Innovative Drugs First Implemented in Type 2 Diabetes Mellitus and Obesity and Their Effects on Metabolic Dysfunction-Associated Steatohepatitis (MASH)-Related Fibrosis and Cirrhosis
Abstract
:1. Introduction
2. Widely Used Antidiabetic Drugs and Their Effects in Patients with T2DM and Cirrhosis
3. Newer Antidiabetic and Anti-Obesity Drugs and Their Effects on MASH-Related Hepatic Fibrosis and Cirrhosis
3.1. Dual Glucose-Dependent Insulinotropic Polypeptide (GIP)/GLP-1 Receptor Co-Agonists
3.2. Dual GLP-1/Glucagon Receptors (GLP-1R/GCGR) Co-Agonists
3.2.1. Survodutide
3.2.2. Cotadutide
3.2.3. Efinopegdutide
3.2.4. Pemvidutide
3.2.5. Mazdutide
3.3. Triple Hormone Receptor (GLP-1R/GIPR/GCGR) Agonists
3.4. Long-Acting Amylin Analogs
3.5. Oral, Nonpeptide GLP-1RAs
3.6. Dual Chemokine Receptors 2 and 5 (CCR2/CCR5) Antagonists
3.7. Thyroid Hormone Receptor Beta (THR-β) Agonists
3.8. Fibroblast Growth Factor (FGF) Analogs
3.8.1. Fibroblast Growth Factor 19 (FGF19) Analogs
3.8.2. Fibroblast Growth Factor 21 (FGF21) Analogs
3.9. Galectin-3 Inhibitors
3.10. Dual Peroxisome Proliferator-Activated Receptor (PPAR) α/γ Agonists and PPAR-Alfa, PPAR-Beta, and PPAR-Gamma (Pan-PPAR) Agonists
3.11. Combination Therapies
4. Main Challenges and Needs in MASH-Related Cirrhosis Clinical Trials
5. Conclusions and Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- García-Compeán, D.; Orsi, E.; Kumar, R.; Gundling, F.; Nishida, T.; Villarreal-Pérez, J.Z.; Del Cueto-Aguilera, Á.N.; González-González, J.A.; Pugliese, G. Clinical Implications of Diabetes in Chronic Liver Disease: Diagnosis, Outcomes and Management, Current and Future Perspectives. World J. Gastroenterol. 2022, 28, 775–793. [Google Scholar] [CrossRef]
- Butt, Z.; Jadoon, N.A.; Salaria, O.N.; Mushtaq, K.; Riaz, I.B.; Shahzad, A.; Hashmi, A.M.; Sarwar, S. Diabetes Mellitus and Decompensated Cirrhosis: Risk of Hepatic Encephalopathy in Different Age Groups. J. Diabetes 2013, 5, 449–455. [Google Scholar] [CrossRef] [PubMed]
- Quintana, J.O.J.; García-Compean, D.; González, J.A.G.; Pérez, J.Z.V.; González, F.J.L.; Espinosa, L.E.M.; Hernández, P.L.; Cabello, E.R.; Villarreal, E.R.; Rendón, R.F.; et al. The Impact of Diabetes Mellitus in Mortality of Patients with Compensated Liver Cirrhosis—A Prospective Study. Ann. Hepatol. 2011, 10, 56–62. [Google Scholar] [CrossRef]
- Tacke, F.; Horn, P.; Wong, V.W.-S.; Ratziu, V.; Bugianesi, E.; Francque, S.; Zelber-Sagi, S.; Valenti, L.; Roden, M.; Schick, F.; et al. EASL–EASD–EASO Clinical Practice Guidelines on the Management of Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD). J. Hepatol. 2024, 81, 492–542. [Google Scholar] [CrossRef]
- Basson, R.; Bayat, A. Chapter 7—Fibrosis and Diabetes: Chronic Hyperglycemia Triggers Organ-Specific Fibrotic Mechanisms. In Wound Healing, Tissue Repair, and Regeneration in Diabetes; Bagchi, D., Das, A., Roy, S., Eds.; Academic Press: Cambridge, MA, USA, 2020; pp. 121–147. ISBN 978-0-12-816413-6. [Google Scholar]
- Rinella, M.E.; Lazarus, J.V.; Ratziu, V.; Francque, S.M.; Sanyal, A.J.; Kanwal, F.; Romero, D.; Abdelmalek, M.F.; Anstee, Q.M.; Arab, J.P.; et al. A Multisociety Delphi Consensus Statement on New Fatty Liver Disease Nomenclature. J. Hepatol. 2023, 78, 1966–1986. [Google Scholar] [CrossRef]
- Chalasani, N.; Younossi, Z.; Lavine, J.E.; Charlton, M.; Cusi, K.; Rinella, M.; Harrison, S.A.; Brunt, E.M.; Sanyal, A.J. The Diagnosis and Management of Nonalcoholic Fatty Liver Disease: Practice Guidance from the American Association for the Study of Liver Diseases. Hepatology 2018, 67, 328–357. [Google Scholar] [CrossRef]
- Rinella, M.E.; Neuschwander-Tetri, B.A.; Siddiqui, M.S.; Abdelmalek, M.F.; Caldwell, S.; Barb, D.; Kleiner, D.E.; Loomba, R. AASLD Practice Guidance on the Clinical Assessment and Management of Nonalcoholic Fatty Liver Disease. Hepatology 2023, 77, 1797–1835. [Google Scholar] [CrossRef]
- Fallowfield, J.A.; Jimenez-Ramos, M.; Robertson, A. Emerging Synthetic Drugs for the Treatment of Liver Cirrhosis. Expert Opin. Emerg. Drugs 2021, 26, 149–163. [Google Scholar] [CrossRef] [PubMed]
- Sanyal, A.J.; Anstee, Q.M.; Trauner, M.; Lawitz, E.J.; Abdelmalek, M.F.; Ding, D.; Han, L.; Jia, C.; Huss, R.S.; Chung, C.; et al. Cirrhosis Regression Is Associated with Improved Clinical Outcomes in Patients with Nonalcoholic Steatohepatitis. Hepatology 2022, 75, 1235–1246. [Google Scholar] [CrossRef]
- Li, X.; Wang, X.; Gao, P. Diabetes Mellitus and Risk of Hepatocellular Carcinoma. BioMed Res. Int. 2017, 2017, 5202684. [Google Scholar] [CrossRef]
- Berzigotti, A.; Ashkenazi, E.; Reverter, E.; Abraldes, J.G.; Bosch, J. Non-Invasive Diagnostic and Prognostic Evaluation of Liver Cirrhosis and Portal Hypertension. Dis. Markers 2011, 31, 129–138. [Google Scholar] [CrossRef] [PubMed]
- Ajmera, V.; Cepin, S.; Tesfai, K.; Hofflich, H.; Cadman, K.; Lopez, S.; Madamba, E.; Bettencourt, R.; Richards, L.; Behling, C.; et al. A Prospective Study on the Prevalence of NAFLD, Advanced Fibrosis, Cirrhosis and Hepatocellular Carcinoma in People with Type 2 Diabetes. J. Hepatol. 2023, 78, 471–478. [Google Scholar] [CrossRef] [PubMed]
- Addepally, N.S.; George, N.; Martinez-Macias, R.; Garcia-Saenz-de-Sicilia, M.; Kim, W.R.; Duarte-Rojo, A. Hemoglobin A1c Has Suboptimal Performance to Diagnose and Monitor Diabetes Mellitus in Patients with Cirrhosis. Dig. Dis. Sci. 2018, 63, 3498–3508. [Google Scholar] [CrossRef]
- Castera, L.; Cusi, K. Diabetes and Cirrhosis: Current Concepts on Diagnosis and Management. Hepatology 2023, 77, 2128–2146. [Google Scholar] [CrossRef] [PubMed]
- Lahousen, T.; Hegenbarth, K.; Ille, R.; Lipp, R.W.; Krause, R.; Little, R.R.; Schnedl, W.J. Determination of Glycated Hemoglobin in Patients with Advanced Liver Disease. World J. Gastroenterol. 2004, 10, 2284–2286. [Google Scholar] [CrossRef] [PubMed]
- El-Sherif, O.; Armstrong, M.J. Peculiarities of Cirrhosis Due to Nonalcoholic Steatohepatitis (NASH). Semin. Liver Dis. 2020, 40, 1–10. [Google Scholar] [CrossRef]
- Boursier, J.; Anty, R.; Carette, C.; Cariou, B.; Castera, L.; Caussy, C.; Fontaine, H.; Garioud, A.; Gourdy, P.; Guerci, B.; et al. Management of Diabetes Mellitus in Patients with Cirrhosis: An Overview and Joint Statement. Diabetes Metab. 2021, 47, 101272. [Google Scholar] [CrossRef] [PubMed]
- Puri, P.; Kotwal, N. An Approach to the Management of Diabetes Mellitus in Cirrhosis: A Primer for the Hepatologist. J. Clin. Exp. Hepatol. 2022, 12, 560–574. [Google Scholar] [CrossRef] [PubMed]
- Arvanitakis, K.; Koufakis, T.; Kalopitas, G.; Papadakos, S.P.; Kotsa, K.; Germanidis, G. Management of Type 2 Diabetes in Patients with Compensated Liver Cirrhosis: Short of Evidence, Plenty of Potential. Diabetes Metab. Syndr. Clin. Res. Rev. 2024, 18, 102935. [Google Scholar] [CrossRef] [PubMed]
- Yen, F.-S.; Lai, J.-N.; Wei, J.C.-C.; Chiu, L.-T.; Hsu, C.-C.; Hou, M.-C.; Hwu, C.-M. Is Insulin the Preferred Treatment in Persons with Type 2 Diabetes and Liver Cirrhosis? BMC Gastroenterol. 2021, 21, 263. [Google Scholar] [CrossRef]
- Yen, F.-S.; Hsu, C.-C.; Wei, J.C.-C.; Hou, M.-C.; Hwu, C.-M. Selection and Warning of Evidence-Based Antidiabetic Medications for Patients With Chronic Liver Disease. Front. Med. 2022, 9, 839456. [Google Scholar] [CrossRef]
- Yen, F.-S.; Wei, J.C.-C.; Chiu, L.-T.; Hsu, C.-C.; Hou, M.-C.; Hwu, C.-M. Thiazolidinediones Were Associated with Higher Risk of Cardiovascular Events in Patients with Type 2 Diabetes and Cirrhosis. Liver Int. Off. J. Int. Assoc. Study Liver 2021, 41, 110–122. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.Y.; Moon, A.M.; Kim, H.; Pate, V.; Barritt, A.S.; Crowley, M.J.; Buse, J.B.; Stürmer, T.; Alexopoulos, A.-S. Newer Second-Line Glucose-Lowering Drugs versus Thiazolidinediones on Cirrhosis Risk among Older US Adult Patients with Type 2 Diabetes. J. Diabetes Complicat. 2020, 34, 107706. [Google Scholar] [CrossRef]
- Elkrief, L.; Rautou, P.-E.; Sarin, S.; Valla, D.; Paradis, V.; Moreau, R. Diabetes Mellitus in Patients with Cirrhosis: Clinical Implications and Management. Liver Int. 2016, 36, 936–948. [Google Scholar] [CrossRef]
- Yen, F.-S.; Hou, M.-C.; Cheng-Chung Wei, J.; Shih, Y.-H.; Hsu, C.Y.; Hsu, C.-C.; Hwu, C.-M. Glucagon-like Peptide-1 Receptor Agonist Use in Patients With Liver Cirrhosis and Type 2 Diabetes. Clin. Gastroenterol. Hepatol. Off. Clin. Pract. J. Am. Gastroenterol. Assoc. 2024, 22, 1255–1264.e18. [Google Scholar] [CrossRef] [PubMed]
- Noureddin, M.; Charlton, M.R.; Harrison, S.A.; Bansal, M.B.; Alkhouri, N.; Loomba, R.; Sanyal, A.J.; Rinella, M.E. Expert Panel Recommendations: Practical Clinical Applications for Initiating and Monitoring Resmetirom in Patients with MASH/NASH and Moderate to Noncirrhotic Advanced Fibrosis. Clin. Gastroenterol. Hepatol. Off. Clin. Pract. J. Am. Gastroenterol. Assoc. 2024, 22, 2367–2377. [Google Scholar] [CrossRef] [PubMed]
- Feng, G.; Hernandez-Gea, V.; Zheng, M.-H. Resmetirom for MASH-Related Cirrhosis. Lancet Gastroenterol. Hepatol. 2024, 9, 594. [Google Scholar] [CrossRef]
- Harrison, S.A.; Bedossa, P.; Guy, C.D.; Schattenberg, J.M.; Loomba, R.; Taub, R.; Labriola, D.; Moussa, S.E.; Neff, G.W.; Rinella, M.E.; et al. A Phase 3, Randomized, Controlled Trial of Resmetirom in NASH with Liver Fibrosis. N. Engl. J. Med. 2024, 390, 497–509. [Google Scholar] [CrossRef] [PubMed]
- Lekakis, V.; Papatheodoridis, G.V. Natural History of Metabolic Dysfunction-Associated Steatotic Liver Disease. Eur. J. Intern. Med. 2024, 122, 3–10. [Google Scholar] [CrossRef] [PubMed]
- Fallowfield, J.A.; Jimenez Ramos, M. Emerging Synthetic Drugs for the Treatment of Hepatic Cirrhosis: A 2024 Update. Expert Opin. Emerg. Drugs 2024, 29, 187–192. [Google Scholar] [CrossRef] [PubMed]
- American Diabetes Association Professional Practice Committee. 9. Pharmacologic Approaches to Glycemic Treatment: Standards of Care in Diabetes—2025. Diabetes Care 2024, 48, S181–S206. [Google Scholar] [CrossRef]
- Gastaldelli, A.; Stefan, N.; Häring, H.-U. Liver-Targeting Drugs and Their Effect on Blood Glucose and Hepatic Lipids. Diabetologia 2021, 64, 1461–1479. [Google Scholar] [CrossRef] [PubMed]
- Yen, F.-S.; Wei, J.C.-C.; Yip, H.-T.; Hwu, C.-M.; Hou, M.-C.; Hsu, C.-C. Dipeptidyl Peptidase-4 Inhibitors May Accelerate Cirrhosis Decompensation in Patients with Diabetes and Liver Cirrhosis: A Nationwide Population-Based Cohort Study in Taiwan. Hepatol. Int. 2021, 15, 179–190. [Google Scholar] [CrossRef] [PubMed]
- Zeng, J.; Fan, J.; Francque, S.M. Therapeutic Management of Metabolic Dysfunction Associated Steatotic Liver Disease. United Eur. Gastroenterol. J. 2024, 12, 177–186. [Google Scholar] [CrossRef]
- Bhopale, K.K.; Srinivasan, M.P. Therapeutics for Metabolic Dysfunction-Associated Fatty Liver Disease (MAFLD). Livers 2023, 3, 597–617. [Google Scholar] [CrossRef]
- Harrison, S.A.; Alkhouri, N.; Davison, B.A.; Sanyal, A.; Edwards, C.; Colca, J.R.; Lee, B.H.; Loomba, R.; Cusi, K.; Kolterman, O.; et al. Insulin Sensitizer MSDC-0602K in Non-Alcoholic Steatohepatitis: A Randomized, Double-Blind, Placebo-Controlled Phase IIb Study. J. Hepatol. 2020, 72, 613–626. [Google Scholar] [CrossRef] [PubMed]
- Yen, F.-S.; Hou, M.-C.; Liu, J.-S.; Hsu, C.-C.; Hwu, C.-M. Severe Hypoglycemia in Patients with Liver Cirrhosis and Type 2 Diabetes. Front. Med. 2022, 9, 962337. [Google Scholar] [CrossRef]
- ClinicalTrials.Gov. Study on MAFLD-Related Cirrhosis Prevention and Treatment Strategies (SMART). Available online: https://Clinicaltrials.Gov/Study/NCT06135584 (accessed on 20 December 2024).
- Heerspink, H.J.L.; Perkins, B.A.; Fitchett, D.H.; Husain, M.; Cherney, D.Z.I. Sodium Glucose Cotransporter 2 Inhibitors in the Treatment of Diabetes Mellitus: Cardiovascular and Kidney Effects, Potential Mechanisms, and Clinical Applications. Circulation 2016, 134, 752–772. [Google Scholar] [CrossRef] [PubMed]
- Armstrong, M.J. BASL and the Dame Sheila Sherlock Award 2016 Glucagon-like Peptide-1 Analogues in Nonalcoholic Steatohepatitis: From Bench to Bedside. Clin. Liver Dis. 2017, 10, 32–35. [Google Scholar] [CrossRef]
- Fisher, M. Glucagon-like Peptide 1 Receptor Agonists and Cardiovascular Risk in Type 2 Diabetes: A Clinical Perspective. Diabetes Obes. Metab. 2015, 17, 335–342. [Google Scholar] [CrossRef]
- Caparrotta, T.M.; Templeton, J.B.; Clay, T.A.; Wild, S.H.; Reynolds, R.M.; Webb, D.J.; Colhoun, H.M. Glucagon-Like Peptide 1 Receptor Agonist (GLP1RA) Exposure and Outcomes in Type 2 Diabetes: A Systematic Review of Population-Based Observational Studies. Diabetes Ther. 2021, 12, 969–989. [Google Scholar] [CrossRef]
- Knudsen, L.B.; Lau, J. The Discovery and Development of Liraglutide and Semaglutide. Front. Endocrinol. 2019, 10, 155. [Google Scholar] [CrossRef]
- Popoviciu, M.-S.; Păduraru, L.; Yahya, G.; Metwally, K.; Cavalu, S. Emerging Role of GLP-1 Agonists in Obesity: A Comprehensive Review of Randomised Controlled Trials. Int. J. Mol. Sci. 2023, 24, 10449. [Google Scholar] [CrossRef] [PubMed]
- Drucker, D.J. Efficacy and Safety of GLP-1 Medicines for Type 2 Diabetes and Obesity. Diabetes Care 2024, 47, 1873–1888. [Google Scholar] [CrossRef]
- Zheng, Z.; Zong, Y.; Ma, Y.; Tian, Y.; Pang, Y.; Zhang, C.; Gao, J. Glucagon-like Peptide-1 Receptor: Mechanisms and Advances in Therapy. Signal Transduct. Target. Ther. 2024, 9, 234. [Google Scholar] [CrossRef] [PubMed]
- Sharma, D.; Verma, S.; Vaidya, S.; Kalia, K.; Tiwari, V. Recent Updates on GLP-1 Agonists: Current Advancements & Challenges. Biomed. Pharmacother. 2018, 108, 952–962. [Google Scholar] [CrossRef]
- Armstrong, M.J.; Gaunt, P.; Aithal, G.P.; Barton, D.; Hull, D.; Parker, R.; Hazlehurst, J.M.; Guo, K.; Abouda, G.; Aldersley, M.A.; et al. Liraglutide Safety and Efficacy in Patients with Non-Alcoholic Steatohepatitis (LEAN): A Multicentre, Double-Blind, Randomised, Placebo-Controlled Phase 2 Study. Lancet 2016, 387, 679–690. [Google Scholar] [CrossRef]
- de Mesquita, F.C.; Guixé-Muntet, S.; Fernández-Iglesias, A.; Maeso-Díaz, R.; Vila, S.; Hide, D.; Ortega-Ribera, M.; Rosa, J.L.; García-Pagán, J.C.; Bosch, J.; et al. Liraglutide Improves Liver Microvascular Dysfunction in Cirrhosis: Evidence from Translational Studies. Sci. Rep. 2017, 7, 3255. [Google Scholar] [CrossRef] [PubMed]
- Kanwal, F.; Kramer, J.R.; Li, L.; Yang, Y.-X.; Cao, Y.; Yu, X.; Samuel, R.; Ali, B.; Desiderio, R.; Cholankeril, G.; et al. GLP-1 Receptor Agonists and Risk for Cirrhosis and Related Complications in Patients With Metabolic Dysfunction-Associated Steatotic Liver Disease. JAMA Intern. Med. 2024, 184, 1314–1323. [Google Scholar] [CrossRef] [PubMed]
- Cazac, G.-D.; Lăcătușu, C.-M.; Ștefănescu, G.; Mihai, C.; Grigorescu, E.-D.; Onofriescu, A.; Mihai, B.-M. Glucagon-like Peptide-1 Receptor Agonists in Patients with Type 2 Diabetes Mellitus and Nonalcoholic Fatty Liver Disease-Current Background, Hopes, and Perspectives. Metabolites 2023, 13, 581. [Google Scholar] [CrossRef] [PubMed]
- El-Kharashi, O.A.; Mohamed, D.I.; Khairy, E.; Ezzat, S.F.; Zaki, W.S. Exenatide Promotes Cardiac lncRNAs HOX Transcript Antisense RNA (HOTAIR) in Wistar Rats with Liver Cirrhosis; a Novel Role of GLP-1 Receptor Agonists in Cirrhotic Cardiomyopathy. Eur. J. Pharmacol. 2019, 855, 294–304. [Google Scholar] [CrossRef]
- Simon, T.G.; Patorno, E.; Schneeweiss, S. Glucagon-Like Peptide-1 Receptor Agonists and Hepatic Decompensation Events in Patients With Cirrhosis and Diabetes. Clin. Gastroenterol. Hepatol. Off. Clin. Pract. J. Am. Gastroenterol. Assoc. 2022, 20, 1382–1393.e19. [Google Scholar] [CrossRef]
- Loomba, R.; Abdelmalek, M.F.; Armstrong, M.J.; Jara, M.; Kjær, M.S.; Krarup, N.; Lawitz, E.; Ratziu, V.; Sanyal, A.J.; Schattenberg, J.M.; et al. Semaglutide 2·4 Mg Once Weekly in Patients with Non-Alcoholic Steatohepatitis-Related Cirrhosis: A Randomised, Placebo-Controlled Phase 2 Trial. Lancet Gastroenterol. Hepatol. 2023, 8, 511–522. [Google Scholar] [CrossRef] [PubMed]
- Vukotic, R.; Raimondi, F.; Brodosi, L.; Vitale, G.; Petroni, M.L.; Marchesini, G.; Andreone, P. The Effect of Liraglutide on β-Blockade for Preventing Variceal Bleeding: A Case Series. Ann. Intern. Med. 2020, 173, 404–405. [Google Scholar] [CrossRef]
- Hashash, J.G.; Thompson, C.C.; Wang, A.Y. AGA Rapid Clinical Practice Update on the Management of Patients Taking GLP-1 Receptor Agonists Prior to Endoscopy: Communication. Clin. Gastroenterol. Hepatol. Off. Clin. Pract. J. Am. Gastroenterol. Assoc. 2024, 22, 705–707. [Google Scholar] [CrossRef]
- Nevola, R.; Epifani, R.; Imbriani, S.; Tortorella, G.; Aprea, C.; Galiero, R.; Rinaldi, L.; Marfella, R.; Sasso, F.C. GLP-1 Receptor Agonists in Non-Alcoholic Fatty Liver Disease: Current Evidence and Future Perspectives. Int. J. Mol. Sci. 2023, 24, 1703. [Google Scholar] [CrossRef] [PubMed]
- Sztanek, F.; Tóth, L.I.; Pető, A.; Hernyák, M.; Diószegi, Á.; Harangi, M. New Developments in Pharmacological Treatment of Obesity and Type 2 Diabetes—Beyond and within GLP-1 Receptor Agonists. Biomedicines 2024, 12, 1320. [Google Scholar] [CrossRef]
- Bołdys, A.; Bułdak, Ł.; Maligłówka, M.; Surma, S.; Okopień, B. Potential Therapeutic Strategies in the Treatment of Metabolic-Associated Fatty Liver Disease. Med. Kaunas Lith. 2023, 59, 1789. [Google Scholar] [CrossRef] [PubMed]
- Syed, Y.Y. Tirzepatide: First Approval. Drugs 2022, 82, 1213–1220. [Google Scholar] [CrossRef] [PubMed]
- Jastreboff, A.M.; Aronne, L.J.; Ahmad, N.N.; Wharton, S.; Connery, L.; Alves, B.; Kiyosue, A.; Zhang, S.; Liu, B.; Bunck, M.C.; et al. Tirzepatide Once Weekly for the Treatment of Obesity. N. Engl. J. Med. 2022, 387, 205–216. [Google Scholar] [CrossRef] [PubMed]
- Chavda, V.P.; Ajabiya, J.; Teli, D.; Bojarska, J.; Apostolopoulos, V. Tirzepatide, a New Era of Dual-Targeted Treatment for Diabetes and Obesity: A Mini-Review. Molecules 2022, 27, 4315. [Google Scholar] [CrossRef] [PubMed]
- Frías, J.P.; Davies, M.J.; Rosenstock, J.; Pérez Manghi, F.C.; Fernández Landó, L.; Bergman, B.K.; Liu, B.; Cui, X.; Brown, K.; SURPASS-2 Investigators. Tirzepatide versus Semaglutide Once Weekly in Patients with Type 2 Diabetes. N. Engl. J. Med. 2021, 385, 503–515. [Google Scholar] [CrossRef] [PubMed]
- Rosenstock, J.; Wysham, C.; Frías, J.P.; Kaneko, S.; Lee, C.J.; Fernández Landó, L.; Mao, H.; Cui, X.; Karanikas, C.A.; Thieu, V.T. Efficacy and Safety of a Novel Dual GIP and GLP-1 Receptor Agonist Tirzepatide in Patients with Type 2 Diabetes (SURPASS-1): A Double-Blind, Randomised, Phase 3 Trial. Lancet Lond. Engl. 2021, 398, 143–155. [Google Scholar] [CrossRef]
- Inagaki, N.; Takeuchi, M.; Oura, T.; Imaoka, T.; Seino, Y. Efficacy and Safety of Tirzepatide Monotherapy Compared with Dulaglutide in Japanese Patients with Type 2 Diabetes (SURPASS J-Mono): A Double-Blind, Multicentre, Randomised, Phase 3 Trial. Lancet Diabetes Endocrinol. 2022, 10, 623–633. [Google Scholar] [CrossRef]
- Gastaldelli, A.; Cusi, K.; Landó, L.F.; Bray, R.; Brouwers, B.; Rodríguez, Á. Effect of Tirzepatide versus Insulin Degludec on Liver Fat Content and Abdominal Adipose Tissue in People with Type 2 Diabetes (SURPASS-3 MRI): A Substudy of the Randomised, Open-Label, Parallel-Group, Phase 3 SURPASS-3 Trial. Lancet Diabetes Endocrinol. 2022, 10, 393–406. [Google Scholar] [CrossRef]
- ClinicalTrials.Gov. A Study of Tirzepatide (LY3298176) in Participants With Nonalcoholic Steatohepatitis (NASH) (SYNERGY-NASH). Available online: https://Clinicaltrials.Gov/Study/NCT04166773 (accessed on 20 December 2024).
- Loomba, R.; Hartman, M.L.; Lawitz, E.J.; Vuppalanchi, R.; Boursier, J.; Bugianesi, E.; Yoneda, M.; Behling, C.; Cummings, O.W.; Tang, Y.; et al. Tirzepatide for Metabolic Dysfunction-Associated Steatohepatitis with Liver Fibrosis. N. Engl. J. Med. 2024, 391, 299–310. [Google Scholar] [CrossRef] [PubMed]
- ClinicalTrials.Gov. Fibrosis Lessens After Metabolic Surgery (FLAMES). Available online: https://Clinicaltrials.Gov/Study/NCT06374875 (accessed on 20 December 2024).
- Novikoff, A.; Müller, T.D. The Molecular Pharmacology of Glucagon Agonists in Diabetes and Obesity. Peptides 2023, 165, 171003. [Google Scholar] [CrossRef] [PubMed]
- Hope, D.C.D.; Vincent, M.L.; Tan, T.M.M. Striking the Balance: GLP-1/Glucagon Co-Agonism as a Treatment Strategy for Obesity. Front. Endocrinol. 2021, 12, 735019. [Google Scholar] [CrossRef] [PubMed]
- Boland, M.L.; Laker, R.C.; Mather, K.; Nawrocki, A.; Oldham, S.; Boland, B.B.; Lewis, H.; Conway, J.; Naylor, J.; Guionaud, S.; et al. Resolution of NASH and Hepatic Fibrosis by the GLP-1R/GcgR Dual-Agonist Cotadutide via Modulating Mitochondrial Function and Lipogenesis. Nat. Metab. 2020, 2, 413–431. [Google Scholar] [CrossRef]
- Zimmermann, T.; Thomas, L.; Baader-Pagler, T.; Haebel, P.; Simon, E.; Reindl, W.; Bajrami, B.; Rist, W.; Uphues, I.; Drucker, D.J.; et al. BI 456906: Discovery and Preclinical Pharmacology of a Novel GCGR/GLP-1R Dual Agonist with Robust Anti-Obesity Efficacy. Mol. Metab. 2022, 66, 101633. [Google Scholar] [CrossRef] [PubMed]
- le Roux, C.W.; Steen, O.; Lucas, K.J.; Startseva, E.; Unseld, A.; Hennige, A.M. Glucagon and GLP-1 Receptor Dual Agonist Survodutide for Obesity: A Randomised, Double-Blind, Placebo-Controlled, Dose-Finding Phase 2 Trial. Lancet Diabetes Endocrinol. 2024, 12, 162–173. [Google Scholar] [CrossRef]
- Blüher, M.; Rosenstock, J.; Hoefler, J.; Manuel, R.; Hennige, A.M. Dose-Response Effects on HbA1c and Bodyweight Reduction of Survodutide, a Dual Glucagon/GLP-1 Receptor Agonist, Compared with Placebo and Open-Label Semaglutide in People with Type 2 Diabetes: A Randomised Clinical Trial. Diabetologia 2024, 67, 470–482. [Google Scholar] [CrossRef]
- Wan, H.; Xu, N.; Wang, L.; Liu, Y.; Fatahi, S.; Sohouli, M.H.; Guimarães, N.S. Effect of Survodutide, a Glucagon and GLP-1 Receptor Dual Agonist, on Weight Loss: A Meta-Analysis of Randomized Controlled Trials. Diabetol. Metab. Syndr. 2024, 16, 264. [Google Scholar] [CrossRef] [PubMed]
- Sanyal, A.J.; Bedossa, P.; Fraessdorf, M.; Neff, G.W.; Lawitz, E.; Bugianesi, E.; Anstee, Q.M.; Hussain, S.A.; Newsome, P.N.; Ratziu, V.; et al. A Phase 2 Randomized Trial of Survodutide in MASH and Fibrosis. N. Engl. J. Med. 2024, 391, 311–319. [Google Scholar] [CrossRef]
- Lawitz, E.J.; Fraessdorf, M.; Neff, G.W.; Schattenberg, J.M.; Noureddin, M.; Alkhouri, N.; Schmid, B.; Andrews, C.P.; Takács, I.; Hussain, S.A.; et al. Efficacy, Tolerability and Pharmacokinetics of Survodutide, a Glucagon/Glucagon-like Peptide-1 Receptor Dual Agonist, in Cirrhosis. J. Hepatol. 2024, 81, 837–846. [Google Scholar] [CrossRef]
- ClinicalTrials.Gov. LIVERAGETM: A Study to Test Whether Survodutide Helps People with a Liver Disease Called NASH/MASH Who Have Moderate or Advanced Liver Fibrosis. Available online: https://Clinicaltrials.Gov/Study/NCT06632444 (accessed on 20 December 2024).
- ClinicalTrials.Gov. LIVERAGETM—Cirrhosis: A Study to Test Whether Survodutide Helps People with a Liver Disease Called NASH/MASH Who Have Cirrhosis. Available online: https://Clinicaltrials.Gov/Study/NCT06632457 (accessed on 20 December 2024).
- Parker, V.E.R.; Robertson, D.; Wang, T.; Hornigold, D.C.; Petrone, M.; Cooper, A.T.; Posch, M.G.; Heise, T.; Plum-Moerschel, L.; Schlichthaar, H.; et al. Efficacy, Safety, and Mechanistic Insights of Cotadutide, a Dual Receptor Glucagon-Like Peptide-1 and Glucagon Agonist. J. Clin. Endocrinol. Metab. 2020, 105, dgz047. [Google Scholar] [CrossRef] [PubMed]
- Parker, V.E.R.; Hoang, T.; Schlichthaar, H.; Gibb, F.W.; Wenzel, B.; Posch, M.G.; Rose, L.; Chang, Y.; Petrone, M.; Hansen, L.; et al. Efficacy and Safety of Cotadutide, a Dual Glucagon-like Peptide-1 and Glucagon Receptor Agonist, in a Randomized Phase 2a Study of Patients with Type 2 Diabetes and Chronic Kidney Disease. Diabetes Obes. Metab. 2022, 24, 1360–1369. [Google Scholar] [CrossRef]
- Parker, V.E.R.; Robertson, D.; Erazo-Tapia, E.; Havekes, B.; Phielix, E.; de Ligt, M.; Roumans, K.H.M.; Mevenkamp, J.; Sjoberg, F.; Schrauwen-Hinderling, V.B.; et al. Cotadutide Promotes Glycogenolysis in People with Overweight or Obesity Diagnosed with Type 2 Diabetes. Nat. Metab. 2023, 5, 2086–2093. [Google Scholar] [CrossRef]
- Selvarajah, V.; Robertson, D.; Hansen, L.; Jermutus, L.; Smith, K.; Coggi, A.; Sánchez, J.; Chang, Y.-T.; Yu, H.; Parkinson, J.; et al. A Randomized Phase 2b Trial Examined the Effects of the Glucagon-like Peptide-1 and Glucagon Receptor Agonist Cotadutide on Kidney Outcomes in Patients with Diabetic Kidney Disease. Kidney Int. 2024, 106, 1170–1180. [Google Scholar] [CrossRef]
- Ali, M.M.; Hafez, A.; Abdelgalil, M.S.; Hasan, M.T.; El-Ghannam, M.M.; Ghogar, O.M.; Elrashedy, A.A.; Abd-ElGawad, M. Impact of Cotadutide Drug on Patients with Type 2 Diabetes Mellitus: A Systematic Review and Meta-Analysis. BMC Endocr. Disord. 2022, 22, 113. [Google Scholar] [CrossRef] [PubMed]
- Nahra, R.; Wang, T.; Gadde, K.M.; Oscarsson, J.; Stumvoll, M.; Jermutus, L.; Hirshberg, B.; Ambery, P. Effects of Cotadutide on Metabolic and Hepatic Parameters in Adults With Overweight or Obesity and Type 2 Diabetes: A 54-Week Randomized Phase 2b Study. Diabetes Care 2021, 44, 1433–1442. [Google Scholar] [CrossRef]
- Shankar, S.S.; Daniels, S.J.; Robertson, D.; Sarv, J.; Sánchez, J.; Carter, D.; Jermutus, L.; Challis, B.; Sanyal, A.J. Safety and Efficacy of Novel Incretin Co-Agonist Cotadutide in Biopsy-Proven Noncirrhotic MASH With Fibrosis. Clin. Gastroenterol. Hepatol. 2024, 22, 1847–1857.e11. [Google Scholar] [CrossRef]
- ClinicalTrials.Gov. Pharmacokinetics of Cotadutide in Participants with Hepatic Impairment. Available online: https://Clinicaltrials.Gov/Study/NCT05517226 (accessed on 20 December 2024).
- Sidrak, W.R.; Kalra, S.; Kalhan, A. Approved and Emerging Hormone-Based Anti-Obesity Medications: A Review Article. Indian J. Endocrinol. Metab. 2024, 28, 445–460. [Google Scholar] [CrossRef] [PubMed]
- ClinicalTrials.Gov. A Trial to Learn How Safe AZD9550 Is in People with or Without Type 2 Diabetes Who Are Overweight or Obese (CONTEMPO). Available online: https://Clinicaltrials.Gov/Study/NCT06151964 (accessed on 20 December 2024).
- Di Prospero, N.A.; Yee, J.; Frustaci, M.E.; Samtani, M.N.; Alba, M.; Fleck, P. Efficacy and Safety of Glucagon-like Peptide-1/Glucagon Receptor Co-Agonist JNJ-64565111 in Individuals with Type 2 Diabetes Mellitus and Obesity: A Randomized Dose-Ranging Study. Clin. Obes. 2021, 11, e12433. [Google Scholar] [CrossRef]
- Alba, M.; Yee, J.; Frustaci, M.E.; Samtani, M.N.; Fleck, P. Efficacy and Safety of Glucagon-like Peptide-1/Glucagon Receptor Co-Agonist JNJ-64565111 in Individuals with Obesity without Type 2 Diabetes Mellitus: A Randomized Dose-Ranging Study. Clin. Obes. 2021, 11, e12432. [Google Scholar] [CrossRef]
- Romero-Gómez, M.; Lawitz, E.; Shankar, R.R.; Chaudhri, E.; Liu, J.; Lam, R.L.H.; Kaufman, K.D.; Engel, S.S.; Bruzone, S.O.; Coronel, M.J.; et al. A Phase IIa Active-Comparator-Controlled Study to Evaluate the Efficacy and Safety of Efinopegdutide in Patients with Non-Alcoholic Fatty Liver Disease. J. Hepatol. 2023, 79, 888–897. [Google Scholar] [CrossRef]
- ClinicalTrials.Gov. A Clinical Study of Efinopegdutide in People with Compensated Cirrhosis Due to Steatohepatitis (MK-6024-017). Available online: https://Clinicaltrials.Gov/Study/NCT06465186 (accessed on 20 December 2024).
- ClinicalTrials.Gov. A Clinical Study of Efinopegdutide in Participants with Precirrhotic Nonalcoholic Steatohepatitis (NASH) (MK-6024-013). Available online: https://Clinicaltrials.Gov/Study/NCT05877547 (accessed on 20 December 2024).
- Aronne, L.; Scott Harris, M.; Roberts, M.S.; Suschak, J.J.; Tomah, S.; Kasper, J.; He, L.; Yang, J.; Frias, J.P.; Browne, S.K. 262-OR: Pemvidutide, a GLP-1/Glucagon Dual Receptor Agonist, in Subjects with Overweight or Obesity—A 48-Week, Placebo-Controlled, Phase 2 (MOMENTUM) Trial. Diabetes 2024, 73, 262-OR. [Google Scholar] [CrossRef]
- Harrison, S.A.; Browne, S.K.; Suschak, J.J.; Tomah, S.; Gutierrez, J.A.; Yang, J.; Roberts, M.S.; Harris, M.S. Effect of Pemvidutide, a GLP-1/Glucagon Dual Receptor Agonist, on MASLD: A Randomized, Double-Blind, Placebo-Controlled Study. J. Hepatol. 2025, 82, 7–17. [Google Scholar] [CrossRef]
- ClinicalTrials.Gov. Efficacy and Safety of Pemvidutide in Subjects with Nonalcoholic Steatohepatitis (NASH) (IMPACT Trial) (IMPACT). Available online: https://Clinicaltrials.Gov/Study/NCT05989711 (accessed on 20 December 2024).
- Zhang, X.; Cai, Y.; Yao, Z.; Chi, H.; Li, Y.; Shi, J.; Zhou, Z.; Sun, L. Discovery of Novel OXM-Based Glucagon-like Peptide 1 (GLP-1)/Glucagon Receptor Dual Agonists. Peptides 2023, 161, 170948. [Google Scholar] [CrossRef] [PubMed]
- Nalisa, D.L.; Cuboia, N.; Dyab, E.; Jackson, I.L.; Felix, H.J.; Shoki, P.; Mubiana, M.; Oyedeji-Amusa, M.; Azevedo, L.; Jiang, H. Efficacy and Safety of Mazdutide on Weight Loss among Diabetic and Non-Diabetic Patients: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Front. Endocrinol. 2024, 15, 1309118. [Google Scholar] [CrossRef] [PubMed]
- Ji, L.; Jiang, H.; Li, H.; Tian, J.; Liu, D.; Zhao, Y.; Gu, J.; Liu, Z.; Deng, H.; Wang, Y.; et al. 1856-LB: Efficacy and Safety of Mazdutide in Chinese Participants with Overweight or Obesity (GLORY-1). Diabetes 2024, 73, 1856-LB. [Google Scholar] [CrossRef]
- Ji, L.; Jiang, H.; Cheng, Z.; Qiu, W.; Liao, L.; Zhang, Y.; Li, X.; Pang, S.; Zhang, L.; Chen, L.; et al. A Phase 2 Randomised Controlled Trial of Mazdutide in Chinese Overweight Adults or Adults with Obesity. Nat. Commun. 2023, 14, 8289. [Google Scholar] [CrossRef] [PubMed]
- Mazdutide vs. Dulaglutide in Patients with Type 2 Diabetes (DREAMS-2): A Randomised, Open-Label, 28-Week Phase 3 Trial—Media Centre|EASD. Available online: https://www.easd.org/media-centre/home.html%20#!resources/b-mazdutide-vs-dulaglutide-in-patients-with-type-2-diabetes-dreams-2-a-randomised-open-label-28-week-phase-3-trial-b (accessed on 6 December 2024).
- Ji, L.; Jiang, H.; Zhang, Y.; Lv, L.; Gu, J.; Liu, Z.; Wang, Y.; Deng, H.; Qian, L. 1857-LB: Improvement of Liver Steatosis by Mazdutide in Chinese Participants with Overweight or Obesity—An Exploratory Analysis of GLORY-1. Diabetes 2024, 73, 1857-LB. [Google Scholar] [CrossRef]
- Abdul-Rahman, T.; Roy, P.; Ahmed, F.K.; Mueller-Gomez, J.L.; Sarkar, S.; Garg, N.; Femi-Lawal, V.O.; Wireko, A.A.; Thaalibi, H.I.; Hashmi, M.U.; et al. The Power of Three: Retatrutide’s Role in Modern Obesity and Diabetes Therapy. Eur. J. Pharmacol. 2024, 985, 177095. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Zhou, Q.; Cong, Z.; Yuan, Q.; Li, W.; Zhao, F.; Xu, H.E.; Zhao, L.-H.; Yang, D.; Wang, M.-W. Structural Insights into the Triple Agonism at GLP-1R, GIPR and GCGR Manifested by Retatrutide. Cell Discov. 2024, 10, 77. [Google Scholar] [CrossRef]
- Urva, S.; Coskun, T.; Loh, M.T.; Du, Y.; Thomas, M.K.; Gurbuz, S.; Haupt, A.; Benson, C.T.; Hernandez-Illas, M.; D’Alessio, D.A.; et al. LY3437943, a Novel Triple GIP, GLP-1, and Glucagon Receptor Agonist in People with Type 2 Diabetes: A Phase 1b, Multicentre, Double-Blind, Placebo-Controlled, Randomised, Multiple-Ascending Dose Trial. Lancet Lond. Engl. 2022, 400, 1869–1881. [Google Scholar] [CrossRef] [PubMed]
- Rosenstock, J.; Frias, J.; Jastreboff, A.M.; Du, Y.; Lou, J.; Gurbuz, S.; Thomas, M.K.; Hartman, M.L.; Haupt, A.; Milicevic, Z.; et al. Retatrutide, a GIP, GLP-1 and Glucagon Receptor Agonist, for People with Type 2 Diabetes: A Randomised, Double-Blind, Placebo and Active-Controlled, Parallel-Group, Phase 2 Trial Conducted in the USA. Lancet 2023, 402, 529–544. [Google Scholar] [CrossRef]
- Jastreboff, A.M.; Kaplan, L.M.; Frías, J.P.; Wu, Q.; Du, Y.; Gurbuz, S.; Coskun, T.; Haupt, A.; Milicevic, Z.; Hartman, M.L.; et al. Triple-Hormone-Receptor Agonist Retatrutide for Obesity—A Phase 2 Trial. N. Engl. J. Med. 2023, 389, 514–526. [Google Scholar] [CrossRef] [PubMed]
- Sanyal, A.J.; Kaplan, L.M.; Frias, J.P.; Brouwers, B.; Wu, Q.; Thomas, M.K.; Harris, C.; Schloot, N.C.; Du, Y.; Mather, K.J.; et al. Triple Hormone Receptor Agonist Retatrutide for Metabolic Dysfunction-Associated Steatotic Liver Disease: A Randomized Phase 2a Trial. Nat. Med. 2024, 30, 2037–2048. [Google Scholar] [CrossRef] [PubMed]
- Kaur, M.; Misra, S. A Review of an Investigational Drug Retatrutide, a Novel Triple Agonist Agent for the Treatment of Obesity. Eur. J. Clin. Pharmacol. 2024, 80, 669–676. [Google Scholar] [CrossRef]
- Frias, J.P.; Deenadayalan, S.; Erichsen, L.; Knop, F.K.; Lingvay, I.; Macura, S.; Mathieu, C.; Pedersen, S.D.; Davies, M. Efficacy and Safety of Co-Administered Once-Weekly Cagrilintide 2·4 Mg with Once-Weekly Semaglutide 2·4 Mg in Type 2 Diabetes: A Multicentre, Randomised, Double-Blind, Active-Controlled, Phase 2 Trial. Lancet Lond. Engl. 2023, 402, 720–730. [Google Scholar] [CrossRef]
- Lau, D.C.W.; Erichsen, L.; Francisco, A.M.; Satylganova, A.; le Roux, C.W.; McGowan, B.; Pedersen, S.D.; Pietiläinen, K.H.; Rubino, D.; Batterham, R.L. Once-Weekly Cagrilintide for Weight Management in People with Overweight and Obesity: A Multicentre, Randomised, Double-Blind, Placebo-Controlled and Active-Controlled, Dose-Finding Phase 2 Trial. Lancet Lond. Engl. 2021, 398, 2160–2172. [Google Scholar] [CrossRef] [PubMed]
- ClinicalTrials.Gov. Research Study on Whether a Combination of 2 Medicines (NNC0194 0499 and Semaglutide) Works in People with Non-Alcoholic Steatohepatitis (NASH). Available online: https://Clinicaltrials.Gov/Study/NCT05016882 (accessed on 20 December 2024).
- ClinicalTrials.Gov. Effects of NNC0194-0499, Cagrilintide, and Semaglutide Alone or in Combinations on Liver Damage and Alcohol Use in People with Alcohol-Related Liver Disease. Available online: https://Clinicaltrials.Gov/Study/NCT06409130 (accessed on 20 December 2024).
- ClinicalTrials.Gov. A Research Study Looking at How a Single Dose of the Medicine Cagrilintide Works in Participants with Reduced Liver Function and in Healthy Participants With Normal Liver Function and How Cagrilintide Is Absorbed and Used by the Body. Available online: https://Clinicaltrials.Gov/Study/NCT05564104 (accessed on 20 December 2024).
- Pratt, E.; Ma, X.; Liu, R.; Robins, D.; Coskun, T.; Sloop, K.W.; Haupt, A.; Benson, C. Orforglipron (LY3502970), a Novel, Oral Non-Peptide Glucagon-like Peptide-1 Receptor Agonist: A Phase 1b, Multicentre, Blinded, Placebo-Controlled, Randomized, Multiple-Ascending-Dose Study in People with Type 2 Diabetes. Diabetes Obes. Metab. 2023, 25, 2642–2649. [Google Scholar] [CrossRef]
- Saxena, A.R.; Frias, J.P.; Gorman, D.N.; Lopez, R.N.; Andrawis, N.; Tsamandouras, N.; Birnbaum, M.J. Tolerability, Safety and Pharmacodynamics of Oral, Small-Molecule Glucagon-like Peptide-1 Receptor Agonist Danuglipron for Type 2 Diabetes: A 12-Week, Randomized, Placebo-Controlled, Phase 2 Study Comparing Different Dose-Escalation Schemes. Diabetes Obes. Metab. 2023, 25, 2805–2814. [Google Scholar] [CrossRef]
- Melson, E.; Ashraf, U.; Papamargaritis, D.; Davies, M.J. What Is the Pipeline for Future Medications for Obesity? Int. J. Obes. 2024, 1–19. [Google Scholar] [CrossRef]
- Karakasis, P.; Patoulias, D.; Pamporis, K.; Stachteas, P.; Bougioukas, K.I.; Klisic, A.; Fragakis, N.; Rizzo, M. Safety and Efficacy of the New, Oral, Small-Molecule, GLP-1 Receptor Agonists Orforglipron and Danuglipron for the Treatment of Type 2 Diabetes and Obesity: Systematic Review and Meta-Analysis of Randomized Controlled Trials. Metabolism 2023, 149, 155710. [Google Scholar] [CrossRef]
- Frias, J.P.; Hsia, S.; Eyde, S.; Liu, R.; Ma, X.; Konig, M.; Kazda, C.; Mather, K.J.; Haupt, A.; Pratt, E.; et al. Efficacy and Safety of Oral Orforglipron in Patients with Type 2 Diabetes: A Multicentre, Randomised, Dose-Response, Phase 2 Study. Lancet 2023, 402, 472–483. [Google Scholar] [CrossRef]
- Dutta, D.; Nagendra, L.; Anne, B.; Kumar, M.; Sharma, M.; Kamrul-Hasan, A.B.M. Orforglipron, a Novel Non-peptide Oral Daily Glucagon-like Peptide-1 Receptor Agonist as an Anti-obesity Medicine: A Systematic Review and Meta-analysis. Obes. Sci. Pract. 2024, 10, e743. [Google Scholar] [CrossRef]
- Wharton, S.; Blevins, T.; Connery, L.; Rosenstock, J.; Raha, S.; Liu, R.; Ma, X.; Mather, K.J.; Haupt, A.; Robins, D.; et al. Daily Oral GLP-1 Receptor Agonist Orforglipron for Adults with Obesity. N. Engl. J. Med. 2023, 389, 877–888. [Google Scholar] [CrossRef]
- Effects of Orforglipron, a Novel Oral GLP-1 Receptor Agonist, on Metabolic Dysfunction-Associated Steatotic Liver Disease Related Biomarkers—Media Centre|EASD. Available online: https://www.easd.org/media-centre/home.html#!resources/b-effects-of-orforglipron-a-novel-oral-glp-1-receptor-agonist-on-metabolic-dysfunction-associated-steatotic-liver-disease-related-biomarkers-b-ef7a6cca-885d-49b8-8ff9-4e9a159be7f6 (accessed on 5 January 2025).
- ClinicalTrials.Gov. ORION: Effects of Cenicriviroc on Insulin Sensitivity in Subjects with Prediabetes or Type 2 Diabetes Mellitus (T2DM) and Suspected NAFLD. Available online: https://Clinicaltrials.Gov/Study/NCT02330549 (accessed on 20 December 2024).
- Friedman, S.L.; Ratziu, V.; Harrison, S.A.; Abdelmalek, M.F.; Aithal, G.P.; Caballeria, J.; Francque, S.; Farrell, G.; Kowdley, K.V.; Craxi, A.; et al. A Randomized, Placebo-controlled Trial of Cenicriviroc for Treatment of Nonalcoholic Steatohepatitis with Fibrosis. Hepatology 2018, 67, 1754. [Google Scholar] [CrossRef] [PubMed]
- Friedman, S.; Sanyal, A.; Goodman, Z.; Lefebvre, E.; Gottwald, M.; Fischer, L.; Ratziu, V. Efficacy and Safety Study of Cenicriviroc for the Treatment of Non-Alcoholic Steatohepatitis in Adult Subjects with Liver Fibrosis: CENTAUR Phase 2b Study Design. Contemp. Clin. Trials 2016, 47, 356–365. [Google Scholar] [CrossRef]
- Ratziu, V.; Sanyal, A.; Harrison, S.A.; Wong, V.W.-S.; Francque, S.; Goodman, Z.; Aithal, G.P.; Kowdley, K.V.; Seyedkazemi, S.; Fischer, L.; et al. Cenicriviroc Treatment for Adults With Nonalcoholic Steatohepatitis and Fibrosis: Final Analysis of the Phase 2b CENTAUR Study. Hepatology 2020, 72, 892–905. [Google Scholar] [CrossRef] [PubMed]
- Anstee, Q.M.; Neuschwander-Tetri, B.A.; Wai-Sun Wong, V.; Abdelmalek, M.F.; Rodriguez-Araujo, G.; Landgren, H.; Park, G.S.; Bedossa, P.; Alkhouri, N.; Tacke, F.; et al. Cenicriviroc Lacked Efficacy to Treat Liver Fibrosis in Nonalcoholic Steatohepatitis: AURORA Phase III Randomized Study. Clin. Gastroenterol. Hepatol. 2024, 22, 124–134.e1. [Google Scholar] [CrossRef]
- Francque, S.M.; Hodge, A.; Boursier, J.; Younes, Z.H.; Rodriguez-Araujo, G.; Park, G.S.; Alkhouri, N.; Abdelmalek, M.F. Phase 2, Open-Label, Rollover Study of Cenicriviroc for Liver Fibrosis Associated with Metabolic Dysfunction-Associated Steatohepatitis. Hepatol. Commun. 2024, 8, e0335. [Google Scholar] [CrossRef]
- Bober, A.; Piotrowska, A.; Pawlik, K.; Ciapała, K.; Maciuszek, M.; Makuch, W.; Mika, J. A New Application for Cenicriviroc, a Dual CCR2/CCR5 Antagonist, in the Treatment of Painful Diabetic Neuropathy in a Mouse Model. Int. J. Mol. Sci. 2024, 25, 7410. [Google Scholar] [CrossRef] [PubMed]
- Levien, T.L.; Baker, D.E. Resmetirom. Hosp. Pharm. 2025, 60, 12–20. [Google Scholar] [CrossRef] [PubMed]
- These Highlights Do Not Include All the Information Needed to Use REZDIFFRA Safely and Effectively. See Full Prescribing Information for REZDIFFRA.REZDIFFRA (Resmetirom) Tablets, for Oral Use Initial U.S. Approval: 2024. Available online: https://nctr-crs.fda.gov/fdalabel/services/spl/set-ids/e67ea09f-a840-439c-86c8-f98585f978b2/spl-doc?hl=resmetirom (accessed on 6 January 2025).
- Lan, T.; Morgan, D.A.; Rahmouni, K.; Sonoda, J.; Fu, X.; Burgess, S.C.; Holland, W.L.; Kliewer, S.A.; Mangelsdorf, D.J. FGF19, FGF21 and an FGFR1/β-Klotho-Activating Antibody Act on the Nervous System to Regulate Body Weight and Glycemia. Cell Metab. 2017, 26, 709–718.e3. [Google Scholar] [CrossRef]
- Jin, L.; Yang, R.; Geng, L.; Xu, A. Fibroblast Growth Factor–Based Pharmacotherapies for the Treatment of Obesity-Related Metabolic Complications. Annu. Rev. Pharmacol. Toxicol. 2023, 63, 359–382. [Google Scholar] [CrossRef]
- Harrison, S.A.; Abdelmalek, M.F.; Neff, G.; Gunn, N.; Guy, C.D.; Alkhouri, N.; Bashir, M.R.; Freilich, B.; Kohli, A.; Khazanchi, A.; et al. Aldafermin in Patients with Non-Alcoholic Steatohepatitis (ALPINE 2/3): A Randomised, Double-Blind, Placebo-Controlled, Phase 2b Trial. Lancet Gastroenterol. Hepatol. 2022, 7, 603–616. [Google Scholar] [CrossRef] [PubMed]
- Ali, M.H.; Rehman, O.U.; Talha, M.; Fatima, E.; Fatima, L.; Zain, A.; Haisbuzzaman, M.A. Efficacy and Safety of the FGF19 Analog Aldafermin for the Treatment of Nonalcoholic Steatohepatitis: A GRADE Assessed Systematic Review and Meta-Analysis. Ann. Med. Surg. 2024, 86, 7072–7081. [Google Scholar] [CrossRef]
- Marey, M.M.; Belal, M.; Awad, A.A.; Rabea, E.M.; Hassan, M.A.; Abbas, A.W.; Nashwan, A.J. Efficacy and Safety of Aldafermin in Non-Alcoholic Steatohepatitis: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Clin. Res. Hepatol. Gastroenterol. 2024, 48, 102357. [Google Scholar] [CrossRef] [PubMed]
- Ge, H.; Baribault, H.; Vonderfecht, S.; Lemon, B.; Weiszmann, J.; Gardner, J.; Lee, K.J.; Gupte, J.; Mookherjee, P.; Wang, M.; et al. Characterization of a FGF19 Variant with Altered Receptor Specificity Revealed a Central Role for FGFR1c in the Regulation of Glucose Metabolism. PLoS ONE 2012, 7, e33603. [Google Scholar] [CrossRef] [PubMed]
- Rinella, M.E.; Lieu, H.D.; Kowdley, K.V.; Goodman, Z.D.; Alkhouri, N.; Lawitz, E.; Ratziu, V.; Abdelmalek, M.F.; Wong, V.W.-S.; Younes, Z.H.; et al. A Randomized, Double-Blind, Placebo-Controlled Trial of Aldafermin in Patients with NASH and Compensated Cirrhosis. Hepatology 2024, 79, 674–689. [Google Scholar] [CrossRef]
- ClinicalTrials.Gov. Study of Aldafermin (NGM282) in Subjects with Compensated Cirrhosis (ALPINE 4). Available online: https://Clinicaltrials.Gov/Study/NCT04210245 (accessed on 20 December 2024).
- Corbee, R.J.; van Everdingen, D.L.; Kooistra, H.S.; Penning, L.C. Fibroblast Growth Factor-21 (FGF21) Analogs as Possible Treatment Options for Diabetes Mellitus in Veterinary Patients. Front. Vet. Sci. 2023, 9, 1086987. [Google Scholar] [CrossRef] [PubMed]
- Lucas, K.J.; Harrison, S.A.; Chan, D.; Tillman, E.J.; Moulton, A.; De Temple, B.; Zari, A.; Shringarpure, R.; Rolph, T.; Cheng, A.; et al. 897-P: Insulin-Sensitizing Effects of Efruxifermin Improve Glycemic Control in Patients with MASH and Type 2 Diabetes. Diabetes 2024, 73, 897-P. [Google Scholar] [CrossRef]
- Harrison, S.A.; Ruane, P.J.; Freilich, B.L.; Neff, G.; Patil, R.; Behling, C.A.; Hu, C.; Fong, E.; de Temple, B.; Tillman, E.J.; et al. Efruxifermin in Non-Alcoholic Steatohepatitis: A Randomized, Double-Blind, Placebo-Controlled, Phase 2a Trial. Nat. Med. 2021, 27, 1262–1271. [Google Scholar] [CrossRef]
- Efruxifermin in Compensated Cirrhosis Due to NASH/MASH: Results from a Randomized, Double-Blind, Placebo-Controlled, Phase 2b Trial (SYMMETRY). Available online: https://www.natap.org/2023/AASLD/AASLD_104.htm (accessed on 6 January 2025).
- Harrison, S.A.; Ruane, P.J.; Freilich, B.; Neff, G.; Patil, R.; Behling, C.; Hu, C.; Shringarpure, R.; de Temple, B.; Fong, E.; et al. A Randomized, Double-Blind, Placebo-Controlled Phase IIa Trial of Efruxifermin for Patients with Compensated NASH Cirrhosis. JHEP Rep. 2022, 5, 100563. [Google Scholar] [CrossRef]
- ClinicalTrials.Gov. A Study Evaluating Efruxifermin in Subjects with Non-Cirrhotic Nonalcoholic Steatohepatitis (NASH)/Metabolic Dysfunction-Associated Steatohepatitis (MASH) and Fibrosis. Available online: https://Www.Clinicaltrials.Gov/Study/NCT06215716 (accessed on 20 December 2024).
- ClinicalTrials.Gov. A Study Evaluating Efruxifermin in Subjects with Non-Invasively Diagnosed Nonalcoholic Steatohepatitis (NASH)/Metabolic Dysfunction-Associated Steatohepatitis (MASH) and Nonalcoholic Fatty Liver Disease (NAFLD)/Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD). Available online: https://Www.Clinicaltrials.Gov/Study/NCT06161571 (accessed on 20 December 2024).
- ClinicalTrials.Gov. A Study Evaluating Efruxifermin in Subjects with Compensated Cirrhosis Due to NASH/MASH. Available online: https://Clinicaltrials.Gov/Study/NCT06528314 (accessed on 20 December 2024).
- Frias, J.P.; Lawitz, E.J.; Ortiz-LaSanta, G.; Franey, B.; Morrow, L.; Chen, C.-Y.; Tseng, L.; Charlton, R.W.; Mansbach, H.; Margalit, M.; et al. BIO89-100 Demonstrated Robust Reductions in Liver Fat and Liver Fat Volume (LFV) by MRI-PDFF, Favorable Tolerability and Potential for Weekly (QW) or Every 2 Weeks (Q2W) Dosing in a Phase 1b/2a Placebo-Controlled, Double-Blind, Multiple Ascending Dose Study in NASH. J. Endocr. Soc. 2021, 5, A5–A6. [Google Scholar] [CrossRef]
- Loomba, R.; Lawitz, E.J.; Frias, J.P.; Ortiz-Lasanta, G.; Johansson, L.; Franey, B.B.; Morrow, L.; Rosenstock, M.; Hartsfield, C.L.; Chen, C.-Y.; et al. Safety, Pharmacokinetics, and Pharmacodynamics of Pegozafermin in Patients with Non-Alcoholic Steatohepatitis: A Randomised, Double-Blind, Placebo-Controlled, Phase 1b/2a Multiple-Ascending-Dose Study. Lancet Gastroenterol. Hepatol. 2023, 8, 120–132. [Google Scholar] [CrossRef]
- Loomba, R.; Sanyal, A.J.; Kowdley, K.V.; Bhatt, D.L.; Alkhouri, N.; Frias, J.P.; Bedossa, P.; Harrison, S.A.; Lazas, D.; Barish, R.; et al. Randomized, Controlled Trial of the FGF21 Analogue Pegozafermin in NASH. N. Engl. J. Med. 2023, 389, 998–1008. [Google Scholar] [CrossRef]
- ClinicalTrials.Gov. A Study to Evaluate the Efficacy and Safety of Pegozafermin in Participants with Compensated Cirrhosis Due to MASH. Available online: https://Clinicaltrials.Gov/Study/NCT06419374 (accessed on 20 December 2024).
- Li, Y.; Li, T.; Zhou, Z.; Xiao, Y. Emerging Roles of Galectin-3 in Diabetes and Diabetes Complications: A Snapshot. Rev. Endocr. Metab. Disord. 2022, 23, 569–577. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.-S.; Li, X.-T.; Yu, L.-G.; Wang, L.; Shi, Z.-Y.; Guo, X.-L. Roles of Galectin-3 in Metabolic Disorders and Tumor Cell Metabolism. Int. J. Biol. Macromol. 2020, 142, 463–473. [Google Scholar] [CrossRef] [PubMed]
- Chalasani, N.; Abdelmalek, M.F.; Garcia-Tsao, G.; Vuppalanchi, R.; Alkhouri, N.; Rinella, M.; Noureddin, M.; Pyko, M.; Shiffman, M.; Sanyal, A.; et al. Effects of Belapectin, an Inhibitor of Galectin-3, in Patients With Nonalcoholic Steatohepatitis With Cirrhosis and Portal Hypertension. Gastroenterology 2020, 158, 1334–1345.e5. [Google Scholar] [CrossRef]
- Al Attar, A.; Antaramian, A.; Noureddin, M. Review of Galectin-3 Inhibitors in the Treatment of Nonalcoholic Steatohepatitis. Expert Rev. Clin. Pharmacol. 2021, 14, 457–464. [Google Scholar] [CrossRef] [PubMed]
- ClinicalTrials.Gov. Study Evaluating the Efficacy and Safety of Belapectin for the Prevention of Esophageal Varices in NASH Cirrhosis (NAVIGATE). Available online: https://Clinicaltrials.Gov/Study/NCT04365868 (accessed on 20 December 2024).
- Agrawal, R. The First Approved Agent in the Glitazar’s Class: Saroglitazar. Curr. Drug Targets 2014, 15, 151–155. [Google Scholar] [CrossRef] [PubMed]
- Joshi, S.R. Saroglitazar for the Treatment of Dyslipidemia in Diabetic Patients. Expert Opin. Pharmacother. 2015, 16, 597–606. [Google Scholar] [CrossRef]
- Siddiqui, M.T.; Amin, H.; Garg, R.; Chadalavada, P.; Al-Yaman, W.; Lopez, R.; Singh, A. Medications in Type-2 Diabetics and Their Association with Liver Fibrosis. World J. Gastroenterol. 2020, 26, 3249–3259. [Google Scholar] [CrossRef]
- Tidwell, J.; Balassiano, N.; Shaikh, A.; Nassar, M. Emerging Therapeutic Options for Non-Alcoholic Fatty Liver Disease: A Systematic Review. World J. Hepatol. 2023, 15, 1001–1012. [Google Scholar] [CrossRef]
- Kaul, U.; Parmar, D.; Manjunath, K.; Shah, M.; Parmar, K.; Patil, K.P.; Jaiswal, A. New Dual Peroxisome Proliferator Activated Receptor Agonist—Saroglitazar in Diabetic Dyslipidemia and Non-Alcoholic Fatty Liver Disease: Integrated Analysis of the Real World Evidence. Cardiovasc. Diabetol. 2019, 18, 80. [Google Scholar] [CrossRef]
- Goyal, O.; Nohria, S.; Goyal, P.; Kaur, J.; Sharma, S.; Sood, A.; Chhina, R.S. Saroglitazar in Patients with Non-Alcoholic Fatty Liver Disease and Diabetic Dyslipidemia: A Prospective, Observational, Real World Study. Sci. Rep. 2020, 10, 21117. [Google Scholar] [CrossRef]
- Bandyopadhyay, S.; Samajdar, S.S.; Das, S. Effects of Saroglitazar in the Treatment of Non-Alcoholic Fatty Liver Disease or Non-Alcoholic Steatohepatitis: A Systematic Review and Meta-Analysis. Clin. Res. Hepatol. Gastroenterol. 2023, 47, 102174. [Google Scholar] [CrossRef]
- Mir, B.A.; Sharma, B.; Sharma, R.; Bodh, V.; Chauhan, A.; Majeed, T.; Haq, I.; Sharma, N.; Sharma, D. A Prospective Randomised Comparative Four-Arm Intervention Study of Efficacy and Safety of Saroglitazar and Vitamin E in Patients with Non-Alcoholic Fatty Liver Disease (NAFLD)/Non-Alcoholic Steatohepatitis (NASH)-SVIN TRIAL. J. Clin. Exp. Hepatol. 2024, 14, 101398. [Google Scholar] [CrossRef]
- Gawrieh, S.; Noureddin, M.; Loo, N.; Mohseni, R.; Awasty, V.; Cusi, K.; Kowdley, K.V.; Lai, M.; Schiff, E.; Parmar, D.; et al. Saroglitazar, a PPAR-α/γ Agonist, for Treatment of NAFLD: A Randomized Controlled Double-Blind Phase 2 Trial. Hepatology 2021, 74, 1809–1824. [Google Scholar] [CrossRef] [PubMed]
- Chaudhuri, S.; Dutta, A.; Chakraborty, S.B.D. Efficacy and Safety of Saroglitazar in Real-World Patients of Non-Alcoholic Fatty Liver Disease with or without Diabetes Including Compensated Cirrhosis: A Tertiary Care Center Experience. JGH Open 2023, 7, 215–220. [Google Scholar] [CrossRef] [PubMed]
- Staels, B.; Butruille, L.; Francque, S. Treating NASH by Targeting Peroxisome Proliferator-Activated Receptors. J. Hepatol. 2023, 79, 1302–1316. [Google Scholar] [CrossRef]
- ClinicalTrials.Gov. Saroglitazar Magnesium for the Treatment of Nonalcoholic Steatohepatitis with Fibrosis (NASH). Available online: https://Www.Clinicaltrials.Gov/Study/NCT05011305 (accessed on 20 December 2024).
- Lanifibranor Reverses Insulin Resistance and Improves Glucose and Lipid Metabolism in Patients with Type 2 Diabetes (T2d) and Metabolic Dysfunctionassociated Steatotic Liver Disease (Masld)|Cochrane Library. Available online: https://www.cochranelibrary.com/central/doi/10.1002/central/CN-02667654/full (accessed on 6 January 2025).
- Cooreman, M.P.; Butler, J.; Giugliano, R.P.; Zannad, F.; Dzen, L.; Huot-Marchand, P.; Baudin, M.; Beard, D.R.; Junien, J.-L.; Broqua, P.; et al. The Pan-PPAR Agonist Lanifibranor Improves Cardiometabolic Health in Patients with Metabolic Dysfunction-Associated Steatohepatitis. Nat. Commun. 2024, 15, 3962. [Google Scholar] [CrossRef] [PubMed]
- Boyer-Diaz, Z.; Aristu-Zabalza, P.; Andrés-Rozas, M.; Robert, C.; Ortega-Ribera, M.; Fernández-Iglesias, A.; Broqua, P.; Junien, J.-L.; Wettstein, G.; Bosch, J.; et al. Pan-PPAR Agonist Lanifibranor Improves Portal Hypertension and Hepatic Fibrosis in Experimental Advanced Chronic Liver Disease. J. Hepatol. 2021, 74, 1188–1199. [Google Scholar] [CrossRef]
- Francque, S.M.; Bedossa, P.; Ratziu, V.; Anstee, Q.M.; Bugianesi, E.; Sanyal, A.J.; Loomba, R.; Harrison, S.A.; Balabanska, R.; Mateva, L.; et al. A Randomized, Controlled Trial of the Pan-PPAR Agonist Lanifibranor in NASH. N. Engl. J. Med. 2021, 385, 1547–1558. [Google Scholar] [CrossRef] [PubMed]
- ClinicalTrials.Gov. A Phase 3 Study Evaluating Efficacy and Safety of Lanifibranor Followed by an Active Treatment Extension in Adult Patients with (NASH) and Fibrosis Stages F2 and F3 (NATiV3) (NATiV3). Available online: https://Clinicaltrials.Gov/Study/NCT04849728 (accessed on 20 December 2024).
- ClinicalTrials.Gov. Study of Semaglutide and Cilofexor/Firsocostat, Alone and in Combination, in Adults with Cirrhosis Due to Nonalcoholic Steatohepatitis (NASH) (WAYFIND). Available online: https://Clinicaltrials.Gov/Study/NCT04971785 (accessed on 20 December 2024).
- Loomba, R.; Noureddin, M.; Kowdley, K.V.; Kohli, A.; Sheikh, A.; Neff, G.; Bhandari, B.R.; Gunn, N.; Caldwell, S.H.; Goodman, Z.; et al. Combination Therapies Including Cilofexor and Firsocostat for Bridging Fibrosis and Cirrhosis Attributable to NASH. Hepatology 2021, 73, 625. [Google Scholar] [CrossRef]
- ClinicalTrials.Gov. A Study to Test Safety and Efficacy of Survodutide (BI456906) in Adults with Non-Alcoholic Steatohepatitis (NASH) and Fibrosis (F1-F3). Available online: https://Clinicaltrials.Gov/Study/NCT04771273 (accessed on 20 December 2024).
- ClinicalTrials.Gov. A Study to Evaluate the Safety and Efficacy of Cotadutide Given by Subcutaneous Injection in Adult Participants with Non-Cirrhotic Non-Alcoholic Steatohepatitis with Fibrosis (PROXYMO-ADV). Available online: https://Clinicaltrials.Gov/Study/NCT05364931 (accessed on 20 December 2024).
- ClinicalTrials.Gov. A Phase 3 Study to Evaluate the Efficacy and Safety of MGL-3196 (Resmetirom) in Patients with NASH and Fibrosis (MAESTRO-NASH). Available online: https://Clinicaltrials.Gov/Study/NCT03900429 (accessed on 20 December 2024).
- ClinicalTrials.Gov. A Study of Efruxifermin in Non-Cirrhotic Subjects with Histologically Confirmed Nonalcoholic Steatohepatitis (NASH) (Harmony). Available online: https://Clinicaltrials.Gov/Study/NCT04767529 (accessed on 20 December 2024).
- ClinicalTrials.Gov. A Study Evaluating the Efficacy and Safety of Pegozafermin in Participants with MASH and Fibrosis (ENLIGHTEN-Fibrosis). Available online: https://Clinicaltrials.Gov/Study/NCT06318169 (accessed on 20 December 2024).
- ClinicalTrials.Gov. Study Evaluating the Safety, Efficacy and Tolerability of BIO89-100 in Subjects with Biopsy-Confirmed Nonalcoholic Steatohepatitis (NASH) (ENLIVEN). Available online: https://Clinicaltrials.Gov/Study/NCT04929483 (accessed on 20 December 2024).
- ClinicalTrials.Gov. Clinical Trial to Evaluate Efficacy of GR-MD-02 for Treatment of Liver Fibrosis in Patients with NASH With Advanced Fibrosis (NASH-FX). Available online: https://Www.Clinicaltrials.Gov/Study/NCT02421094 (accessed on 20 December 2024).
- ClinicalTrials.Gov. An Investigator Initiated Prospective, Four Arms Randomized Comparative Study of Efficacy and Safety of Saroglitazar, Vitamin E and Life Style Modification in Patients With Nonalcoholic Fatty Liver Disease (NAFLD)/Non-Alcoholic Steatohepatitis (NASH). Available online: https://Www.Clinicaltrials.Gov/Study/NCT04193982 (accessed on 20 December 2024).
- ClinicalTrials.Gov. Efficacy and Safety Study of Cenicriviroc for the Treatment of Nonalcoholic Steatohepatitis (NASH) in Adult Participants with Liver Fibrosis (CENTAUR). Available online: https://Clinicaltrials.Gov/Study/NCT02217475 (accessed on 20 December 2024).
- ClinicalTrials.Gov. Study of Safety, Tolerability, and Efficacy of a Combination Treatment of LJN452 and CVC in Adult Patients with NASH and Liver Fibrosis (TANDEM). Available online: https://Clinicaltrials.Gov/Study/NCT03517540 (accessed on 20 December 2024).
- ClinicalTrials.Gov. AURORA: A Study for the Efficacy and Safety of Cenicriviroc (CVC) for the Treatment of Liver Fibrosis in Adults with Nonalcoholic Steatohepatitis (NASH). Available online: https://Clinicaltrials.Gov/Study/NCT03028740 (accessed on 20 December 2024).
- ClinicalTrials.Gov. Effect on Non-Alcoholic Fatty Liver Disease in Patients with Type 2 Diabetes Mellitus with Gastric Inhibitory Polypeptide/Glucagon Like Peptide-1 Analogue. Available online: https://Clinicaltrials.Gov/Study/NCT05751720 (accessed on 20 December 2024).
- ClinicalTrials.Gov. A Phase 3 Study to Evaluate the Effect of Resmetirom on Clinical Outcomes in Patients with Well-Compensated NASH Cirrhosis (MAESTRO-NASH-OUTCOMES). Available online: https://Clinicaltrials.Gov/Study/NCT05500222 (accessed on 20 December 2024).
- ClinicalTrials.Gov. A Study of Efruxifermin in Subjects with Compensated Cirrhosis Due to Nonalcoholic Steatohepatitis (NASH) (Symmetry). Available online: https://Clinicaltrials.Gov/Study/NCT05039450 (accessed on 20 December 2024).
- ClinicalTrials.Gov. Clinical Trial to Evaluate the Safety and Efficacy of GR-MD-02 for the Treatment of Liver Fibrosis and Resultant Portal Hypertension in Patients with Nash Cirrhosis (NASH-CX). Available online: https://Clinicaltrials.Gov/Study/NCT02462967 (accessed on 20 December 2024).
- Wolf, E.; Rich, N.E.; Marrero, J.A.; Parikh, N.D.; Singal, A.G. Use of Hepatocellular Carcinoma Surveillance in Patients with Cirrhosis: A Systematic Review and Meta-Analysis. Hepatology 2021, 73, 713. [Google Scholar] [CrossRef] [PubMed]
- Feng, G.; Valenti, L.; Wong, V.W.-S.; Fouad, Y.M.; Yilmaz, Y.; Kim, W.; Sebastiani, G.; Younossi, Z.M.; Hernandez-Gea, V.; Zheng, M.-H. Recompensation in Cirrhosis: Unravelling the Evolving Natural History of Nonalcoholic Fatty Liver Disease. Nat. Rev. Gastroenterol. Hepatol. 2024, 21, 46–56. [Google Scholar] [CrossRef] [PubMed]
Drug | Advantage | Side Effects | Indication |
---|---|---|---|
Biguanides |
|
|
|
Sulfonylureas |
|
| |
Thiazolidinediones |
|
|
|
DPP-4 inhibitors |
|
|
|
GLP-1 receptor agonists |
|
|
|
SGLT-2 inhibitors |
|
|
|
Alpha-glucosidase inhibitor |
|
|
|
Intervention | Clinical Trial Identifier, Acronym, Ref. | Trial Phase | Estimated Enrollment | Start Date | Completion Date | Time Frame | Primary Outcomes | Secondary Outcomes |
---|---|---|---|---|---|---|---|---|
Tirzepatide vs. Placebo | NCT04166773 (SYNERGY-NASH) [68] | Phase 2 | 196 | November 2019 | October 2024 | 52 weeks |
|
|
Survodutide (BI 456906) vs. Placebo | NCT04771273 [179] | Phase 2 | 295 | April 2021 | December 2023 | 48 weeks |
|
|
Survodutide vs. Placebo | NCT06632444 (LIVERAGE™) [80] | Phase 3 | 1800 | October 2024 | December 2031 | 52 weeks |
|
|
Cotadutide 300 μg/600 μg sc once daily vs. placebo | NCT05364931 (PROXYMO-ADV) [180] | Phase 2 | 54 | July 2022 | April 2024 | 28 days |
| |
Efinopegdutide (MK-6024) vs. Semaglutide vs. Placebo | NCT05877547 [96] | Phase 2b | 360 | June 2023 | December 2025 | 52 weeks |
|
|
Pemvidutide vs. Placebo | NCT05989711 (IMPACT) [99] | Phase 2 | 190 | July 2023 | September 2025 | 24 weeks |
|
|
Resmetirom (MGL-3196) vs. Placebo | NCT03900429 (MAESTRO-NASH) [181] | Phase 3 | 1759 | March 2019 | January 2028 | 52 weeks |
|
|
Efruxifermin vs. Placebo | NCT04767529 (HARMONY) [182] | Phase 2b | 128 | February 2021 | March 2024 | 24 weeks, 96 weeks |
|
|
Efruxifermin vs. Placebo | NCT06161571 (SYNCHRONY-REAL-WORLD) [149] | Phase 3 | 700 | November 2023 | October 2026 | 52 weeks |
|
|
Efruxifermin vs. Placebo | NCT06215716 (SYNCHRONY-HISTOLOGY) [148] | Phase 3 | 1650 | December 2023 | November 2032 | 52 weeks, 240 weeks |
|
|
Pegozafermin vs. Placebo | NCT06318169 (ENLIGHTEN-Fibrosis) [183] | Phase 3 | 1050 | March 2024 | February 2029 | 52 weeks |
|
|
BIO89-100 (Pegozafermin) vs. Placebo | NCT04929483 (ENLIVEN) [184] | Phase 2 | 222 | June 2021 | September 2024 | 24 weeks |
|
|
GR-MD-02 (Belapectin) vs. Placebo | NCT02421094 (NASH-FX) [185] | Phase 2 | 30 | September 2015 | September 2016 | 16 weeks |
|
|
Saroglitazar Magnesium 2 mg vs. Saroglitazar Magnesium 4 mg vs. Placebo | NCT05011305 [171] | Phase 2b | 180 | August 2021 | September 2025 | 52 weeks |
|
|
Saroglitazar vs. Vitamin E vs. Combination drug vs. Lifestyle Changes | NCT04193982 [186] | Phase 3 | 250 | January 2021 | October 2021 | 24 weeks |
|
|
Cenicriviroc vs. Placebo | NCT02217475 (CENTAUR) [187] | Phase 2 | 289 | September 2014 | June 2017 | 52, 104 weeks |
|
|
Tropifexor (LJN452) vs. Cenicriviroc | NCT03517540 (TANDEM) [188] | Phase 2 | 193 | September 2018 | October 2020 | 48 weeks |
|
|
Cenicriviroc vs. Placebo | NCT03028740 (AURORA) [189] | Phase 3 | 1778 | April 2017 | March 2021 | 52 weeks |
|
|
Lanifibranor (IVA337) vs. Placebo | NCT04849728 (NATiV3) [176] | Phase 3 | 1000 | August 2021 | September 2026 | 72 weeks |
|
Intervention | Clinical Trial Identifier, Acronym, Ref. | Trial Phase | Estimated Enrollment | Start Date | Completion Date | Time Frame | Primary Outcomes | Secondary Outcomes |
---|---|---|---|---|---|---|---|---|
Tirzepatide vs. Oral Semaglutide | NCT05751720 [190] | Phase 2 | 30 | October 2023 | February 2025 | 52 weeks |
|
|
Roux-en-Y Gastric Bypass/ Sleeve Gastrectomy vs. Tirzepatide/ Semaglutide | NCT06374875 (FLAMES) [70] | Phase 4 | 120 | July 2023 | December 2029 | 2 years |
|
|
Survodutide vs. Placebo | NCT06632457 (LIVERAGE™—Cirrhosis) [81] | Phase 3 | 1590 | November 2024 | June 2029 | 76 weeks, 4.5 years |
|
|
Cotadutide | NCT05517226 [89] | Phase 1 | 24 | June 2022 | February 2023 | 29 days |
|
|
Efinopegdutide (MK-6024) vs. Placebo | NCT06465186 [95] | Phase 2a | 80 | July 2024 | May 2026 | 28-36 weeks |
|
|
NNC0194 0499 vs. Placebo vs. Semaglutide 3 mg/mL | NCT05016882 [115] | Phase 2 | 672 | August 2021 | March 2025 | 52 weeks |
|
|
Resmetirom vs. Placebo | NCT05500222 (MAESTRO-NASH-OUTCOMES) [191] | Phase 3 | 700 | August 2022 | January 2027 | 36 months |
| |
Aldafermin (NGM282) vs. Placebo | NCT04210245 (ALPINE 4) [142] | Phase 2b | 160 | March 2020 | February 2023 | 48 weeks |
| |
Efruxifermin vs. Placebo | NCT05039450 (SYMMETRY) [192] | Phase 2b | 200 | July 2021 | April 2024 | 36-96 weeks |
|
|
Efruxifermin vs. Placebo | NCT06528314 (SYNCHRONY-OUTCOMES) [150] | Phase 3 | 1150 | September 2024 | October 2029 | 96 weeks 5 years |
|
|
Pegozafermin vs. Placebo | NCT06419374 (ENLIGHTEN-Cirrhosis) [154] | Phase 3 | 762 | May 2024 | August 2031 | 24–60 months |
|
|
Belapectin (GR MD-02) vs. Placebo | NCT04365868 (NAVIGATE) [159] | Phase 2b/3 | 357 | June 2020 | December 2024 | 78–156 weeks |
|
|
Belapectin (GR MD-02) vs. Placebo | NCT02462967 (NASH-CX) [193] | Phase 2 | 162 | June 2015 | October 2017 | 52 weeks |
|
|
Semaglutide (SEMA) vs. Cilofexor (CILO)/Firsocostat (FIR) vs. PTM SEMA vs. PTM CILO/FIR | NCT04971785 (WAYFIND) [177] | Phase 2 | 457 | August 2021 | December 2024 | 72 weeks |
|
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cazac-Panaite, G.-D.; Lăcătușu, C.-M.; Grigorescu, E.-D.; Foșălău, A.-B.; Onofriescu, A.; Mihai, B.-M. Innovative Drugs First Implemented in Type 2 Diabetes Mellitus and Obesity and Their Effects on Metabolic Dysfunction-Associated Steatohepatitis (MASH)-Related Fibrosis and Cirrhosis. J. Clin. Med. 2025, 14, 1042. https://doi.org/10.3390/jcm14041042
Cazac-Panaite G-D, Lăcătușu C-M, Grigorescu E-D, Foșălău A-B, Onofriescu A, Mihai B-M. Innovative Drugs First Implemented in Type 2 Diabetes Mellitus and Obesity and Their Effects on Metabolic Dysfunction-Associated Steatohepatitis (MASH)-Related Fibrosis and Cirrhosis. Journal of Clinical Medicine. 2025; 14(4):1042. https://doi.org/10.3390/jcm14041042
Chicago/Turabian StyleCazac-Panaite, Georgiana-Diana, Cristina-Mihaela Lăcătușu, Elena-Daniela Grigorescu, Adina-Bianca Foșălău, Alina Onofriescu, and Bogdan-Mircea Mihai. 2025. "Innovative Drugs First Implemented in Type 2 Diabetes Mellitus and Obesity and Their Effects on Metabolic Dysfunction-Associated Steatohepatitis (MASH)-Related Fibrosis and Cirrhosis" Journal of Clinical Medicine 14, no. 4: 1042. https://doi.org/10.3390/jcm14041042
APA StyleCazac-Panaite, G.-D., Lăcătușu, C.-M., Grigorescu, E.-D., Foșălău, A.-B., Onofriescu, A., & Mihai, B.-M. (2025). Innovative Drugs First Implemented in Type 2 Diabetes Mellitus and Obesity and Their Effects on Metabolic Dysfunction-Associated Steatohepatitis (MASH)-Related Fibrosis and Cirrhosis. Journal of Clinical Medicine, 14(4), 1042. https://doi.org/10.3390/jcm14041042