J. Ophthalmol. 2022, 106, 564–567. [Google Scholar] [CrossRef] [PubMed]
- Battaglia Parodi, M.; Arrigo, A.; Chowers, I.; Jarc-Vidmar, M.; Shpigel, M.; Bandello, F.; Michaelidis, M. Optical coherence tomography angiography findings in pigmented paravenous chorioretinal atrophy. Retina 2022, 42, 915–922. [Google Scholar] [CrossRef] [PubMed]
- Arrigo, A.; Amato, A.; Barresi, C.; Aragona, E.; Saladino, A.; Pina, A.; Calcagno, F.; Bandello, F.; Battaglia Parodi, M. Choroidal Modifications Preceding the Onset of Macular Neovascularization in Age-Related Macular Degeneration. Ophthalmol. Ther. 2022, 11, 377–386. [Google Scholar] [CrossRef] [PubMed]
- Seely, K.R.; Freedman, S.F.; Grace, S.; Weinert, M.C.; Hong, G.J.; Toth, C.A.; Grace Prakalapakorn, S. Computer versus human-expert ranking of posterior pole vascular tortuosity and dilation using retinal vessel maps generated from bedside optical coherence tomography: A proof-of-concept study. J. AAPOS 2023, 27, 351–354. [Google Scholar] [CrossRef] [PubMed]
- Hosari, S.; Hohberger, B.; Theelke, L.; Sari, H.; Lucio, M.; Mardin, C.Y. OCT Angiography: Measurement of Retinal Macular Microvasculature with Spectralis II OCT Angiography—Reliability and Reproducibility. Ophthalmologica 2020, 243, 75–84. [Google Scholar] [CrossRef] [PubMed]
- Carnevali, A.; Giannaccare, G.; Gatti, V.; Battaglia, C.; Randazzo, G.; Yu, A.C.; Pellegrini, M.; Ferragina, F.; Toro, M.D.; Bruno, C.; et al. Retinal microcirculation abnormalities in patients with systemic sclerosis: An explorative optical coherence tomography angiography study. Rheumatology 2021, 60, 5827–5832. [Google Scholar] [CrossRef] [PubMed]
- Wojtukiewicz, M.Z.; Tesarova, P.; Karetová, D.; Windyga, J. In Search of the Perfect Thrombosis and Bleeding-Associated Cancer Scale. Semin Thromb Hemost. 2023, 50, 443–454. [Google Scholar] [CrossRef] [PubMed]
- El-Sayed, H.A.; Othman, M.; Azzam, H.; Bucciol, R.; Ebrahim, M.A.; El-Agdar, M.A.M.A.; Tera, Y.; Sakr, D.H.; Ghoneim, H.R.; Selim, T.E. Assessing the risk of venous thromboembolism in patients with haematological cancers using three prediction models. J. Cancer Res. Clin. Oncol. 2023, 149, 17771–17780. [Google Scholar] [CrossRef]
- Hisada, Y.; Archibald, S.J.; Bansal, K.; Chen, Y.; Dai, C.; Dwarampudi, S.; Balas, N.; Hageman, L.; Key, N.S.; Bhatia, S.; et al. Biomarkers of bleeding and venous thromboembolism in patients with acute leukemia. medRxiv 2023, 2023.10.18.23297216. [Google Scholar] [CrossRef]
- Ma’koseh, M.; Alrwashdeh, M.; Abdel-Razeq, N.; Alfar, R.; Edaily, S.; Bater, R.; Zmaily, M.; Almomani, M.; Abdel-Razeq, H. Prevalence, Patterns, and Predictors of Venous Thromboembolic Events in Patients Undergoing Salvage Chemotherapy and Autologous Stem Cell Transplantation for Relapsed Lymphomas. Hematol. Oncol. Stem. Cell Ther. 2023, 16, 323–329. [Google Scholar] [CrossRef] [PubMed]
- Jarchowsky, O.; Avnery, O.; Ellis, M.H. Thrombosis in multiple myeloma: Mechanisms, risk assessment and management. Leuk Lymphoma 2023, 69, 1905–1913. [Google Scholar] [CrossRef] [PubMed]
- Hexner, E.O. JAK2 V617F: Implications for thrombosis in myeloproliferative diseases. Curr. Opin. Hematol. 2007, 14, 450–454. [Google Scholar] [CrossRef]
- Guy, A.; Poisson, J.; James, C. Pathogenesis of cardiovascular events in BCR-ABL1-negative myeloproliferative neoplasms. Leukemia 2021, 35, 935–955. [Google Scholar] [CrossRef]
- Tremblay, D.; Yacoub, A.; Hoffman, R. Overview of Myeloproliferative Neoplasms: History, Pathogenesis, Diagnostic Criteria, and Complications. Hematol. Oncol. Clin. N. Am. 2021, 35, 159–176. [Google Scholar] [CrossRef]
- Wautier, M.P.; El Nemer, W.; Gane, P.; Rain, J.D.; Cartron, J.P.; Colin, Y.; Le Van Kim, C.; Wautier, J.L. Increased adhesion to endothelial cells of erythrocytes from patients with polycythemia vera is mediated by laminin alpha5 chain and Lu/BCAM. Blood 2007, 110, 894–901. [Google Scholar] [CrossRef]
- Anderson, D.H.; Mullins, R.F.; Hageman, G.S.; Johnson, L.V. A role for local inflammation in the formation of drusen in the aging eye. Am. J. Ophthalmol. 2002, 134, 411–431. [Google Scholar] [CrossRef] [PubMed]
- Liisborg, C.; Nielsen, M.K.; Hasselbalch, H.C.; Sørensen, T.L. Patients with myeloproliferative neoplasms and high levels of systemic inflammation develop age-related macular degeneration. EClinicalMedicine 2020, 26, 100526. [Google Scholar] [CrossRef] [PubMed]
- Bak, M.; Sørensen, T.L.; Flachs, E.M.; Zwisler, A.D.; Juel, K.; Frederiksen, H.; Hasselbalch, H.C. Age-Related Macular Degeneration in Patients With Chronic Myeloproliferative Neoplasms. JAMA Ophthalmol. 2017, 135, 835–843. [Google Scholar] [CrossRef]
- Hasselbalch, H.C.; Bjørn, M.E. MPNs as inflammatory diseases: The evidence, consequences, and perspectives. Mediators Inflamm. 2015, 2015, 102476. [Google Scholar] [CrossRef]
- Allegra, A.; Pioggia, G.; Tonacci, A.; Casciaro, M.; Musolino, C.; Gangemi, S. Synergic crosstalk between inflammation, oxidative stress and genomic alterations in BCR-ABL negative Myeloproliferative Neoplasms. Antioxidants 2020, 9, 1037. [Google Scholar] [CrossRef] [PubMed]
- Musolino, C.; Allegra, A.; Saija, A.; Alonci, A.; Russo, S.; Spatari, G.; Penna, G.; Gerace, D.; Cristani, M.; David, A.; et al. Changes in advanced glycation end products, and s-nitrosylated proteins in patients affected by polycythemia vera and essential thrombocythemia. Clin. Biochem. 2012, 45, 1439–1443. [Google Scholar] [CrossRef]
- Barbui, T.; Carobbio, A.; Rumi, E.; Finazzi, G.; Gisslinger, H.; Rodeghiero, F.; Randi, M.L.; Rambaldi, A.; Gisslinger, B.; Pieri, L.; et al. In contemporary patients with polycythemia vera, rates of thrombosis and risk factors delineate a new clinical epidemiology. Blood 2014, 124, 3021–3023. [Google Scholar] [CrossRef] [PubMed]
- Vannucchi, A.M.; Guglielmelli, P. Molecular prognostication in Ph−negative MPNs in 2022. Hematol. Am. Soc. Hematol. Educ. Program. 2022, 2022, 225–234. [Google Scholar] [CrossRef] [PubMed]
- Zhan, L. Frontiers in Understanding the Pathological Mechanism of Diabetic Retinopathy. Med. Sci. Monit. 2023, 29, e939658. [Google Scholar] [CrossRef] [PubMed]
- Cipolla, J.A.; Jiang, H.; Simms, A.Y.; Baumel, B.; Rundek, T.; Wang, J. Impaired Retinal Capillary Function in Patients With Alzheimer Disease. J. Neuroophthalmol. 2023, 44, 30–34. [Google Scholar] [CrossRef] [PubMed]
- Faiq, M.A.; Sengupta, T.; Nath, M.; Velpandian, T.; Saluja, D.; Dada, R.; Dada, T.; Chan, K.C. Ocular manifestations of central insulin resistance. Neural Regen Res. 2023, 18, 1139–461146. [Google Scholar] [CrossRef] [PubMed]
- Babaahmadi-Rezaei, H.; Kheirollah, A.; Hesam, S.; Ayashi, S.; Aberumand, M.; Adel, M.H.; Zamanpour, M.; Alasvand, M.; Amozgari, Z.; Noor-Behbahani, M.; et al. Decreased lipoprotein (a) and serum high-sensitivity C-reactive protein levels in male patients with atherosclerosis after supplementation with ginger: A randomized controlled trial. ARYA Atheroscler. 2020, 16, 153–160. [Google Scholar] [CrossRef]
- Arrigo, A.; Aragona, E.; Battaglia Parodi, M.; Bandello, F. Quantitative approaches in multimodal fundus imaging: State of the art and future perspectives. Prog. Retin. Eye Res. 2023, 92, 101111. [Google Scholar] [CrossRef]
- de Man Lapidoth, J.; Hultdin, J.; Jonsson, P.A.; Eriksson Svensson, M.; Wennberg, M.; Zeller, T.; Söderberg, S. Trends in renal function in Northern Sweden 1986–2014: Data from the seven cross-sectional surveys within the Northern Sweden MONICA study. BMJ Open 2023, 13, e072664. [Google Scholar] [CrossRef]
- Ikeda, N.; Wada, H.; Ichikawa, Y.; Ezaki, M.; Tanaka, M.; Hiromori, S.; Shiraki, K.; Moritani, I.; Yamamoto, A.; Shimpo, H.; et al. D-dimer kit with a High FDP/D-Dimer Ratio is Useful for Diagnosing Thrombotic Diseases. Clin. Appl. Thromb. Hemost. 2022, 28, 10760296211070584. [Google Scholar] [CrossRef]
- Cosmi, B.; Legnani, C.; Libra, A.; Palareti, G. D-dimer in diagnosis and prevention of venous thrombosis: Recent advances and their practical implications. Pol. Arch. Intern. Med. 2023, 133, 16604. [Google Scholar] [CrossRef]
- Yamada, T.; Sato, A.; Nishimori, T.; Mitsuhashi, T.; Terao, A.; Sagai, H.; Komatsu, M.; Aizawa, T.; Hashizume, K. Importance of hypercoagulability over hyperglycemia for vascular complication in type 2 diabetes. Diabetes Res. Clin. Pract. 2000, 49, 23–31. [Google Scholar] [CrossRef]
- Mereuta, O.M.; Agarwal, T.; Ghozy, S.; Dai, D.; Arul, S.; Brinjikji, W.; Kallmes, D.F.; Kadirvel, R. Shell Versus Core Architecture and Biology of Thrombi in Acute Ischemic Stroke: A Systematic Review. Clin. Appl. Thromb. Hemost. 2023, 29, 10760296231213632. [Google Scholar] [CrossRef]
- Navi, B.B.; Zhang, C.; Sherman, C.P.; Genova, R.; LeMoss, N.M.; Kamel, H.; Tagawa, S.T.; Saxena, A.; Ocean, A.J.; Kasner, S.E.; et al. Ischemic stroke with cancer: Hematologic and embolic biomarkers and clinical outcomes. J. Thromb. Haemost. 2022, 20, 2046–2057. [Google Scholar] [CrossRef]
Diagnosis | n. Pat. | Age | Driver Mutations | Treatm. | Precard | Framingham Score | Fibrinogen mg/dL | FdPs mcg/dL | D-Dimer ng/L | Hb g/dL | Hct % | WBC Mmc | PLT Mmc | Comorb. |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ET | 18 | 64 ± 11.53 | JAK2 12 MPL 4 CARL 1 Triple neg. 1 | HY + ASA 12 ASA 5 PegIFN + ASA 1 | (range 1–9) | 4 ± 10.27 (range 0.7–20.1%) | 297.5 ± 54.08 (range 200–436) | 3 ±1.70 (range 1–8) | 201 ±155.96 (range 70–700) | 13.5 ± 1.68 (range 10.8–17.5) | 39.8 ± 4.38 (range 31.6–47.9) | 7745 ± 3188 (range 4240–17,400) | 324.000 ± 1,380,000 (range 503,500 ± 252,959) | Hypert. 7 Atrial Fibr. 1 Diabetes 1 Thromb. 5 |
PV | 15 | 73 ± 7.6 | JAK2 14 Triple neg. 1 | HY + ASA 12 Runx 1 ASA 2 | (range 2–14) | 16.35 ± 5.54) (range 4.7 ± 20.4) | 238 ± 70.4 (range 147–400) | 2.5 ± 1.17 (range 0–4) | 217 ± 269 (range 115–1216) | 14.4 ± 1.83 (range 11.5–17.3) | 43.3 ±5.04 (range 32.4–49.4) | 9000± 4678 (range 4840–23,600) | 489,000 ± 209,727 (range 88,000 ± 740,000) | Hypert. 12 Atrial Fibr. 2 Diabetes 1 Thromb. 6 |
PM | 7 | 67 ± 7.1 | JAK2 4 CALR 1 Triple neg. 2 | HY + ASA 5 Runx 2 | (range 2–14) | 14.3± 5.4 (range 5.9–19) | 265 ± 64.3 (range 205–410) | 3± 0.9 (range 1–4) | 379 ± 156.3 (range 170–690) | 11.8 ± 1.53 (range 11.1–15.5) | 34.6 ± 3.75 (range 31.3–42.7) | 6340 ± 2663 (range 4340 ± 13,300) | 406,000 ± 317,601 (range 281,000–1,166,000) | Hypert. 5 Thromb. 1 |
Variable 1 | Variable 2 | Pearson Correlation | p |
---|---|---|---|
Erythrocytes | IOP RE | 0.426 | 0.01 |
Erythrocytes | IOP LE | 0.419 | 0.01 |
Variable 1 | Variable 2 | Pearson Correlation | p |
---|---|---|---|
Precard score | Hb | 0.371 | 0.01 |
Precard score | Ht | 0.392 | 0.01 |
Precard score | Creatinine | 0.324 | 0.04 |
Framingham score | FDPs | −0.335 | 0.03 |
Framingham score | Hb | 0.328 | 0.03 |
Framingham score | Ht | 0.402 | 0.01 |
Framingham score | Platelets | −0.384 | 0.01 |
Framingham score | Creatinine | 0.498 | 0.001 |
Erythrocytes | White blood cells | 0.457 | 0.003 |
Platelets | Ht | −0.401 | 0.010 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Roszkowska, A.M.; Leanza, R.; Aragona, E.; Gargiulo, L.; Alibrandi, A.; Arrigo, A.; Bottaro, A.; Barone, P.; Stagno, F.; Allegra, A. Retinal Vessel Analysis and Microvascular Abnormalities in Patients with Philadelphia-Negative Chronic Myeloproliferative Neoplasms. J. Clin. Med. 2024, 13, 2232. https://doi.org/10.3390/jcm13082232
Roszkowska AM, Leanza R, Aragona E, Gargiulo L, Alibrandi A, Arrigo A, Bottaro A, Barone P, Stagno F, Allegra A. Retinal Vessel Analysis and Microvascular Abnormalities in Patients with Philadelphia-Negative Chronic Myeloproliferative Neoplasms. Journal of Clinical Medicine. 2024; 13(8):2232. https://doi.org/10.3390/jcm13082232
Chicago/Turabian StyleRoszkowska, Anna Maria, Rossana Leanza, Emanuela Aragona, Ludovica Gargiulo, Angela Alibrandi, Alessandro Arrigo, Adele Bottaro, Paola Barone, Fabio Stagno, and Alessandro Allegra. 2024. "Retinal Vessel Analysis and Microvascular Abnormalities in Patients with Philadelphia-Negative Chronic Myeloproliferative Neoplasms" Journal of Clinical Medicine 13, no. 8: 2232. https://doi.org/10.3390/jcm13082232
APA StyleRoszkowska, A. M., Leanza, R., Aragona, E., Gargiulo, L., Alibrandi, A., Arrigo, A., Bottaro, A., Barone, P., Stagno, F., & Allegra, A. (2024). Retinal Vessel Analysis and Microvascular Abnormalities in Patients with Philadelphia-Negative Chronic Myeloproliferative Neoplasms. Journal of Clinical Medicine, 13(8), 2232. https://doi.org/10.3390/jcm13082232