Hereditary Pancreatic Cancer: Advances in Genetic Testing, Early Detection Strategies, and Personalized Management
Abstract
:1. Introduction
2. Results
2.1. Risk Factors for PDAC
2.1.1. Non-Modifiable Risk Factors
- Non-hereditary risk factors
- Genetic Mutations Linked to Hereditary PDAC
- BRCA1/2
- b.
- Lynch Syndrome-associated Genes
- c.
- Other germline PVs: CDKN2A, APC, STK11, TP53, ATM, PALB2, PRSS1, and CFTR
PV | Clinical Syndrome | Pattern of Inheritance | Risk of PDAC | Other Characteristics | References |
---|---|---|---|---|---|
CDKN2A | Familial atypical multiple melanoma syndrome (FAMMM) | Autosomal dominant | Cumulative risk of 17% and relative risk of 13–39 | Increased risk of melanoma in 70% | [10,22,23,24] |
APC | Adenomatous polyposis syndrome | Autosomal dominant | Relative risk of 4.46; cumulative risk of 2% | Hundreds to thousands of adenomatous polyps, increased risk of colorectal cancer in 100% of carriers. | [10,24,25] |
STK11 | Peutz–Jeghers syndrome | Autosomal dominant | Cumulative risk of 11–36%, relative risk of 76.3 | Mucocutaneous pigment macules and hamartomatous GI polyps, mean age of onset of PDAC is 40.8 years | [10,22] |
TP53 | Li–Fraumeni syndrome | Autosomal dominant | Cumulative risk of 1.1–9.5%, relative risk 2.41–6.5. | Ataxia, telangiectasias, immunosuppression, and an increased risk for leukemia and lymphoma, breast, ovarian, prostate, and other cancers | [10,22,23,24,26] |
PALB2 | Autosomal recessive | Cumulative risk of 2–3%, relative risk of 2.37 | Monoallelic mutations predispose to breast, ovarian, and pancreatic familial cancers; increased sensitivity to platinum agents. | [10,22,23] | |
ATM | Ataxia–telangiectasia | Autosomal recessive | Relative risk of 2.41 | Increased risk of breast, ovarian, and prostate cancer; reduced sensitivity to gemcitabine | [10,22,24,27,28] |
PRSS1/SPINK1/CFTR | Hereditary pancreatitis | Autosomal dominant | PRSS1 and SPINK1: lifetime risk ranged between 18.8% and 53.3% CFTR: relative risk of 2.9–4.5 | Linked to acute and chronic pancreatitis | [10,22,29,30] |
- Familial pancreatic cancer
2.1.2. Modifiable Risk Factors
2.2. Advances in Genetic Testing
2.2.1. Universal Germline Testing
- Recommendations by the National Comprehensive Cancer Network
- Universal Germline Testing: implementation and outcomes of universal testing
2.2.2. Next-Generation Sequence Panels
2.3. Early Detection Strategies
2.3.1. Screening for Hereditary PC: Methods and Evidence
- Individuals with two or more first-degree relatives with PC;
- Individuals with a PV in STK11 or CDKN2A, for whom screening should begin at age 35–40 years;
- For carriers of BRCA1/2, ATM, PALB2, MLH1/MSH2/MSH6, EPCAM, or TP3 mutations, screening is not recommended unless they have at least one first- or second-degree relative diagnosed with PDAC. Screening is recommended starting at age 50 or 10 years prior to the youngest age of diagnosis of PDAC in the family.
2.3.2. Biomarker Research: Liquid Biopsy
2.3.3. Novel Imaging Techniques: Hyperpolarized 13C Pyruvate-MRS
2.4. Personalized Treatment Strategies
2.4.1. Prevalence of Mutations in Homologous Recombination Genes
2.4.2. Importance of Personalized Approaches
- Platinum-Based Agents
- PARP inhibitors
- Immune Checkpoint Inhibitors
3. Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Klatte, D.C.; Starr, J.S.; Clift, K.E.; Hardway, H.D.; van Hooft, J.E.; van Leerdam, M.E.; Potjer, T.P.; Presutti, R.J.; Riegert-Johnson, D.L.; Wallace, M.B.; et al. Utilization and Outcomes of Multigene Panel Testing in Patients with Pancreatic Ductal Adenocarcinoma. JCO Oncol. Pract. 2024, 20, 1081–1090. [Google Scholar] [CrossRef] [PubMed]
- Singh, H.; Nipp, R.D. Bridging the Divide: From Universal Germline Testing Guidance to Real-World Implementation in Pancreatic Cancer Care. JCO Oncol. Pract. 2024, 20, 1012–1015. [Google Scholar] [CrossRef] [PubMed]
- Rosso, C.; Marciano, N.D.; Nathan, D.; Chen, W.P.; McLaren, C.E.; Osann, K.E.; Flodman, P.L.; Cho, M.T.; Lee, F.C.; Dayyani, F.; et al. Hereditary Can-583 cer Clinics Improve Adherence to NCCN Germline Testing Guidelines for Pancreatic Cancer. J. Natl. Compr. Cancer Netw. 2024, 584, 299–305. [Google Scholar] [CrossRef]
- Klatte, D.C.F.; Wallace, M.B.; Löhr, M.; Bruno, M.J.; van Leerdam, M.E. Hereditary Pancreatic Cancer. Best Pract. Res. Clin. Gastroenterol. 2022, 58–59, 101783. [Google Scholar] [CrossRef] [PubMed]
- Morani, A.C.; Hanafy, A.K.; Ramani, N.S.; Katabathina, V.S.; Yedururi, S.; Dasyam, A.K.; Prasad, S.R. Hereditary and Sporadic Pancreatic Ductal Adenocarcinoma: Current Update on Genetics and Imaging. Radiol. Imaging Cancer 2020, 2, e190020. [Google Scholar] [CrossRef] [PubMed]
- Diaz, K.E.; Lucas, A.L. Familial Pancreatic Ductal Adenocarcinoma. Am. J. Pathol. 2019, 189, 36–43. [Google Scholar] [CrossRef] [PubMed]
- Grigorescu, R.R.; Husar-Sburlan, I.A.; Gheorghe, C. Pancreatic Cancer: A Review of Risk Factors. Life 2024, 14, 980. [Google Scholar] [CrossRef]
- Golan, T.; Kindler, H.L.; Park, J.O.; Reni, M.; Macarulla, T.; Hammel, P.; Van Cutsem, E.; Arnold, D.; Hochhauser, D.; McGuinness, D.; et al. Geographic and Ethnic Heterogeneity of Germline BRCA1 or BRCA2 Mutation Prevalence Among Patients with Metastatic Pancreatic Cancer Screened for Entry Into the POLO Trial. J. Clin. Oncol. 2020, 38, 1442–1454. [Google Scholar] [CrossRef] [PubMed]
- Bannon, S.A.; Montiel, M.F.; Goldstein, J.B.; Dong, W.; Mork, M.E.; Borras, E.; Hasanov, M.; Varadhachary, G.R.; Maitra, A.; Katz, M.H.; et al. High Prevalence of Hereditary Cancer Syndromes and Outcomes in Adults with Early-Onset Pancreatic Cancer. Cancer Prev. Res. 2018, 11, 679–686. [Google Scholar] [CrossRef]
- Abe, K.; Kitago, M.; Kitagawa, Y.; Hirasawa, A. Hereditary Pancreatic Cancer. Int. J. Clin. Oncol. 2021, 26, 1784–1792. [Google Scholar] [CrossRef] [PubMed]
- Gorodetska, I.; Kozeretska, I.; Dubrovska, A. BRCA Genes: The Role in Genome Stability, Cancer Stemness and Therapy Resistance. J. Cancer 2019, 10, 2109–2127. [Google Scholar] [CrossRef] [PubMed]
- Wong, W.; Raufi, A.G.; Safyan, R.A.; Bates, S.E.; Manji, G.A. BRCA Mutations in Pancreas Cancer: Spectrum, Current Management, Challenges and Future Prospects. Cancer Manag. Res. 2020, 12, 2731–2742. [Google Scholar] [CrossRef]
- Lai, E.; Ziranu, P.; Spanu, D.; Dubois, M.; Pretta, A.; Tolu, S.; Camera, S.; Liscia, N.; Mariani, S.; Persano, M.; et al. BRCA-Mutant Pancreatic Ductal Adenocarcinoma. Br. J. Cancer 2021, 125, 1321–1332. [Google Scholar] [CrossRef]
- Golan, T.; Kanji, Z.S.; Epelbaum, R.; Devaud, N.; Dagan, E.; Holter, S.; Aderka, D.; Paluch-Shimon, S.; Kaufman, B.; Gershoni-Baruch, R.; et al. Overall Survival and Clinical Characteristics of Pancreatic Cancer in BRCA Mutation Carriers. Br. J. Cancer 2014, 111, 1132–1138. [Google Scholar] [CrossRef]
- Rosen, M.N.; Goodwin, R.A.; Vickers, M.M. BRCA Mutated Pancreatic Cancer: A Change Is Coming. World J. Gastroenterol. 2021, 27, 1943–1958. [Google Scholar] [CrossRef]
- Keane, F.; O’Connor, C.A.; Park, W.; Seufferlein, T.; O’Reilly, E.M. Pancreatic Cancer: BRCA Targeted Therapy and Beyond. Cancers 2023, 15, 2955. [Google Scholar] [CrossRef] [PubMed]
- Bujanda, L.; Herreros-Villanueva, M. Pancreatic Cancer in Lynch Syndrome Patients. J. Cancer 2017, 8, 3667–3674. [Google Scholar] [CrossRef]
- Seppälä, T.T.; Burkhart, R.A.; Katona, B.W. Hereditary Colorectal, Gastric, and Pancreatic Cancer: Comprehensive Review. BJS Open 2023, 7, zrad023. [Google Scholar] [CrossRef] [PubMed]
- Takamizawa, S.; Morizane, C.; Tanabe, N.; Maruki, Y.; Kondo, S.; Hijioka, S.; Ueno, H.; Sugano, K.; Hiraoka, N.; Okusaka, T. Clinical Characteristics of Pancreatic and Biliary Tract Cancers Associated with Lynch Syndrome. J. Hepato-Biliary-Pancreat. Sci. 2022, 29, 377–384. [Google Scholar] [CrossRef]
- Zalevskaja, K.; Mecklin, J.-P.; Seppälä, T.T. Clinical Characteristics of Pancreatic and Biliary Tract Cancers in Lynch Syndrome: A Retrospective Analysis from the Finnish National Lynch Syndrome Research Registry. Front. Oncol. 2023, 13, 1123901. [Google Scholar] [CrossRef] [PubMed]
- Ghidini, M.; Lampis, A.; Mirchev, M.B.; Okuducu, A.F.; Ratti, M.; Valeri, N.; Hahne, J.C. Immune-Based Therapies and the Role of Microsatellite Instability in Pancreatic Cancer. Genes 2021, 12, 33. [Google Scholar] [CrossRef] [PubMed]
- Pantaleo, A.; Forte, G.; Fasano, C.; Lepore Signorile, M.; Sanese, P.; De Marco, K.; Di Nicola, E.; Latrofa, M.; Grossi, V.; Disciglio, V.; et al. Understanding the Genetic Landscape of Pancreatic Ductal Adenocarcinoma to Support Personalized Medicine: A Systematic Review. Cancers 2024, 16, 56. [Google Scholar] [CrossRef] [PubMed]
- The Cancer Genome Atlas Research Network. Integrated Genomic Characterization of Pancreatic Ductal Adenocarcinoma. Cancer Cell 2017, 32, 185–203.e13. [Google Scholar] [CrossRef] [PubMed]
- Zhan, W.; Shelton, C.A.; Greer, P.J.; Brand, R.E.; Whitcomb, D.C. Germline Variants and Risk for Pancreatic Cancer: A Systematic Review and Emerging Concepts. Pancreas 2018, 47, 924–936. [Google Scholar] [CrossRef] [PubMed]
- Dinarvand, P.; Davaro, E.P.; Doan, J.V.; Ising, M.E.; Evans, N.R.; Phillips, N.J.; Lai, J.; Guzman, M.A. Familial Adenomatous Polyposis Syndrome: An Update and Review of Extraintestinal Manifestations. Arch. Pathol. Lab. Med. 2019, 143, 1382–1398. [Google Scholar] [CrossRef]
- Aedma, S.K.; Kasi, A. Li-Fraumeni Syndrome. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2024. [Google Scholar]
- Shindo, K.; Yu, J.; Suenaga, M.; Fesharakizadeh, S.; Cho, C.; Macgregor-Das, A.; Siddiqui, A.; Witmer, P.D.; Tamura, K.; Song, T.J.; et al. Deleterious Germline Mutations in Patients with Apparently Sporadic Pancreatic Adenocarcinoma. J. Clin. Oncol. 2017, 35, 3382–3390. [Google Scholar] [CrossRef] [PubMed]
- Hsu, F.-C.; Roberts, N.J.; Childs, E.; Porter, N.; Rabe, K.G.; Borgida, A.; Ukaegbu, C.; Goggins, M.G.; Hruban, R.H.; Zogopoulos, G.; et al. Risk of Pancreatic Cancer Among Individuals with Pathogenic Variants in the ATM Gene. JAMA Oncol. 2021, 7, 1664–1668. [Google Scholar] [CrossRef] [PubMed]
- Bennett, C.; Suguitan, M.; Abad, J.; Chawla, A. Identification of High-Risk Germline Variants for the Development of Pancreatic Cancer: Common Characteristics and Potential Guidance to Screening Guidelines. Pancreatology 2022, 22, 719–729. [Google Scholar] [CrossRef] [PubMed]
- Rosendahl, J.; Landt, O.; Bernadova, J.; Kovacs, P.; Teich, N.; Bödeker, H.; Keim, V.; Ruffert, C.; Mössner, J.; Kage, A.; et al. CFTR, SPINK1, CTRC and PRSS1 Variants in Chronic Pancreatitis: Is the Role of Mutated CFTR Overestimated? Gut 2013, 62, 582–592. [Google Scholar] [CrossRef]
- Rodrigues, L.M.; Maistro, S.; Marques Rocha, V.; Lopez, R.V.M.; Koike Folgueira, M.A.A. Prevalence of Germline Mutations in Pancreatic Carcinoma Patients (PCP) Unselected for Family History (FH). J. Clin. Oncol. 2021, 39 (Suppl. S15), e16263. [Google Scholar] [CrossRef]
- Matsubayashi, H.; Takaori, K.; Morizane, C.; Maguchi, H.; Mizuma, M.; Takahashi, H.; Wada, K.; Hosoi, H.; Yachida, S.; Suzuki, M.; et al. Familial Pancreatic Cancer: Concept, Management and Issues. World J. Gastroenterol. 2017, 23, 935–948. [Google Scholar] [CrossRef] [PubMed]
- Klein, A.P.; Brune, K.A.; Petersen, G.M.; Goggins, M.; Tersmette, A.C.; Offerhaus, G.J.A.; Griffin, C.; Cameron, J.L.; Yeo, C.J.; Kern, S.; et al. Prospective Risk of Pancreatic Cancer in Familial Pancreatic Cancer Kindreds. Cancer Res. 2004, 64, 2634–2638. [Google Scholar] [CrossRef]
- Brune, K.A.; Lau, B.; Palmisano, E.; Canto, M.; Goggins, M.G.; Hruban, R.H.; Klein, A.P. Importance of Age of Onset in Pancreatic Cancer Kindreds. J. Natl. Cancer Inst. 2010, 102, 119–126. [Google Scholar] [CrossRef] [PubMed]
- Daly, M.B.; Pal, T.; Berry, M.P.; Buys, S.S.; Dickson, P.; Domchek, S.M.; Elkhanany, A.; Friedman, S.; Goggins, M.; Hutton, M.L.; et al. Genetic/Familial High-Risk Assessment: Breast, Ovarian, and Pancreatic, Version 2.2021, NCCN Clinical Practice Guidelines in Oncology. J. Natl. Compr. Cancer Netw. 2021, 19, 77–102. [Google Scholar] [CrossRef] [PubMed]
- Lowery, M.A.; Wong, W.; Jordan, E.J.; Lee, J.W.; Kemel, Y.; Vijai, J.; Mandelker, D.; Zehir, A.; Capanu, M.; Salo-Mullen, E.; et al. Prospective Evaluation of Germline Alterations in Patients with Exocrine Pancreatic Neoplasms. J. Natl. Cancer Inst. 2018, 110, 1067–1074. [Google Scholar] [CrossRef] [PubMed]
- Daly, M.B.; Pal, T.; Maxwell, K.N.; Churpek, J.; Kohlmann, W.; AlHilli, Z.; Arun, B.; Buys, S.S.; Cheng, H.; Domchek, S.M.; et al. NCCN Guidelines® Insights: Genetic/Familial High-Risk Assessment: Breast, Ovarian, and Pancreatic, Version 2.2024. J. Natl. Compr. Cancer Netw. 2023, 21, 1000–1010. [Google Scholar] [CrossRef] [PubMed]
- Rainone, M.; Singh, I.; Salo-Mullen, E.E.; Stadler, Z.K.; O’Reilly, E.M. An Emerging Paradigm for Germline Testing in Pancreatic Ductal Adenocarcinoma and Immediate Implications for Clinical Practice: A Review. JAMA Oncol. 2020, 6, 764–771. [Google Scholar] [CrossRef]
- Golan, T.; Casolino, R.; Biankin, A.V.; Hammel, P.; Whitaker, K.D.; Hall, M.J.; Riegert-Johnson, D.L. Germline BRCA Testing in Pancreatic Cancer: Improving Awareness, Timing, Turnaround, and Uptake. Ther. Adv. Med. Oncol. 2023, 15, 17588359231189127. [Google Scholar] [CrossRef] [PubMed]
- Scheinberg, T.; Young, A.; Woo, H.; Goodwin, A.; Mahon, K.L.; Horvath, L.G. Mainstream Consent Programs for Genetic Counseling in Cancer Patients: A Systematic Review. Asia Pac. J. Clin. Oncol. 2021, 17, 163–177. [Google Scholar] [CrossRef] [PubMed]
- Kasliwal, S.; Baydogan, S.; Harrison, D.; Mork, M.; Maitra, A.; Mcallister, F. Implementation of a Video-Based Remote Germline Testing for Individuals with Pancreatic Ductal Adenocarcinoma. Gastroenterology 2022, 163, 316–318.e1. [Google Scholar] [CrossRef] [PubMed]
- Lau-Min, K.S.; Symecko, H.; Spielman, K.; Mann, D.; Hood, R.; Rathore, S.; Wolfe, C.; Gabriel, P.E.; Rendle, K.A.; Nathanson, K.L.; et al. Integration of Germline Genetic Testing Into Routine Clinical Practice for Patients with Pancreatic Adenocarcinoma. JCO Oncol. Pract. 2024, OP2400356. [Google Scholar] [CrossRef] [PubMed]
- Ramsey, M.L.; Tomlinson, J.; Pearlman, R.; Abushahin, L.; Aeilts, A.; Chen, H.-Z.; Chen, Y.; Compton, A.; Elkhatib, R.; Geiger, L.; et al. Mainstreaming Germline Genetic Testing for Patients with Pancreatic Cancer Increases Uptake. Fam. Cancer 2023, 22, 91–97. [Google Scholar] [CrossRef] [PubMed]
- Hamilton, J.G.; Symecko, H.; Spielman, K.; Breen, K.; Mueller, R.; Catchings, A.; Trottier, M.; Salo-Mullen, E.E.; Shah, I.; Arutyunova, A.; et al. Uptake and Acceptability of a Mainstreaming Model of Hereditary Cancer Multigene Panel Testing among Patients with Ovarian, Pancreatic, and Prostate Cancer. Genet. Med. 2021, 23, 2105–2113. [Google Scholar] [CrossRef]
- Mizukami, K.; Iwasaki, Y.; Kawakami, E.; Hirata, M.; Kamatani, Y.; Matsuda, K.; Endo, M.; Sugano, K.; Yoshida, T.; Murakami, Y.; et al. Genetic Characterization of Pancreatic Cancer Patients and Prediction of Carrier Status of Germline Pathogenic Variants in Cancer-Predisposing Genes. EBioMedicine 2020, 60, 103033. [Google Scholar] [CrossRef] [PubMed]
- Hu, C.; LaDuca, H.; Shimelis, H.; Polley, E.C.; Lilyquist, J.; Hart, S.N.; Na, J.; Thomas, A.; Lee, K.Y.; Davis, B.T.; et al. Multigene Hereditary Cancer Panels Reveal High-Risk Pancreatic Cancer Susceptibility Genes. JCO Precis. Oncol. 2018, 2, PO.17.00291. [Google Scholar] [CrossRef] [PubMed]
- Walker, E.J.; Goldberg, D.; Gordon, K.M.; Pedley, C.; Carnevale, J.; Cinar, P.; Collisson, E.A.; Tempero, M.A.; Ko, A.H.; Blanco, A.M.; et al. Implementation of an Embedded In-Clinic Genetic Testing Station to Optimize Germline Testing for Patients with Pancreatic Adenocarcinoma. The Oncologist 2021, 26, e1982–e1991. [Google Scholar] [CrossRef]
- Hu, C.; Hart, S.N.; Polley, E.C.; Gnanaolivu, R.; Shimelis, H.; Lee, K.Y.; Lilyquist, J.; Na, J.; Moore, R.; Antwi, S.O.; et al. Association Between Inherited Germline Mutations in Cancer Predisposition Genes and Risk of Pancreatic Cancer. JAMA 2018, 319, 2401–2409. [Google Scholar] [CrossRef] [PubMed]
- Chittenden, A.; Haraldsdottir, S.; Ukaegbu, C.; Underhill-Blazey, M.; Gaonkar, S.; Uno, H.; Brais, L.K.; Perez, K.; Wolpin, B.M.; Syngal, S.; et al. Implementing Systematic Genetic Counseling and Multigene Germline Testing for Individuals with Pancreatic Cancer. JCO Oncol. Pract. 2021, 17, e236–e247. [Google Scholar] [CrossRef]
- Gardiner, A.; Kidd, J.; Elias, M.C.; Young, K.; Mabey, B.; Taherian, N.; Cummings, S.; Malafa, M.; Rosenthal, E.; Permuth, J.B. Pancreatic Ductal Carcinoma Risk Associated with Hereditary Cancer-Risk Genes. J. Natl. Cancer Inst. 2022, 114, 996–1002. [Google Scholar] [CrossRef]
- Grant, R.C.; Selander, I.; Connor, A.A.; Selvarajah, S.; Borgida, A.; Briollais, L.; Petersen, G.M.; Lerner-Ellis, J.; Holter, S.; Gallinger, S. Prevalence of Germline Mutations in Cancer Predisposition Genes in Patients with Pancreatic Cancer. Gastroenterology 2015, 148, 556–564. [Google Scholar] [CrossRef]
- Brand, R.E.; Persson, J.; Bratlie, S.O.; Chung, D.C.; Katona, B.W.; Carrato, A.; Castillo, M.; Earl, J.; Kokkola, A.; Lucas, A.L.; et al. Detection of Early-Stage Pancreatic Ductal Adenocarcinoma From Blood Samples: Results of a Multiplex Biomarker Signature Validation Study. Clin. Transl. Gastroenterol. 2022, 13, e00468. [Google Scholar] [CrossRef] [PubMed]
- Drogan, C.M.; Kindler, H.L.; Gao, G.; Kupfer, S.S. Outcomes of Universal Point-of-Care Genetic Testing in Diverse Patients with Pancreatic Ductal Adenocarcinoma. JCO Precis. Oncol. 2023, 7, e2200196. [Google Scholar] [CrossRef] [PubMed]
- Bono, M.; Fanale, D.; Incorvaia, L.; Cancelliere, D.; Fiorino, A.; Calò, V.; Dimino, A.; Filorizzo, C.; Corsini, L.R.; Brando, C.; et al. Impact of Deleterious Variants in Other Genes beyond BRCA1/2 Detected in Breast/Ovarian and Pancreatic Cancer Patients by NGS-Based Multi-Gene Panel Testing: Looking over the Hedge. ESMO Open 2021, 6, 100235. [Google Scholar] [CrossRef] [PubMed]
- Goggins, M.; Overbeek, K.A.; Brand, R.; Syngal, S.; Del Chiaro, M.; Bartsch, D.K.; Bassi, C.; Carrato, A.; Farrell, J.; Fishman, E.K.; et al. International Cancer of the Pancreas Screening (CAPS) consortium. Management of Patients with Increased Risk for Familial Pancreatic Cancer: Updated Recommendations from the International Cancer of the Pancreas Screening (CAPS) Consortium. Gut 2020, 69, 7–17. [Google Scholar] [CrossRef] [PubMed]
- Ohmoto, A.; Yachida, S.; Morizane, C. Genomic Features and Clinical Management of Patients with Hereditary Pancreatic Cancer Syndromes and Familial Pancreatic Cancer. Int. J. Mol. Sci. 2019, 20, 561. [Google Scholar] [CrossRef]
- Matsubayashi, H.; Takaori, K.; Morizane, C.; Kiyozumi, Y. Familial Pancreatic Cancer and Surveillance of High-Risk Individuals. Gut Liver 2019, 13, 498–505. [Google Scholar] [CrossRef] [PubMed]
- Brentnall, T.A. Progress in the Earlier Detection of Pancreatic Cancer. J. Clin. Oncol. 2016, 34, 1973–1974. [Google Scholar] [CrossRef]
- Dbouk, M.; Katona, B.W.; Brand, R.E.; Chak, A.; Syngal, S.; Farrell, J.J.; Kastrinos, F.; Stoffel, E.M.; Blackford, A.L.; Rustgi, A.K.; et al. The Multicenter Cancer of Pancreas Screening Study: Impact on Stage and Survival. J. Clin. Oncol. 2022, 40, 3257–3266. [Google Scholar] [CrossRef] [PubMed]
- Canto, M.I.; Almario, J.A.; Schulick, R.D.; Yeo, C.J.; Klein, A.; Blackford, A.; Shin, E.J.; Sanyal, A.; Yenokyan, G.; Lennon, A.M.; et al. Risk of Neoplastic Progression in Individuals at High Risk for Pancreatic Cancer Undergoing Long-Term Surveillance. Gastroenterology 2018, 155, 740–751.e2. [Google Scholar] [CrossRef]
- Overbeek, K.A.; Levink, I.J.M.; Koopmann, B.D.M.; Harinck, F.; Konings, I.C.A.W.; Ausems, M.G.E.M.; Wagner, A.; Fockens, P.; van Eijck, C.H.; Groot Koerkamp, B.; et al. Dutch Familial Pancreatic Cancer Surveillance Study Group. Long-Term Yield of Pancreatic Cancer Surveillance in High-Risk Individuals. Gut 2022, 71, 1152–1160. [Google Scholar] [CrossRef]
- Henrikson, N.B.; Aiello Bowles, E.J.; Blasi, P.R.; Morrison, C.C.; Nguyen, M.; Pillarisetty, V.G.; Lin, J.S. Screening for Pancreatic Cancer: Updated Evidence Report and Systematic Review for the US Preventive Services Task Force. JAMA 2019, 322, 445–454. [Google Scholar] [CrossRef] [PubMed]
- Singhi, A.D.; Koay, E.J.; Chari, S.T.; Maitra, A. Early Detection of Pancreatic Cancer: Opportunities and Challenges. Gastroenterology 2019, 156, 2024–2040. [Google Scholar] [CrossRef] [PubMed]
- Wu, W. Early Detection of Pancreatic Cancer: Are We Ready for Prime Time? Gastroenterology 2022, 163, 1157–1159. [Google Scholar] [CrossRef] [PubMed]
- Reese, K.-L.; Pantel, K.; Smit, D.J. Multibiomarker Panels in Liquid Biopsy for Early Detection of Pancreatic Cancer—A Comprehensive Review. J. Exp. Clin. Cancer Res. 2024, 43, 250. [Google Scholar] [CrossRef] [PubMed]
- Cohen, J.D.; Li, L.; Wang, Y.; Thoburn, C.; Afsari, B.; Danilova, L.; Douville, C.; Javed, A.A.; Wong, F.; Mattox, A.; et al. Detection and Localization of Surgically Resectable Cancers with a Multi-Analyte Blood Test. Science 2018, 359, 926–930. [Google Scholar] [CrossRef] [PubMed]
- Nishiwada, S.; Sho, M.; Banwait, J.K.; Yamamura, K.; Akahori, T.; Nakamura, K.; Baba, H.; Goel, A. A microRNA Signature Identifies Pancreatic Ductal Adenocarcinoma Patients at Risk for Lymph Node Metastases. Gastroenterology 2020, 159, 562–574. [Google Scholar] [CrossRef]
- Treekitkarnmongkol, W.; Dai, J.; Liu, S.; Sankaran, D.; Nguyen, T.; Balasenthil, S.; Hurd, M.W.; Chen, M.; Katayama, H.; Roy-Chowdhuri, S.; et al. Blood-Based microRNA Biomarker Signature of Early-Stage Pancreatic Ductal Adenocarcinoma with Lead-Time Trajectory in Prediagnostic Samples. Gastro Hep Adv. 2024, 3, 1098–1115. [Google Scholar] [CrossRef]
- Jaworski, J.J.; Morgan, R.D.; Sivakumar, S. Circulating Cell-Free Tumour DNA for Early Detection of Pancreatic Cancer. Cancers 2020, 12, 3704. [Google Scholar] [CrossRef] [PubMed]
- Kane, L.E.; Mellotte, G.S.; Mylod, E.; O’Brien, R.M.; O’Connell, F.; Buckley, C.E.; Arlow, J.; Nguyen, K.; Mockler, D.; Meade, A.D.; et al. Diagnostic Accuracy of Blood-Based Biomarkers for Pancreatic Cancer: A Systematic Review and Meta-Analysis. Cancer Res. Commun. 2022, 2, 1229–1243. [Google Scholar] [CrossRef] [PubMed]
- Mok, E.T.Y.; Chitty, J.L.; Cox, T.R. miRNAs in Pancreatic Cancer Progression and Metastasis. Clin. Exp. Metastasis 2024, 41, 163–186. [Google Scholar] [CrossRef]
- Sharma, G.G.; Okada, Y.; Von Hoff, D.; Goel, A. Non-Coding RNA Biomarkers in Pancreatic Ductal Adenocarcinoma. Semin. Cancer Biol. 2021, 75, 153–168. [Google Scholar] [CrossRef]
- Madadjim, R.; An, T.; Cui, J. MicroRNAs in Pancreatic Cancer: Advances in Biomarker Discovery and Therapeutic Implications. Int. J. Mol. Sci. 2024, 25, 3914. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Sui, S.; Goel, A. Extracellular Vesicles Associated microRNAs: Their Biology and Clinical Significance as Biomarkers in Gastrointestinal Cancers. Semin. Cancer Biol. 2024, 99, 5–23. [Google Scholar] [CrossRef]
- Jia, E.; Ren, N.; Shi, X.; Zhang, R.; Yu, H.; Yu, F.; Qin, S.; Xue, J. Extracellular Vesicle Biomarkers for Pancreatic Cancer Diagnosis: A Systematic Review and Meta-Analysis. BMC Cancer 2022, 22, 573. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, K.; Zhu, Z.; Roy, S.; Jun, E.; Han, H.; Munoz, R.M.; Nishiwada, S.; Sharma, G.; Cridebring, D.; Zenhausern, F.; et al. An Exosome-Based Transcriptomic Signature for Noninvasive, Early Detection of Patients with Pancreatic Ductal Adenocarcinoma: A Multicenter Cohort Study. Gastroenterology 2022, 163, 1252–1266.e2. [Google Scholar] [CrossRef]
- Albers, M.J.; Bok, R.; Chen, A.P.; Cunningham, C.H.; Zierhut, M.L.; Zhang, V.Y.; Kohler, S.J.; Tropp, J.; Hurd, R.E.; Yen, Y.-F.; et al. Hyperpolarized 13C Lactate, Pyruvate, and Alanine: Noninvasive Biomarkers for Prostate Cancer Detection and Grading. Cancer Res. 2008, 68, 8607–8615. [Google Scholar] [CrossRef]
- Chen, S.; Zhang, L.; Li, S.; Yuan, Y.; Jiang, B.; Jiang, Z.; Zhang, X.; Zhou, X.; Liu, M. Detecting Biomarkers by Dynamic Nuclear Polarization Enhanced Magnetic Resonance. Natl. Sci. Rev. 2024, 11, nwae228. [Google Scholar] [CrossRef] [PubMed]
- Day, S.E.; Kettunen, M.I.; Gallagher, F.A.; Hu, D.-E.; Lerche, M.; Wolber, J.; Golman, K.; Ardenkjaer-Larsen, J.H.; Brindle, K.M. Detecting Tumor Response to Treatment Using Hyperpolarized 13C Magnetic Resonance Imaging and Spectroscopy. Nat. Med. 2007, 13, 1382–1387. [Google Scholar] [CrossRef] [PubMed]
- Dos Santos, K.; Bertho, G.; Baudin, M.; Giraud, N. Glutamine: A Key Player in Human Metabolism as Revealed by Hyperpolarized Magnetic Resonance. Prog. Nucl. Magn. Reson. Spectrosc. 2024, 144–145, 15–39. [Google Scholar] [CrossRef]
- M.D. Anderson Cancer Center. Pilot Study Using Hyperpolarized 13C-Pyruvate Magnetic Resonance Spectroscopic Imaging in Patients with Pancreatic Cysts Undergoing Surgical Resection. Clinical Trial Registration NCT05873699; clinicaltrials.gov; 2024. Available online: https://clinicaltrials.gov/study/NCT05873699 (accessed on 21 December 2024).
- Lord, C.J.; Ashworth, A. BRCAness Revisited. Nat. Rev. Cancer 2016, 16, 110–120. [Google Scholar] [CrossRef]
- Heeke, A.L.; Pishvaian, M.J.; Lynce, F.; Xiu, J.; Brody, J.R.; Chen, W.-J.; Baker, T.M.; Marshall, J.L.; Isaacs, C. Prevalence of Homologous Recombination-Related Gene Mutations Across Multiple Cancer Types. JCO Precis. Oncol. 2018, 2018, PO.17.00286. [Google Scholar] [CrossRef]
- Casolino, R.; Paiella, S.; Azzolina, D.; Beer, P.A.; Corbo, V.; Lorenzoni, G.; Gregori, D.; Golan, T.; Braconi, C.; Froeling, F.E.M.; et al. Homologous Recombination Deficiency in Pancreatic Cancer: A Systematic Review and Prevalence Meta-Analysis. J. Clin. Oncol. 2021, 39, 2617–2631. [Google Scholar] [CrossRef] [PubMed]
- Wattenberg, M.M.; Asch, D.; Yu, S.; O’Dwyer, P.J.; Domchek, S.M.; Nathanson, K.L.; Rosen, M.A.; Beatty, G.L.; Siegelman, E.S.; Reiss, K.A. Platinum Response Characteristics of Patients with Pancreatic Ductal Adenocarcinoma and a Germline BRCA1, BRCA2 or PALB2 Mutation. Br. J. Cancer 2020, 122, 333–339. [Google Scholar] [CrossRef]
- Pishvaian, M.J.; Blais, E.M.; Brody, J.R.; Rahib, L.; Lyons, E.; De Arbeloa, P.; Hendifar, A.; Mikhail, S.; Chung, V.; Sohal, D.P.S.; et al. Outcomes in Patients with Pancreatic Adenocarcinoma with Genetic Mutations in DNA Damage Response Pathways: Results From the Know Your Tumor Program. JCO Precis. Oncol. 2019, 3, 1–10. [Google Scholar] [CrossRef]
- Park, W.; Chen, J.; Chou, J.F.; Varghese, A.M.; Yu, K.H.; Wong, W.; Capanu, M.; Balachandran, V.; McIntyre, C.A.; El Dika, I.; et al. Genomic Methods Identify Homologous Recombination Deficiency in Pancreas Adenocarcinoma and Optimize Treatment Selection. Clin. Cancer Res. 2020, 26, 3239–3247. [Google Scholar] [CrossRef] [PubMed]
- Waddell, N.; Pajic, M.; Patch, A.-M.; Chang, D.K.; Kassahn, K.S.; Bailey, P.; Johns, A.L.; Miller, D.; Nones, K.; Quek, K.; et al. Whole Genomes Redefine the Mutational Landscape of Pancreatic Cancer. Nature 2015, 518, 495–501. [Google Scholar] [CrossRef] [PubMed]
- Bailey, P.; Chang, D.K.; Nones, K.; Johns, A.L.; Patch, A.-M.; Gingras, M.-C.; Miller, D.K.; Christ, A.N.; Bruxner, T.J.C.; Quinn, M.C.; et al. Genomic Analyses Identify Molecular Subtypes of Pancreatic Cancer. Nature 2016, 531, 47–52. [Google Scholar] [CrossRef] [PubMed]
- Stossel, C.; Raitses-Gurevich, M.; Atias, D.; Beller, T.; Glick Gorman, Y.; Halperin, S.; Peer, E.; Denroche, R.E.; Zhang, A.; Notta, F.; et al. Spectrum of Response to Platinum and PARP Inhibitors in Germline BRCA-Associated Pancreatic Cancer in the Clinical and Preclinical Setting. Cancer Discov. 2023, 13, 1826–1843. [Google Scholar] [CrossRef] [PubMed]
- Momtaz, P.; O’Connor, C.A.; Chou, J.F.; Capanu, M.; Park, W.; Bandlamudi, C.; Berger, M.F.; Kelsen, D.P.; Suehnholz, S.P.; Chakravarty, D.; et al. Pancreas Cancer and BRCA: A Critical Subset of Patients with Improving Therapeutic Outcomes. Cancer 2021, 127, 4393–4402. [Google Scholar] [CrossRef] [PubMed]
- Tan, H.; Hosein, P.J. Detection and Therapeutic Implications of Homologous Recombination Repair Deficiency in Pancreatic Cancer: A Narrative Review. J. Gastrointest. Oncol. 2023, 14, 2249–2259. [Google Scholar] [CrossRef] [PubMed]
- Perkhofer, L.; Gout, J.; Roger, E.; Kude de Almeida, F.; Baptista Simões, C.; Wiesmüller, L.; Seufferlein, T.; Kleger, A. DNA Damage Repair as a Target in Pancreatic Cancer: State-of-the-Art and Future Perspectives. Gut 2021, 70, 606–617. [Google Scholar] [CrossRef] [PubMed]
- Curtin, N.J. DNA Repair Dysregulation from Cancer Driver to Therapeutic Target. Nat. Rev. Cancer 2012, 12, 801–817. [Google Scholar] [CrossRef] [PubMed]
- Cleary, J.M.; Wolpin, B.M.; Dougan, S.K.; Raghavan, S.; Singh, H.; Huffman, B.; Sethi, N.S.; Nowak, J.A.; Shapiro, G.I.; Aguirre, A.J.; et al. Opportunities for Utilization of DNA Repair Inhibitors in Homologous Recombination Repair-Deficient and Proficient Pancreatic Adenocarcinoma. Clin. Cancer Res. 2021, 27, 6622–6637. [Google Scholar] [CrossRef] [PubMed]
- Chartron, E.; Theillet, C.; Guiu, S.; Jacot, W. Targeting Homologous Repair Deficiency in Breast and Ovarian Cancers: Biological Pathways, Preclinical and Clinical Data. Crit. Rev. Oncol. Hematol. 2019, 133, 58–73. [Google Scholar] [CrossRef]
- Rebelatto, T.F.; Falavigna, M.; Pozarri, M.; Spada, F.; Cella, C.A.; Laffi, A.; Pellicori, S.; Fazio, N. Should platinum-based 850 chemotherapy be preferred for germline BReast CAncer genes (BRCA) 1 and 2-mutated pancreatic ductal adenocarcinoma 851 (PDAC) patients? A systematic review and meta-analysis. Cancer Treat. Rev. 2019, 80, 101895. [Google Scholar] [CrossRef]
- Golan, T.; Hammel, P.; Reni, M.; Van Cutsem, E.; Macarulla, T.; Hall, M.J.; Park, J.-O.; Hochhauser, D.; Arnold, D.; Oh, D.-Y.; et al. Maintenance Olaparib for Germline BRCA-Mutated Metastatic Pancreatic Cancer. N. Engl. J. Med. 2019, 381, 317–327. [Google Scholar] [CrossRef] [PubMed]
- Reiss, K.A.; Mick, R.; O’Hara, M.H.; Teitelbaum, U.; Karasic, T.B.; Schneider, C.; Cowden, S.; Southwell, T.; Romeo, J.; Izgur, N.; et al. Phase II Study of Maintenance Rucaparib in Patients with Platinum-Sensitive Advanced Pancreatic Cancer and a Pathogenic Germline or Somatic Variant in BRCA1, BRCA2, or PALB2. J. Clin. Oncol. 2021, 39, 2497–2505. [Google Scholar] [CrossRef] [PubMed]
- Kaufman, B.; Shapira-Frommer, R.; Schmutzler, R.K.; Audeh, M.W.; Friedlander, M.; Balmaña, J.; Mitchell, G.; Fried, G.; Stemmer, S.M.; Hubert, A.; et al. Olaparib Monotherapy in Patients with Advanced Cancer and a Germline BRCA1/2 Mutation. J. Clin. Oncol. 2015, 33, 244–250. [Google Scholar] [CrossRef] [PubMed]
- Shroff, R.T.; Hendifar, A.; McWilliams, R.R.; Geva, R.; Epelbaum, R.; Rolfe, L.; Goble, S.; Lin, K.K.; Biankin, A.V.; Giordano, H.; et al. Rucaparib Monotherapy in Patients with Pancreatic Cancer and a Known Deleterious BRCA Mutation. JCO Precis. Oncol. 2018, 2018, PO.17.00316. [Google Scholar] [CrossRef]
- Lowery, M.A.; Kelsen, D.P.; Capanu, M.; Smith, S.C.; Lee, J.W.; Stadler, Z.K.; Moore, M.J.; Kindler, H.L.; Golan, T.; Segal, A.; et al. Phase II Trial of Veliparib in Patients with Previously Treated BRCA-Mutated Pancreas Ductal Adenocarcinoma. Eur. J. Cancer 2018, 89, 19–26. [Google Scholar] [CrossRef] [PubMed]
- de Bono, J.; Ramanathan, R.K.; Mina, L.; Chugh, R.; Glaspy, J.; Rafii, S.; Kaye, S.; Sachdev, J.; Heymach, J.; Smith, D.C.; et al. A Phase I, Dose-Escalation, Two-Part Trial of the PARP Inhibitor Talazoparib in Patients with Advanced Germline BRCA1/2 Mutations and Selected Sporadic Cancers. Cancer Discov. 2017, 7, 620–629. [Google Scholar] [CrossRef]
- O’Reilly, E.M.; Lee, J.W.; Zalupski, M.; Capanu, M.; Park, J.; Golan, T.; Tahover, E.; Lowery, M.A.; Chou, J.F.; Sahai, V.; et al. Randomized, Multicenter, Phase II Trial of Gemcitabine and Cisplatin with or without Veliparib in Patients with Pancreas Adenocarcinoma and a Germline BRCA/PALB2 Mutation. J. Clin. Oncol. 2020, 38, 1378–1388. [Google Scholar] [CrossRef]
- Domchek, S.M.; Postel-Vinay, S.; Im, S.-A.; Park, Y.H.; Delord, J.-P.; Italiano, A.; Alexandre, J.; You, B.; Bastian, S.; Krebs, M.G.; et al. Olaparib and Durvalumab in Patients with Germline BRCA-Mutated Metastatic Breast Cancer (MEDIOLA): An Open-Label, Multicentre, Phase 1/2, Basket Study. Lancet Oncol. 2020, 21, 1155–1164. [Google Scholar] [CrossRef] [PubMed]
- Javle, M.; Shacham-Shmueli, E.; Xiao, L.; Varadhachary, G.; Halpern, N.; Fogelman, D.; Boursi, B.; Uruba, S.; Margalit, O.; Wolff, R.A.; et al. Olaparib Monotherapy for Previously Treated Pancreatic Cancer with DNA Damage Repair Genetic Alterations Other Than Germline BRCA Variants: Findings From 2 Phase 2 Nonrandomized Clinical Trials. JAMA Oncol. 2021, 7, 693–699. [Google Scholar] [CrossRef] [PubMed]
- Diaz, L.A.; Le, D.T. PD-1 Blockade in Tumors with Mismatch-Repair Deficiency. N. Engl. J. Med. 2015, 373, 1979. [Google Scholar] [CrossRef] [PubMed]
- Marabelle, A.; Le, D.T.; Ascierto, P.A.; Di Giacomo, A.M.; De Jesus-Acosta, A.; Delord, J.-P.; Geva, R.; Gottfried, M.; Penel, N.; Hansen, A.R.; et al. Efficacy of Pembrolizumab in Patients with Noncolorectal High Microsatellite Instability/Mismatch Repair-Deficient Cancer: Results From the Phase II KEYNOTE-158 Study. J. Clin. Oncol. 2020, 38, 1–10. [Google Scholar] [CrossRef] [PubMed]
- André, T.; Shiu, K.-K.; Kim, T.W.; Jensen, B.V.; Jensen, L.H.; Punt, C.; Smith, D.; Garcia-Carbonero, R.; Benavides, M.; Gibbs, P.; et al. KEYNOTE-177 Investigators. Pembrolizumab in Microsatellite-Instability-High Advanced Colorectal Cancer. N. Engl. J. Med. 2020, 383, 2207–2218. [Google Scholar] [CrossRef]
- Terrero, G.; Datta, J.; Dennison, J.; Sussman, D.A.; Lohse, I.; Merchant, N.B.; Hosein, P.J. Ipilimumab/Nivolumab Therapy in Patients with Metastatic Pancreatic or Biliary Cancer with Homologous Recombination Deficiency Pathogenic Germline Variants. JAMA Oncol. 2022, 8, 938–940. [Google Scholar] [CrossRef] [PubMed]
- Reiss, K.A.; Mick, R.; Teitelbaum, U.; O’Hara, M.; Schneider, C.; Massa, R.; Karasic, T.; Tondon, R.; Onyiah, C.; Gosselin, M.K.; et al. Niraparib plus Nivolumab or Niraparib plus Ipilimumab in Patients with Platinum-Sensitive Advanced Pancreatic Cancer: A Randomised, Phase 1b/2 Trial. Lancet Oncol. 2022, 23, 1009–1020. [Google Scholar] [CrossRef]
- Lincoln, S.E.; Nussbaum, R.L.; Kurian, A.W.; Nielsen, S.M.; Das, K.; Michalski, S.; Yang, S.; Ngo, N.; Blanco, A.; Esplin, E.D. Yield and Utility of Germline Testing Following Tumor Sequencing in Patients with Cancer. JAMA Netw. Open 2020, 3, e2019452. [Google Scholar] [CrossRef] [PubMed]
- Stoffel, E.M.; Brand, R.E.; Goggins, M. Pancreatic Cancer: Changing Epidemiology and New Approaches to Risk Assessment, Early Detection, and Prevention. Gastroenterology 2023, 164, 752–765. [Google Scholar] [CrossRef] [PubMed]
- Mazer, B.L.; Lee, J.W.; Roberts, N.J.; Chu, L.C.; Lennon, A.M.; Klein, A.P.; Eshleman, J.R.; Fishman, E.K.; Canto, M.I.; Goggins, M.G.; et al. Screening for Pancreatic Cancer Has the Potential to Save Lives, but Is It Practical? Expert Rev. Gastroenterol. Hepatol. 2023, 17, 555–574. [Google Scholar] [CrossRef] [PubMed]
- Everett, J.N.; Burgos, G.; Chun, J.; Baptiste, A.; Khanna, L.G.; Oberstein, P.E.; Simeone, D.M. Cancer Surveillance Awareness and Practice among Families at Increased Risk for Pancreatic Adenocarcinoma. Cancer 2021, 127, 2271–2278. [Google Scholar] [CrossRef] [PubMed]
- Park, W.; O’Connor, C.; Chou, J.F.; Schwartz, C.; Varghese, A.M.; Larsen, M.; Balogun, F.; Brenner, R.; Yu, K.H.; Diguglielmo, E.; et al. Phase 2 Trial of Pembrolizumab and Olaparib (POLAR) Maintenance for Patients (Pts) with Metastatic Pancreatic Cancer (mPDAC): Two Cohorts B Non-Core Homologous Recombination Deficiency (HRD) and C Exceptional Response to Platinum-Therapy. J. Clin. Oncol. 2023, 41 (Suppl. S16), 4140. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Blanco Abad, C.; Gomila Pons, P.; Campos Ramírez, S.; Álvarez Alejandro, M.; Torres Ramón, M.I.; Miramar Gallart, M.D.; Izquierdo Álvarez, S.; Polo Marques, E.; Pazo Cid, R. Hereditary Pancreatic Cancer: Advances in Genetic Testing, Early Detection Strategies, and Personalized Management. J. Clin. Med. 2025, 14, 367. https://doi.org/10.3390/jcm14020367
Blanco Abad C, Gomila Pons P, Campos Ramírez S, Álvarez Alejandro M, Torres Ramón MI, Miramar Gallart MD, Izquierdo Álvarez S, Polo Marques E, Pazo Cid R. Hereditary Pancreatic Cancer: Advances in Genetic Testing, Early Detection Strategies, and Personalized Management. Journal of Clinical Medicine. 2025; 14(2):367. https://doi.org/10.3390/jcm14020367
Chicago/Turabian StyleBlanco Abad, Carmen, Paula Gomila Pons, Sara Campos Ramírez, María Álvarez Alejandro, María Irene Torres Ramón, María Dolores Miramar Gallart, Silvia Izquierdo Álvarez, Eduardo Polo Marques, and Roberto Pazo Cid. 2025. "Hereditary Pancreatic Cancer: Advances in Genetic Testing, Early Detection Strategies, and Personalized Management" Journal of Clinical Medicine 14, no. 2: 367. https://doi.org/10.3390/jcm14020367
APA StyleBlanco Abad, C., Gomila Pons, P., Campos Ramírez, S., Álvarez Alejandro, M., Torres Ramón, M. I., Miramar Gallart, M. D., Izquierdo Álvarez, S., Polo Marques, E., & Pazo Cid, R. (2025). Hereditary Pancreatic Cancer: Advances in Genetic Testing, Early Detection Strategies, and Personalized Management. Journal of Clinical Medicine, 14(2), 367. https://doi.org/10.3390/jcm14020367