Diabetes Mellitus in Kidney Transplant Recipients: New Horizons in Treatment
Abstract
:1. Introduction
2. Risk Factors for Diabetes Mellitus Post Transplant
3. Impact on Cardiovascular Health
4. Complications and Long-Term Consequences of DM in KTR
5. New Pharmacological Interventions in KTR
5.1. Sodium Glucose Cotransporter-2 Inhibitors
5.2. Glucagon-like Peptide Receptor Agonists
5.3. Finerenone
6. Discussion
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- González Delgado, A.; Hernández, A.F.; Marrero, D.; Maside, A.F.; Barroso, G.H.; Carreño, E.P.; Acosta Sørensen, C.; Rodríguez-Rodríguez, A.E.; Collantes, T.; Anabel, R.; et al. Inflammation on the Waiting List Is a Risk Factor for New-Onset Prediabetes and Post-Transplant Diabetes Mellitus: A Prospective Study. Nephron 2023, 147, 560–571. [Google Scholar] [CrossRef] [PubMed]
- Sharif, A.; Hecking, M.; de Vries, A.P.J.; Porrini, E.; Hornum, M.; Rasoul-Rockenschaub, S.; Berlakovich, G.; Krebs, M.; Kautzky-Willer, A.; Schernthaner, G.; et al. Proceedings from an international consensus meeting on posttransplantation diabetes mellitus: Recommendations and future directions. Am. J. Transplant. 2014, 14, 1992–2000. [Google Scholar] [CrossRef] [PubMed]
- Sharif, A.; Chakkera, H.; de Vries, A.P.J.; Eller, K.; Guthoff, M.; Haller, M.C.; Hornum, M.; Nordheim, E.; Kautzky-Willer, A.; Krebs, M.; et al. International consensus on post-transplantation diabetes mellitus. Nephrol. Dial. Transplant. 2024, 39, 531–549. [Google Scholar] [CrossRef]
- Torres Ramírez, A.; Rodríguez Rodríguez, A.E.; Porrini, E. Diabetes Tras el Trasplante Renal; Lorenzo, V., López Gómez, J.M., Eds.; Nefrología al día; Elsevier: Amsterdam, The Netherlands, 2023; ISSN 2659-2606. Available online: https://www.nefrologiaaldia.org/298 (accessed on 26 January 2025).
- Jenssen, T.; Hartmann, A. Post-transplant diabetes mellitus in patients with solid organ transplants. Nat. Rev. Endocrinol. 2019, 15, 172–188. [Google Scholar] [CrossRef]
- Zhu, K.; Qian, F.; Lu, Q.; Li, R.; Qiu, Z.; Li, L.; Li, R.; Yu, H.; Deng, Y.; Yang, K.; et al. Modifiable Lifestyle Factors, Genetic Risk, and Incident Peripheral Artery Disease Among Individuals with Type 2 Diabetes: A Prospective Study. Diabetes Care 2024, 47, 435–443. [Google Scholar] [CrossRef] [PubMed]
- Zoulakis, M.; Johansson, L.; Litsne, H.; Axelsson, K.; Lorentzon, M. Type 2 Diabetes and Fracture Risk in Older Women. JAMA Netw. Open 2024, 7, e2425106. [Google Scholar] [CrossRef]
- Chen, S.; Bowen, D.G.; Liu, K.; Vidot, H. Hypomagnesaemia, an independent risk factor for the development of post-transplant diabetes mellitus in liver and renal transplant recipients? A systematic review. J. Hum. Nutr. Diet. 2024, 37, 1407–1419. [Google Scholar] [CrossRef]
- Wang, X.; Chen, J.; Cao, Z.; Yu, X. Associations between human cytomegalovirus infection and type 2 diabetes mellitus: A systematic review and meta-analysis. BMJ Open 2023, 13, e071934. [Google Scholar] [CrossRef]
- Torres, A.; Hernández, D.; Moreso, F.; Serón, D.; Burgos, M.D.; Pallardó, L.M.; Kanter, J.; Díaz Corte, C.; Rodríguez, M.; Diaz, J.M.; et al. Randomized Controlled Trial Assessing the Impact of Tacrolimus Versus Cyclosporine on the Incidence of Posttransplant Diabetes Mellitus. Kidney Int. Rep. 2018, 3, 1304–1315. [Google Scholar] [CrossRef]
- Mourad, G.; Glyda, M.; Albano, L.; Viklický, O.; Merville, P.; Tydén, G.; Mourad, M.; Lõhmus, A.; Witzke, O.; Christiaans, M.H.L.; et al. Incidence of Posttransplantation Diabetes Mellitus in De Novo Kidney Transplant Recipients Receiving Prolonged-Release Tacrolimus-Based Immunosuppression With 2 Different Corticosteroid Minimization Strategies: ADVANCE, A Randomized Controlled Trial. Transplantation 2017, 101, 1924–1934. [Google Scholar] [CrossRef]
- Kasiske, B.L.; Snyder, J.J.; Gilbertson, D.; Matas, A.J. Diabetes mellitus after kidney transplantation in the United States. Am. J. Transplant. 2003, 3, 178–185. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Rodriguez, A.E.; Porrini, E.; Torres, A. Beta-Cell Dysfunction Induced by Tacrolimus: A Way to Explain Type 2 Diabetes? Int. J. Mol. Sci. 2021, 22, 10311. [Google Scholar] [CrossRef] [PubMed]
- Shivaswamy, V.; Boerner, B.; Larsen, J. Post-Transplant Diabetes Mellitus: Causes, Treatment, and Impact on Outcomes. Endocr. Rev. 2016, 37, 37–61. [Google Scholar] [CrossRef]
- Wallia, A.; Illuri, V.; Molitch, M.E. Diabetes Care After Transplant: Definitions, Risk Factors, and Clinical Management. Med. Clin. N. Am. 2016, 100, 535–550. [Google Scholar] [CrossRef]
- Dos Santos, Q.; Hornum, M.; Terrones-Campos, C.; Crone, C.G.; Wareham, N.E.; Soeborg, A.; Rasmussen, A.; Gustafsson, F.; Perch, M.; Soerensen, S.S.; et al. Posttransplantation Diabetes Mellitus Among Solid Organ Recipients in a Danish Cohort. Transpl. Int. 2022, 35, 10352. [Google Scholar] [CrossRef]
- Malik, R.F.; Jia, Y.; Mansour, S.G.; Reese, P.P.; Hall, I.E.; Alasfar, S.; Doshi, M.D.; Akalin, E.; Bromberg, J.S.; Harhay, M.N.; et al. Post-transplant Diabetes Mellitus in Kidney Transplant Recipients: A Multicenter Study. Kidney360 2021, 2, 1296–1307. [Google Scholar] [CrossRef]
- Avdic, T.; Carlsen, H.K.; Isaksson, R.; Gudbjörnsdottir, S.; Mandalenakis, Z.; Franzén, S.; Sattar, N.; Beckman, J.A.; McGuire, D.K.; Eliasson, B. Risk Factors for and Risk of Peripheral Artery Disease in Swedish Individuals With Type 2 Diabetes: A Nationwide Register-Based Study. Diabetes Care 2024, 47, 109–116. [Google Scholar] [CrossRef]
- Bloom, R.D.; Rao, V.; Weng, F.; Grossman, R.A.; Cohen, D.; Mange, K.C. Association of hepatitis C with posttransplant diabetes in renal transplant patients on tacrolimus. J. Am. Soc. Nephrol. 2002, 13, 1374–1380. [Google Scholar] [CrossRef]
- Kim, Y.G.; Ihm, C.-G.; Lee, T.W.; Lee, S.H.; Jeong, K.H.; Moon, J.Y.; Chung, J.-H.; Kim, S.K.; Kim, Y.H. Association of genetic polymorphisms of interleukins with new-onset diabetes after transplantation in renal transplantation. Transplantation 2012, 93, 900–907. [Google Scholar] [CrossRef]
- Chen, Y.; Sampaio, M.S.; Yang, J.W.; Min, D.; Hutchinson, I.V. Genetic polymorphisms of the transcription factor NFATc4 and development of new-onset diabetes after transplantation in Hispanic kidney transplant recipients. Transplantation 2012, 93, 325–330. [Google Scholar] [CrossRef]
- Nicoletto, B.B.; Souza, G.C.; Fonseca, N.K.O.; Centenaro, A.; Manfro, R.C.; Canani, L.H.S.; Gonçalves, L.F.S. Association between 276G/T adiponectin gene polymorphism and new-onset diabetes after kidney transplantation. Transplantation 2013, 96, 1059–1064. [Google Scholar] [CrossRef] [PubMed]
- Oliveras, L.; Coloma, A.; Lloberas, N.; Lino, L.; Favà, A.; Manonelles, A.; Codina, S.; Couceiro, C.; Melilli, E.; Sharif, A.; et al. Immunosuppressive drug combinations after kidney transplantation and post-transplant diabetes: A systematic review and meta-analysis. Transplant. Rev. 2024, 38, 100856. [Google Scholar] [CrossRef] [PubMed]
- Alajous, S.; Budhiraja, P. New-Onset Diabetes Mellitus after Kidney Transplantation. J. Clin. Med. 2024, 13, 1928. [Google Scholar] [CrossRef] [PubMed]
- Midtvedt, K.; Hjelmesaeth, J.; Hartmann, A.; Lund, K.; Paulsen, D.; Egeland, T.; Jenssen, T. Insulin resistance after renal transplantation: The effect of steroid dose reduction and withdrawal. J. Am. Soc. Nephrol. 2004, 15, 3233–3239. [Google Scholar] [CrossRef]
- Sokooti, S.; Szili-Török, T.; Heerspink, H.J.L.; Dullaart, R.P.F.; Bakker, S.J.L. Indirect Insulin Resistance Indices and Their Cut-Off Values for the Prediction of Post-Transplantation Diabetes Mellitus in Kidney Transplant Recipients. J. Clin. Med. 2023, 12, 7296. [Google Scholar] [CrossRef]
- Webster, A.C.; Taylor, R.R.; Chapman, J.R.; Craig, J.C. Tacrolimus versus cyclosporin as primary immunosuppression for kidney transplant recipients. Cochrane Database Syst. Rev. 2005, 4, 1–104. [Google Scholar] [CrossRef]
- Marx, N.; Federici, M.; Schütt, K.; Müller-Wieland, D.; Ajjan, R.A.; Antunes, M.J.; Christodorescu, R.M.; Crawford, C.; Di Angelantonio, E.; Eliasson, B.; et al. 2023 ESC Guidelines for the management of cardiovascular disease in patients with diabetes. Eur. Heart J. 2023, 44, 4043–4140. [Google Scholar] [CrossRef]
- Emerging Risk Factors Collaboration; Sarwar, N.; Gao, P.; Seshasai, S.R.K.; Gobin, R.; Kaptoge, S.; Di Angelantonio, E.; Ingelsson, E.; Lawlor, D.A.; Selvin, E.; et al. Diabetes mellitus, fasting blood glucose concentration, and risk of vascular disease: A collaborative meta-analysis of 102 prospective studies. Lancet 2010, 375, 2215–2222. [Google Scholar] [CrossRef]
- Chronic Kidney Disease Prognosis Consortium; Matsushita, K.; van der Velde, M.; Astor, B.C.; Woodward, M.; Levey, A.S.; de Jong, P.E.; Coresh, J.; Gansevoort, R.T. Association of estimated glomerular filtration rate and albuminuria with all-cause and cardiovascular mortality in general population cohorts: A collaborative meta-analysis. Lancet 2010, 375, 2073–2081. [Google Scholar] [CrossRef]
- Pilmore, H.; Dent, H.; Chang, S.; McDonald, S.P.; Chadban, S.J. Reduction in cardiovascular death after kidney transplantation. Transplantation 2010, 89, 851–857. [Google Scholar] [CrossRef]
- Sridhar, V.S.; Ambinathan, J.P.N.; Gillard, P.; Mathieu, C.; Cherney, D.Z.I.; Lytvyn, Y.; Singh, S.K. Cardiometabolic and Kidney Protection in Kidney Transplant Recipients with Diabetes: Mechanisms, Clinical Applications, and Summary of Clinical Trials. Transplantation 2022, 106, 734–748. [Google Scholar] [CrossRef] [PubMed]
- Boerner, B.P.; Shivaswamy, V.; Desouza, C.V.; Larsen, J.L. Diabetes and cardiovascular disease following kidney transplantation. Curr. Diabetes Rev. 2011, 7, 221–234. [Google Scholar] [CrossRef] [PubMed]
- Rysz, J.; Franczyk, B.; Radek, M.; Ciałkowska-Rysz, A.; Gluba-Brzózka, A. Diabetes and Cardiovascular Risk in Renal Transplant Patients. Int. J. Mol. Sci. 2021, 22, 3422. [Google Scholar] [CrossRef] [PubMed]
- Cosio, F.G.; Pesavento, T.E.; Kim, S.; Osei, K.; Henry, M.; Ferguson, R.M. Patient survival after renal transplantation: IV. Impact of post-transplant diabetes. Kidney Int. 2002, 62, 1440–1446. [Google Scholar] [CrossRef]
- Davidson, J.; Wilkinson, A.; Dantal, J.; Dotta, F.; Haller, H.; Hernández, D.; Kasiske, B.L.; Kiberd, B.; Krentz, A.; Legendre, C.; et al. New-onset diabetes after transplantation: 2003 International consensus guidelines. Proceedings of an international expert panel meeting. Barcelona, Spain, 19 February 2003. Transplantation 2003, 75, SS3–SS24. [Google Scholar] [CrossRef]
- Chakkera, H.A.; Weil, E.J.; Pham, P.-T.; Pomeroy, J.; Knowler, W.C. Can new-onset diabetes after kidney transplant be prevented? Diabetes Care 2013, 36, 1406–1412. [Google Scholar] [CrossRef]
- American Diabetes Association Professional Practice Committee 2. Diagnosis and Classification of Diabetes: Standards of Care in Diabetes-2024. Diabetes Care 2024, 47, S20–S42. [Google Scholar] [CrossRef]
- Kervinen, M.; Lehto, S.; Grönhagen-Riska, C.; Finne, P. Effect of vascular comorbidities on survival of type 2 diabetes patients on renal replacement therapy. Am. J. Nephrol. 2012, 36, 509–515. [Google Scholar] [CrossRef]
- Kervinen, M.H.; Lehto, S.; Helve, J.; Grönhagen-Riska, C.; Finne, P. Type 2 diabetic patients on renal replacement therapy: Probability to receive renal transplantation and survival after transplantation. PLoS ONE 2018, 13, e0201478. [Google Scholar] [CrossRef]
- García-Padilla, P.; Dávila-Rúales, V.; Hurtado, D.C.; Vargas, D.C.; Muñoz, O.M.; Jurado, M.A. A Comparative Study on Graft and Overall Survival Rates Between Diabetic and Nondiabetic Kidney Transplant Patients Through Survival Analysis. Can. J. Kidney Health 2023, 10, 20543581231199011. [Google Scholar] [CrossRef]
- Rocha, A.; Malheiro, J.; Martins, L.S.; Fonseca, I.; Dias, L.; Pedroso, S.; Almeida, M.; Henriques, A.C. Kidney transplantation in type 2 diabetic patients: A matched survival analysis. Transplant. Proc. 2013, 45, 2141–2146. [Google Scholar] [CrossRef] [PubMed]
- Lim, W.H.; Wong, G.; Pilmore, H.L.; McDonald, S.P.; Chadban, S.J. Long-term outcomes of kidney transplantation in people with type 2 diabetes: A population cohort study. Lancet Diabetes Endocrinol. 2017, 5, 26–33. [Google Scholar] [CrossRef] [PubMed]
- Keddis, M.T.; El Ters, M.; Rodrigo, E.; Dean, P.; Wohlfahrtova, M.; Kudva, Y.C.; Lorenz, E.C.; Cosio, F.G. Enhanced posttransplant management of patients with diabetes improves patient outcomes. Kidney Int. 2014, 86, 610–618. [Google Scholar] [CrossRef] [PubMed]
- Lin, H.; Yan, J.; Yuan, L.; Qi, B.; Zhang, Z.; Zhang, W.; Ma, A.; Ding, F. Impact of diabetes mellitus developing after kidney transplantation on patient mortality and graft survival: A meta-analysis of adjusted data. Diabetol. Metab. Syndr. 2021, 13, 126. [Google Scholar] [CrossRef]
- Gaynor, J.J.; Ciancio, G.; Guerra, G.; Sageshima, J.; Hanson, L.; Roth, D.; Goldstein, M.J.; Chen, L.; Kupin, W.; Mattiazzi, A.; et al. Single-centre study of 628 adult, primary kidney transplant recipients showing no unfavourable effect of new-onset diabetes after transplant. Diabetologia 2015, 58, 334–345. [Google Scholar] [CrossRef]
- Hussain, A.; Culliford, A.; Phagura, N.; Evison, F.; Gallier, S.; Sharif, A. Comparing survival outcomes for kidney transplant recipients with pre-existing diabetes versus those who develop post-transplantation diabetes. Diabet. Med. 2022, 39, e14707. [Google Scholar] [CrossRef]
- Cao, M.-J.; Liang, T.-T.; Xu, L.; Shi, F.-H. Evaluating the overall renal outcomes of sodium-glucose cotransporter-2 (SGLT2) inhibitors in patients with chronic kidney disease (CKD). Diabetol. Metab. Syndr. 2025, 17, 5. [Google Scholar] [CrossRef]
- Perkovic, V.; de Zeeuw, D.; Mahaffey, K.W.; Fulcher, G.; Erondu, N.; Shaw, W.; Barrett, T.D.; Weidner-Wells, M.; Deng, H.; Matthews, D.R.; et al. Canagliflozin and renal outcomes in type 2 diabetes: Results from the CANVAS Program randomised clinical trials. Lancet Diabetes Endocrinol. 2018, 6, 691–704. [Google Scholar] [CrossRef]
- Wanner, C.; Nangaku, M.; Kraus, B.J.; Zinman, B.; Mattheus, M.; Hantel, S.; Schumacher, M.; Ohneberg, K.; Schmoor, C.; Inzucchi, S.E. How do SGLT2 inhibitors protect the kidney? A mediation analysis of the EMPA-REG OUTCOME trial. Nephrol. Dial. Transplant. 2024, 39, 1504–1513. [Google Scholar] [CrossRef]
- Oshima, M.; Neuen, B.L.; Li, J.; Perkovic, V.; Charytan, D.M.; de Zeeuw, D.; Edwards, R.; Greene, T.; Levin, A.; Mahaffey, K.W.; et al. Early Change in Albuminuria with Canagliflozin Predicts Kidney and Cardiovascular Outcomes: A PostHoc Analysis from the CREDENCE Trial. J. Am. Soc. Nephrol. 2020, 31, 2925–2936. [Google Scholar] [CrossRef]
- Wheeler, D.C.; Stefánsson, B.V.; Jongs, N.; Chertow, G.M.; Greene, T.; Hou, F.F.; McMurray, J.J.V.; Correa-Rotter, R.; Rossing, P.; Toto, R.D.; et al. Effects of dapagliflozin on major adverse kidney and cardiovascular events in patients with diabetic and non-diabetic chronic kidney disease: A prespecified analysis from the DAPA-CKD trial. Lancet Diabetes Endocrinol. 2021, 9, 22–31. [Google Scholar] [CrossRef] [PubMed]
- The EMPA-KIDNEY Collaborative Group; Herrington, W.G.; Staplin, N.; Wanner, C.; Green, J.B.; Hauske, S.J.; Emberson, J.R.; Preiss, D.; Judge, P.; Mayne, K.J.; et al. Empagliflozin in Patients with Chronic Kidney Disease. N. Engl. J. Med. 2023, 388, 117–127. [Google Scholar] [CrossRef] [PubMed]
- Halden, T.A.S.; Kvitne, K.E.; Midtvedt, K.; Rajakumar, L.; Robertsen, I.; Brox, J.; Bollerslev, J.; Hartmann, A.; Åsberg, A.; Jenssen, T. Efficacy and Safety of Empagliflozin in Renal Transplant Recipients With Posttransplant Diabetes Mellitus. Diabetes Care 2019, 42, 1067–1074. [Google Scholar] [CrossRef] [PubMed]
- Rajasekeran, H.; Kim, S.J.; Cardella, C.J.; Schiff, J.; Cattral, M.; Cherney, D.Z.I.; Singh, S.K.S. Use of Canagliflozin in Kidney Transplant Recipients for the Treatment of Type 2 Diabetes: A Case Series. Diabetes Care 2017, 40, e75–e76. [Google Scholar] [CrossRef]
- Attallah, N.; Yassine, L. Use of Empagliflozin in Recipients of Kidney Transplant: A Report of 8 Cases. Transplant. Proc. 2019, 51, 3275–3280. [Google Scholar] [CrossRef]
- Song, C.C.; Brown, A.; Winstead, R.; Yakubu, I.; Demehin, M.; Kumar, D.; Gupta, G. Early initiation of sodium-glucose linked transporter inhibitors (SGLT-2i) and associated metabolic and electrolyte outcomes in diabetic kidney transplant recipients. Endocrinol. Diabetes Metab. 2021, 4, e00185. [Google Scholar] [CrossRef]
- Lemke, A.; Brokmeier, H.M.; Leung, S.B.; Mara, K.C.; Mour, G.K.; Wadei, H.M.; Hill, J.M.; Stegall, M.; Kudva, Y.C.; Shah, P.; et al. Sodium-glucose cotransporter 2 inhibitors for treatment of diabetes mellitus after kidney transplantation. Clin. Transplant. 2022, 36, e14718. [Google Scholar] [CrossRef]
- Shah, M.; Virani, Z.; Rajput, P.; Shah, B. Efficacy and Safety of Canagliflozin in Kidney Transplant Patients. Indian J. Nephrol. 2019, 29, 278–281. [Google Scholar] [CrossRef]
- Schwaiger, E.; Burghart, L.; Signorini, L.; Ristl, R.; Kopecky, C.; Tura, A.; Pacini, G.; Wrba, T.; Antlanger, M.; Schmaldienst, S.; et al. Empagliflozin in posttransplantation diabetes mellitus: A prospective, interventional pilot study on glucose metabolism, fluid volume, and patient safety. Am. J. Transplant. 2019, 19, 907–919. [Google Scholar] [CrossRef]
- Mahling, M.; Schork, A.; Nadalin, S.; Fritsche, A.; Heyne, N.; Guthoff, M. Sodium-Glucose Cotransporter 2 (SGLT2) Inhibition in Kidney Transplant Recipients with Diabetes Mellitus. Kidney Blood Press. Res. 2019, 44, 984–992. [Google Scholar] [CrossRef]
- Sánchez Fructuoso, A.I.; Bedia Raba, A.; Banegas Deras, E.; Vigara Sánchez, L.A.; Valero San Cecilio, R.; Franco Esteve, A.; Cruzado Vega, L.; Gavela Martínez, E.; González Garcia, M.E.; Saurdy Coronado, P.; et al. Sodium-glucose cotransporter-2 inhibitor therapy in kidney transplant patients with type 2 or post-transplant diabetes: An observational multicentre study. Clin. Kidney J. 2023, 16, 1022–1034. [Google Scholar] [CrossRef] [PubMed]
- CardioRenal Effects of SGLT2 Inhibition in Kidney Transplant Recipients (CREST-KT). NCT04906213. 2022. Available online: https://clinicaltrials.gov/study/NCT04906213 (accessed on 26 January 2025).
- Efficacy, Mechanisms and Safety of SGLT2 Inhibitors in Kidney Transplant Recipients (INFINITI2019). NCT04965935. 2021. Available online: https://clinicaltrials.gov/study/NCT04965935?term=INFINITI2019&rank=1 (accessed on 26 January 2025).
- The Efficacy, Mechanism & Safety of Sodium Glucose Co-Transporter-2 Inhibitor & Glucagon-Like Peptide 1 Receptor Agonist Combination Therapy in Kidney Transplant Recipients (HALLMARK). NCT05938712. 2023. Available online: https://clinicaltrials.gov/study/NCT05938712 (accessed on 26 January 2025).
- Can Dapagliflozin Preserve Structure and Function in Transplanted Kidneys? NCT05788276. 2023. Available online: https://clinicaltrials.gov/study/NCT05788276 (accessed on 26 January 2025).
- Effect of Adding Dapagliflozin to Allograft Dysfunction of Renal Transplanted Patients. 2021. Available online: https://clinicaltrials.gov/study/NCT04743453 (accessed on 26 January 2025).
- Empagliflozin Treatment in Kidney Transplant Recipients (SEKTR). NCT06013865. Available online: https://clinicaltrials.gov/study/NCT06013865 (accessed on 26 January 2025).
- Effects of Empagliflozin in Reducing Oxidative Stress After Kidney Transplantation. ClinicalTrials.gov ID NCT04918407. Available online: https://clinicaltrials.gov/study/NCT04918407?term=transplant%20kidney%20SGLT2&page=5&rank=41 (accessed on 26 January 2025).
- Effect of Empagliflozin vs Linagliptin on Glycemic Outcomes, Renal Outcomes & Body Composition in Renal Transplant Recipients With Diabetes Mellitus (EmLinaRenal). ClinicalTrials.gov ID NCT06095492. Available online: https://clinicaltrials.gov/study/NCT06095492?term=emlina%20renal&rank=2 (accessed on 26 January 2025).
- A RCT to Assess the Effect of Dapagliflozin on Renal and Cardiovascular Outcomes in Patients With Severe CKD. The RENAL LIFECYCLE Trial. NCT05374291. Available online: https://clinicaltrials.gov/study/NCT05374291?cond=RENAL%20LIFECYCLE%20Trial%20%20&rank=1 (accessed on 26 January 2025).
- SGLT2i in Diabetic Patients with Renal Transplantation. ClinicalTrials.gov ID NCT06731231. Available online: https://clinicaltrials.gov/study/NCT06731231?term=transplant%20kidney%20SGLT2&rank=10 (accessed on 26 January 2025).
- Efficacy and Mechanisms of Dapagliflozin in Promoting Kidney Function and Cardiovascular Health in Kidney Transplant Recipients. ClinicalTrials.gov ID NCT06140537. Available online: https://clinicaltrials.gov/study/NCT06140537?term=transplant%20kidney%20SGLT2&page=2&rank=13 (accessed on 26 January 2025).
- Dapagliflozin on Renal Morphology and Renal Perfusion in Patients One Year After Kidney Transplantation. ClinicalTrials.gov ID NCT06560801. Available online: https://clinicaltrials.gov/study/NCT06560801?term=transplant%20kidney%20SGLT2&page=5&rank=42 (accessed on 26 January 2025).
- Sattar, N.; Lee, M.M.Y.; Kristensen, S.L.; Branch, K.R.H.; Del Prato, S.; Khurmi, N.S.; Lam, C.S.P.; Lopes, R.D.; McMurray, J.J.V.; Pratley, R.E.; et al. Cardiovascular, mortality, and kidney outcomes with GLP-1 receptor agonists in patients with type 2 diabetes: A systematic review and meta-analysis of randomised trials. Lancet Diabetes Endocrinol. 2021, 9, 653–662. [Google Scholar] [CrossRef] [PubMed]
- Marso, S.P.; Bain, S.C.; Consoli, A.; Eliaschewitz, F.G.; Jódar, E.; Leiter, L.A.; Lingvay, I.; Rosenstock, J.; Seufert, J.; Warren, M.L.; et al. Semaglutide and Cardiovascular Outcomes in Patients with Type 2 Diabetes. N. Engl. J. Med. 2016, 375, 1834–1844. [Google Scholar] [CrossRef]
- Marso, S.P.; Daniels, G.H.; Brown-Frandsen, K.; Kristensen, P.; Mann, J.F.E.; Nauck, M.A.; Nissen, S.E.; Pocock, S.; Poulter, N.R.; Ravn, L.S.; et al. Liraglutide and Cardiovascular Outcomes in Type 2 Diabetes. N. Engl. J. Med. 2016, 375, 311–322. [Google Scholar] [CrossRef]
- Perkovic, V.; Tuttle, K.R.; Rossing, P.; Mahaffey, K.W.; Mann, J.F.E.; Bakris, G.; Baeres, F.M.M.; Idorn, T.; Bosch-Traberg, H.; Lausvig, N.L.; et al. Effects of Semaglutide on Chronic Kidney Disease in Patients with Type 2 Diabetes. N. Engl. J. Med. 2024, 391, 109–121. [Google Scholar] [CrossRef]
- Shaman, A.M.; Bain, S.C.; Bakris, G.L.; Buse, J.B.; Idorn, T.; Mahaffey, K.W.; Mann, J.F.E.; Nauck, M.A.; Rasmussen, S.; Rossing, P.; et al. Effect of the Glucagon-Like Peptide-1 Receptor Agonists Semaglutide and Liraglutide on Kidney Outcomes in Patients With Type 2 Diabetes: Pooled Analysis of SUSTAIN 6 and LEADER. Circulation 2022, 145, 575–585. [Google Scholar] [CrossRef]
- Krisanapan, P.; Suppadungsuk, S.; Sanpawithayakul, K.; Thongprayoon, C.; Pattharanitima, P.; Tangpanithandee, S.; Mao, M.A.; Miao, J.; Cheungpasitporn, W. Safety and efficacy of glucagon-like peptide-1 receptor agonists among kidney transplant recipients: A systematic review and meta-analysis. Clin. Kidney J. 2024, 17, sfae018. [Google Scholar] [CrossRef]
- Bellos, I.; Lagiou, P.; Benetou, V.; Marinaki, S. Safety and Efficacy of Sodium-Glucose Transport Protein 2 Inhibitors and Glucagon-like Peptide-1 Receptor Agonists in Diabetic Kidney Transplant Recipients: Synthesis of Evidence. J. Clin. Med. 2024, 13, 6181. [Google Scholar] [CrossRef]
- Mahzari, M.M.; Alluhayyan, O.B.; Almutairi, M.H.; Bayounis, M.A.; Alrayani, Y.H.; Omair, A.A.; Alshahrani, A.S. Safety and efficacy of semaglutide in post kidney transplant patients with type 2 diabetes or Post-Transplant diabetes. J. Clin. Transl. Endocrinol. 2024, 36, 100343. [Google Scholar] [CrossRef]
- Vanek, L.; Kurnikowski, A.; Krenn, S.; Mussnig, S.; Hecking, M. Semaglutide in patients with kidney failure and obesity undergoing dialysis and wishing to be transplanted: A prospective, observational, open-label study. Diabetes Obes. Metab. 2024, 26, 5931–5941. [Google Scholar] [CrossRef]
- Sadhu, A.R.; Schwartz, S.S.; Herman, M.E. THE RATIONALE FOR USE OF INCRETINS IN THE MANAGEMENT OF NEW ONSET DIABETES AFTER TRANSPLANTATION (NODAT). Endocr. Pract. 2015, 21, 814–822. [Google Scholar] [CrossRef] [PubMed]
- Dai, C.; Walker, J.T.; Shostak, A.; Padgett, A.; Spears, E.; Wisniewski, S.; Poffenberger, G.; Aramandla, R.; Dean, E.D.; Prasad, N.; et al. Tacrolimus- and sirolimus-induced human β cell dysfunction is reversible and preventable. JCI Insight 2020, 5, e130770. [Google Scholar] [CrossRef] [PubMed]
- Semaglutide Treatment for Hyperglycaemia After Renal Transplantation (Sema-RTx). ClinicalTrials.gov ID NCT05702931. Available online: https://clinicaltrials.gov/study/NCT05702931 (accessed on 26 January 2025).
- Obesity Management for Kidney TRANSPLANTation: OK-TRANSPLANT 2. ClinicalTrials.gov ID NCT06396416. Available online: https://clinicaltrials.gov/study/NCT06396416 (accessed on 26 January 2025).
- Górriz, J.L.; González-Juanatey, J.R.; Facila, L.; Soler, M.J.; Valle, A.; Ortiz, A. Finerenona: Completando el abordaje del paciente con enfermedad renal y diabetes. Nefrologia 2023, 43, 386–398. [Google Scholar] [CrossRef] [PubMed]
- Amdur, R.L.; Feldman, H.I.; Gupta, J.; Yang, W.; Kanetsky, P.; Shlipak, M.; Rahman, M.; Lash, J.P.; Townsend, R.R.; Ojo, A.; et al. Inflammation and Progression of CKD: The CRIC Study. Clin J. Am. Soc. Nephrol. 2016, 11, 1546–1556. [Google Scholar] [CrossRef]
- Agarwal, R.; Filippatos, G.; Pitt, B.; Anker, S.D.; Rossing, P.; Joseph, A.; Kolkhof, P.; Nowack, C.; Gebel, M.; Ruilope, L.M.; et al. Cardiovascular and kidney outcomes with finerenone in patients with type 2 diabetes and chronic kidney disease: The FIDELITY pooled analysis. Eur. Heart J. 2022, 43, 474–484. [Google Scholar] [CrossRef]
- Bakris, G.L.; Agarwal, R.; Anker, S.D.; Pitt, B.; Ruilope, L.M.; Rossing, P.; Kolkhof, P.; Nowack, C.; Schloemer, P.; Joseph, A.; et al. Effect of Finerenone on Chronic Kidney Disease Outcomes in Type 2 Diabetes. N. Engl. J. Med. 2020, 383, 2219–2229. [Google Scholar] [CrossRef]
- Pitt, B.; Filippatos, G.; Agarwal, R.; Anker, S.D.; Bakris, G.L.; Rossing, P.; Joseph, A.; Kolkhof, P.; Nowack, C.; Schloemer, P.; et al. Cardiovascular Events with Finerenone in Kidney Disease and Type 2 Diabetes. N. Engl. J. Med. 2021, 385, 2252–2263. [Google Scholar] [CrossRef]
- Rossing, P.; Caramori, M.L.; Chan, J.C.; Heerspink, H.J.; Hurst, C.; Khunti, K.; Liew, A.; Michos, E.D.; Navaneethan, S.D.; Olowu, W.A.; et al. Disease: Improving Global Outcomes (KDIGO) Diabetes Work Group KDIGO 2022 Clinical Practice Guideline for Diabetes Management in Chronic Kidney Disease. Kidney Int. 2022, 102, S1–S127. [Google Scholar] [CrossRef]
- Girerd, S.; Jaisser, F. Mineralocorticoid receptor antagonists in kidney transplantation: Time to consider? Nephrol. Dial. Transplant. 2018, 33, 2080–2091. [Google Scholar] [CrossRef]
- The EFfect of FinErenone in Kidney TransplantiOn Recipients: The EFFEKTOR Study. NCT06059664. Available online: https://ctv.veeva.com/study/the-effect-of-finerenone-in-kidney-transplantion-recipients-the-effektor-study (accessed on 26 January 2025).
- Valencia-Morales, N.D.; Rodríguez-Cubillo, B.; Loayza-López, R.K.; Moreno de la Higuera, M.Á.; Sánchez-Fructuoso, A.I. Novel Drugs for the Management of Diabetes Kidney Transplant Patients: A Literature Review. Life 2023, 13, 1265. [Google Scholar] [CrossRef]
- Lim, S.W.; Jin, L.; Jin, J.; Yang, C.W. Effect of Exendin-4 on Autophagy Clearance in Beta Cell of Rats with Tacrolimus-induced Diabetes Mellitus. Sci. Rep. 2016, 6, 29921. [Google Scholar] [CrossRef]
- Rudzki, G.; Knop-Chodyła, K.; Piasecka, Z.; Kochanowska-Mazurek, A.; Głaz, A.; Wesołek-Bielaska, E.; Woźniak, M. Managing Post-Transplant Diabetes Mellitus after Kidney Transplantation: Challenges and Advances in Treatment. Pharmaceuticals 2024, 17, 987. [Google Scholar] [CrossRef]
Title | State | Start SGLT2i (Post-KT 2) | Intervention | Planned End |
---|---|---|---|---|
Cardiorenal effects of SGLT2i in KTR CREST-KT [63] Duke-EEUU | Recruiting Phase 2 | >1 year | Empagliflozin 10 mg vs. Placebo (n = 72) | 2024 |
Efficacy, mechanism and safety of SGLT2i KTR INFINITI 2019 [64] Canada | Recruiting Phase 3 | >6 months | Dapagliflozin 10 mg vs. Placebo matching Dapagliflozin (n = 52) | 2024 |
The Efficacy, mechanism and safety of SGLT2i and GLP-1 combination in KTR HALLMARK [65] Canada | Recruiting Phase 2 | >3 months | Dapagliflozin 10 mg vs. Semaglutide 1 mg/mL (n = 22) | 2024 |
Can dapagliflozin preserve structure and function in KTR? [66] Norway | Recruiting Phase 4 | 6 weeks | Dapagliflozin 10 mg vs. placebo (n = 165) | 2025 |
Effect of adding dapagliflozin to allograft dysfunction of KTR [67] Brazil | Recruiting Phase 4 | >1 year | Dapagliflozin vs. placebo (n = 220) | 2023 |
Empagliflozin treatment in KTR SEKTR [68] EEUU | Recruiting Phase 4 | >3 months | Empagliflozin (n = 264) | 2030 |
Effects of empagliflozin in reducing oxidative stress after kidney transplantation [69] Iran | Recruiting | Post KT 2 | Empagliflozin vs. Insulin (n = 40) | 2025 |
Effect of empagliflozin vs. linagliptin on glycemic outcomes, renal outcomes and body composition in KTR with DM (EmLinaRenal) [70] India | Recruiting | >3 months | Empagliflozin 25 mg vs. Linagliptin (n = 220) | 2025 |
A RCT to assess the effect of dapagliflozin on renal and cardiovascular outcomes in patients with severe CKD. The RENAL LIFECYCLE trial [71] Australia and Europe | Enrolling by invitation Phase 3 | >6 months | Dapagliflozin 10 mg vs. placebo (n = 1500) | 2027 |
SGLT2i 1 in diabetic patients with renal transplantation [72] Egypt | Active, not recruiting Phase 1 and 2 | >3 months | Dapagliflozin vs. placebo | 2025 |
Efficacy and mechanisms of dapagliflozin in promoting kidney function and cardiovascular health in KTR [73] | Phase 4 Recruiting | >1 year | Dapagliflozin 10 mg vs. placebo | 2028 |
Dapagliflozin on renal morphology and renal perfusion in patients one year after kidney transplantation [74] Germany | Recruiting Phase 4 | >9 months | Dapagliflozin + standard care vs. standard care | 2026 |
Title | State | Timing of Initiation (Post KT 2) | Intervention | Planned End |
---|---|---|---|---|
The efficacy, mechanism & safety of SGLT2i & GLP-1 1 combination in KTR HALLMARK [65] Canada | Recruiting Phase 2 | >3 months | Dapagliflozin 10 mg vs. semaglutide 1 mg/mL (n = 22) | 2024 |
Semaglutide treatment for hyperglycemia after renal transplantation (Sema-RTx) [86] Denmark | Recruiting Phase 4 | 10–15 days | Oral semaglutide 3 mg vs. placebo (n = 124) | 2026 |
Obesity management for kidney TRANSPLANTation: OK-TRANSPLANT 2 [87] Canada | Recruiting Phase 4 | Before KT 2 | Semaglutide maximum tolerated dose vs. virtual weight management coaching (n = 60) | 2025 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sanchez-Baya, M.; Bolufer, M.; Vázquez, F.; Alonso, N.; Massó, E.; Paul, J.; Coll-Brito, V.; Taco, O.; Anton-Pampols, P.; Gelpi, R.; et al. Diabetes Mellitus in Kidney Transplant Recipients: New Horizons in Treatment. J. Clin. Med. 2025, 14, 1048. https://doi.org/10.3390/jcm14041048
Sanchez-Baya M, Bolufer M, Vázquez F, Alonso N, Massó E, Paul J, Coll-Brito V, Taco O, Anton-Pampols P, Gelpi R, et al. Diabetes Mellitus in Kidney Transplant Recipients: New Horizons in Treatment. Journal of Clinical Medicine. 2025; 14(4):1048. https://doi.org/10.3390/jcm14041048
Chicago/Turabian StyleSanchez-Baya, Maya, Mónica Bolufer, Federico Vázquez, Nuria Alonso, Elisabet Massó, Javier Paul, Veronica Coll-Brito, Omar Taco, Paula Anton-Pampols, Rosana Gelpi, and et al. 2025. "Diabetes Mellitus in Kidney Transplant Recipients: New Horizons in Treatment" Journal of Clinical Medicine 14, no. 4: 1048. https://doi.org/10.3390/jcm14041048
APA StyleSanchez-Baya, M., Bolufer, M., Vázquez, F., Alonso, N., Massó, E., Paul, J., Coll-Brito, V., Taco, O., Anton-Pampols, P., Gelpi, R., DaSilva, I., Casas, Á., Rodríguez, R., Molina, M., Cañas, L., Vila, A., Ara, J., & Bover, J. (2025). Diabetes Mellitus in Kidney Transplant Recipients: New Horizons in Treatment. Journal of Clinical Medicine, 14(4), 1048. https://doi.org/10.3390/jcm14041048