Prospective Study of Recipient Human Leukocyte Antigen (HLA) Alloimmunization Following the Use of Cold-Stored Saphenous Vein Allografts in Vascular Surgery
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethics Approval
2.2. Study Population
2.3. Graft Characteristics
2.4. Protocol Procedure
2.4.1. Day 1
2.4.2. Perioperative Sampling on Day 0
2.4.3. One-Month Follow-Up
2.4.4. Six-Month Follow-Up
2.5. HLA Typing and Anti-HLA Antibody Detection
2.6. Data Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CSVA | Cold-stored saphenous vein allografts |
DSA | Donor specific antibodies |
VA | Vascular access |
References
- Harlander-Locke, M.P.; Lawrence, P.F.; Ali, A.; Bae, E.; Kohn, J.; Abularrage, C.; Ricci, M.; Lemmon, G.W.; Peralta, S.; Hsu, J. Vascular Low-Frequency Disease Consortium. Cryopreserved venous allograft is an acceptable conduit in patients with current or prior angioaccess graft infection. J. Vasc. Surg. 2017, 66, 1157–1162. [Google Scholar] [CrossRef] [PubMed]
- Furlough, C.L.; Jain, A.K.; Ho, K.J.; Rodriguez, H.E.; Tomita, T.M.; Eskandari, M.K. Peripheral artery reconstructions using cryopreserved arterial allografts in infected fields. J. Vasc. Surg. 2019, 70, 562–568. [Google Scholar] [CrossRef]
- Weiss, S.; Bachofen, B.; Widmer, M.K.; Makaloski, V.; Schmidli, J.; Wyss, T.R. Long-term results of cryopreserved allografts in aortoiliac graft infections. J. Vasc. Surg. 2021, 74, 268–275. [Google Scholar] [CrossRef] [PubMed]
- Chakfe, N.; Diener, H.; Lejay, A.; Assadian, O.; Berard, X.; Caillon, J.; Fourneau, I.; Glaudemans, A.W.J.M.; Koncar, I.; Lindholt, J.; et al. Editor’s Choice—European Society for Vascular Surgery (ESVS) 2020 Clinical Practice Guidelines on the Management of Vascular Graft and Endograft Infections. Eur. J. Vasc. Endovasc. Surg. 2020, 59, 339–384. [Google Scholar] [CrossRef] [PubMed]
- Benedetto, B.; Lipkowitz, G.; Madden, R.; Kurbanov, A.; Hull, D.; Miller, M.; Bow, L. Use of cryopreserved cadaveric vein allograft for hemodialysis access precludes kidney transplantation because of allosensitization. J. Vasc. Surg. 2001, 34, 139–142. [Google Scholar] [CrossRef]
- Lin, P.H.; Brinkman, W.T.; Terramani, T.T.; Lumsden, A.B. Management of infected hemodialysis access grafts using cryopreserved human vein allografts. Am. J. Surg. 2002, 184, 31–36. [Google Scholar] [CrossRef]
- Mittal, S.; Page, S.; Chen, M.; Procter, J.; Gilbert, J.; Sharples, E.; Friend, P.; Fuggle, S. Vessel rejection secondary to human leucocyte antigen antibodies directed against the arterial conduit following pancreas transplantation from a separate donor. Transpl. Int. 2014, 27, e58–e62. [Google Scholar] [CrossRef]
- Goel, M.C.; Flechner, S.M.; El-Jack, M.; Veniro, J.; Kingman, L.; Modlin, C.; Cook, D.J. Salvage of compromised renal vessels in kidney transplantation using third-party cadaveric extenders: Impact on posttransplant anti-HLA antibody formation. Transplantation 2004, 77, 1899–1902. [Google Scholar] [CrossRef] [PubMed]
- Garg, N.; Hidalgo, L.G.; Ellis, T.M.; Redfield, R.R.; Parajuli, S.; Mezrich, J.D.; Kaufman, D.B.; Astor, B.C.; Djamali, A.; Mandelbrot, D.A. Third-party vessel allografts in kidney and pancreas transplantation: Utilization, de novo DSAs, and outcomes. Am. J. Transplant. 2020, 20, 3443–3450. [Google Scholar] [CrossRef] [PubMed]
- Watson, H.; Pande, R.; Farid, S.; Ecuyer, C.; Baker, R.; Clarke, B.; Ahmad, N. Non-HLA-matched 3rd party vascular allograft in renal transplant may lead to sensitization against donor HLA. Clin. Transplant. 2016, 30, 1508–1512. [Google Scholar] [CrossRef]
- Lopez-Cepero, M.; Sanders, C.; Buggs, J.; Bowers, V. Sensitization of renal transplant candidates by cryopreserved cadaveric venous or arterial allografts. Transplantation 2002, 73, 817–819. [Google Scholar] [CrossRef] [PubMed]
- Balzer, K.M.; Luther, B.; Sandmann, W.; Wassmuth, R. Donor-specific sensitization by cadaveric venous allografts used for arterial reconstruction in peripheral arterial occlusive vascular disease. Tissue Antigens 2004, 64, 13–17. [Google Scholar] [CrossRef] [PubMed]
- Gabriel, M.; Kostrzewa, A.; Sobieska, M. Immune response after cryopreserved aortic allograft replacement for major vascular infection. Transplant. Proc. 2002, 34, 713–714. [Google Scholar] [CrossRef] [PubMed]
- Mao, Q.; Terasaki, P.I.; Cai, J.; Briley, K.; Catrou, P.; Haisch, C.; Rebellato, L. Extremely high association between appearance of HLA antibodies and failure of kidney grafts in a five-year longitudinal study. Am. J. Transplant. 2007, 7, 864–871. [Google Scholar] [CrossRef] [PubMed]
- Lefaucheur, C.; Loupy, A.; Hill, G.S.; Andrade, J.; Nochy, D.; Antoine, C.; Gautreau, C.; Charron, D.; Glotz, D.; Suberbielle-Boissel, C. Preexisting donor-specific HLA antibodies predict outcome in kidney transplantation. J. Am. Soc. Nephrol. 2010, 21, 1398–1406. [Google Scholar] [CrossRef]
- Seitz, A.; Mounsey, K.; Hughes, P.; Cullen, K.; Welberry Smith, M.; Daga, S.; Carter, C.; Clark, B.; Baker, R. Isolated Pre-existing HLA-DP Donor-Specific Antibodies are Associated With Poorer Outcomes in Renal Transplantation. Kidney Int. Rep. 2022, 7, 2251–2263. [Google Scholar] [CrossRef]
- González-Gay, M.; López-Martínez, R.; Busto-Suárez, S.; Riedemann-Wistuba, M.E.; Menéndez-Herrero, M.Á.; Álvarez-Marcos, F.; Alonso-Pérez, M.; Alonso-Arias, R. Immunological Aspects Involved in the Degeneration of Cryopreserved Arterial Allografts. Front. Surg. 2020, 7, 616654. [Google Scholar] [CrossRef] [PubMed]
- Sadaghianloo, N.; Albano, L.; Pourtein, M. Regarding “Cryopreserved venous allograft is an acceptable conduit in patients with current or prior angioaccess graft infection”. J. Vasc. Surg. 2018, 67, 680–681. [Google Scholar] [CrossRef] [PubMed]
- Schneider, M.; Barrou, B.; Cluzel, P.; Hamani, A.; Bitker, M.-O.; Richard, F. Intérêt du greffon veineux saphène conservé pour la création de voies d’abord chez les hémodialysés: À propos de 309 cas. Progrès Urol. 2003, 13, 585–591. [Google Scholar]
- Nedvěd, K.; Suchý, T.; Hálová, J.; Maličký, M.; Gorun, P.; Vitvar, P. Allogenous Vein Graft as Vascular Access for Hemodialysis—Lost Battle? J. Vasc. Access. 2012, 13, 366–373. [Google Scholar] [CrossRef]
- Ziza, V.; Canaud, L.; Gandet, T.; Molinari, N.; Alonso, W.; Chastan, R.; Branchereau, P.; Picard, E. Outcomes of cold-stored venous allograft for below-knee bypasses in patients with critical limb ischemia. J. Vasc. Surg. 2015, 62, 974–983. [Google Scholar] [CrossRef]
- Cherkaoui, R.; Picard, E.; Branchereau, P.; Saba, C.; Derycke, L.; Settembre, N.; Malikov, S.; Faure, E.M. Outcomes of Cold Stored Saphenous Vein Allografts for Haemodialysis Vascular Access. Eur. J. Vasc. Endovasc. Surg. 2024, 68, 397–404. [Google Scholar] [CrossRef]
- Heintjes, R.J.; Eikelboom, B.C.; Steijling, J.J.F.; van Reedt Dortland, R.W.H.; van der Heijden, F.H.W.M.; Bastini, M.; van der Graaf, Y.; Blankestijn, P.J.; Vos, J. The results of denatured homologous vein grafts as conduits for secondary haemodialysis access surgery. Eur. J. Vasc. Endovasc. Surg. 1995, 9, 58–63. [Google Scholar] [CrossRef]
- Sach, S.M.; Ricotta, J.J.; Scott, D.E.; DeWeese, J.A. Endothelial integrity after venous cryopreservation. J. Surg. Res. 1982, 32, 218–227. [Google Scholar] [CrossRef]
- Wilbring, M.; Tugtekin, S.M.; Zatschler, B.; Ebner, A.; Reichenspurner, H.; Matschke, K.; Deussen, A. Even short-term storage in physiological saline solution impairs endothelial vascular function of saphenous vein grafts. Eur. J. Cardio-Thorac. Surg. 2011, 40, 811–815. [Google Scholar] [CrossRef]
- Wise, E.S.; Hocking, K.M.; Eagle, S. Preservation solution impacts physiologic function and cellular viability of human saphenous vein graft. Surgery 2015, 158, 537–546. [Google Scholar] [CrossRef]
- Schmidli, J.; Widmer, M.K.; Basile, C.; de Donato, G.; Gallieni, M.; Gibbons, C.P.; Haage, P.; Hamilton, G.; Hedin, U.; Kamper, L.; et al. Editor’s Choice—Vascular Access: 2018 Clinical Practice Guidelines of the European Society for Vascular Surgery (ESVS). Eur. J. Vasc. Endovasc. Surg. 2018, 55, 757–818. [Google Scholar] [CrossRef] [PubMed]
- Aalten, J.; Bemelman, F.J.; Van den Berg-loonen, E.M.; Claas, F.H.; Christiaans, M.H.; De Fitjer, J.W.; Hepkema, B.G.; Hené, R.J.; van der Heide, J.J.; van Hooff, J.P.; et al. Pre-kidney-transplant blood transfusions do not improve transplantation outcome: A Dutch national study. Nephrol. Dial. Transplant. 2009, 24, 2559–2566. [Google Scholar] [CrossRef]
- Willicombe, M.; Roberts, D.J. Transfusion-induced HLA sensitization in wait-list patients and kidney transplant recipients. Kidney Int. 2024, 106, 795–805. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R. Donor-Specific Antibodies in Kidney Transplant Recipients. Clin. J. Am. Soc. Nephrol. 2018, 13, 182–192. [Google Scholar] [CrossRef] [PubMed]
- Sellarés, J.; de Freitas, D.G.; Mengel, M.; Reeve, J.; Einecke, G.; Sis, B.; Hidalgo, L.G.; Famulski, K.; Matas, A.; Halloran, P.F. Understanding the causes of kidney transplant failure: The dominant role of antibody-mediated rejection and nonadherence. Am. J. Transplant. 2012, 12, 388–399, 2012. [Google Scholar] [CrossRef]
- Djamali, A.; Kaufman, D.B.; Ellis, T.M.; Zhong, W.; Matas, A.; Samaniego, M. Diagnosis and management of antibody-mediated rejection: Current status and novel approaches. Am. J. Transplant. 2014, 14, 255–271. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez, M.; Pascual, G.; Pérez-Köhler, B.; Cifuentes, A.; Garcia-Honduvilla, N.; Bellón, J.M.; Buján, J. Immune response to the long-term grafting of cryopreserved small-diameter arterial allografts. Histol. Histopathol. 2012, 27, 873–884. [Google Scholar] [CrossRef]
- Nazari-Shafti, T.Z.; Thau, H.; Zacharova, E.; Beez, C.M.; Exarchos, V.; Neuber, S.; Meyborg, H.; Puhl, K.; Wittig, C.; Szulcek, R.; et al. Endothelial damage inhibitor preserves the integrity of venous endothelial cells from patients undergoing coronary bypass surgery. Eur. J. Cardiothorac. Surg. 2023, 64, ezad327. [Google Scholar] [CrossRef] [PubMed]
- Aavik, A.; Kibur, R.T.; Lieberg, J.; Lepner, U.; Aunapuu, M.; Arend, A. Cold-Stored Venous Allografts in Different Preserving Solutions: A Study on Changes in Vein Wall Morphology. Scand. J. Surg. 2019, 108, 67–75. [Google Scholar] [CrossRef] [PubMed]
- Sayer, R.D.; Watt, P.A.; Muller, S.; Bell, P.R.; Thurston, H. Endothelial cell injury secondary to surgical preparation of reversed and in situ saphenous vein bypass grafts. Eur. J. Vasc. Surg. 1992, 6, 354–361. [Google Scholar] [CrossRef] [PubMed]
- Bonnaud, P.; Lebkiri, B.; Boudier, L.; Man, N.K. Greffons saphènes conservés en hémodialyse. Vingt ans d’expérience. Néphrologie 1994, 15, 177–180. [Google Scholar]
- Albers, M.; Romiti, M.; Pereira, C.A.; Antonini, M.; Wulkan, M. Meta-analysis of allograft bypass grafting to infrapopliteal arteries. Eur. J. Vasc. Endovasc. Surg. 2004, 28, 462–472. [Google Scholar] [CrossRef] [PubMed]
- Reindl-Schwaighofer, R.; Heinzel, A.; Kainz, A.; van Setten, J.; Jelencsics, K.; Hu, K.L.B.L.; Kammer, M.; Heinze, G.; Hruba, P.; Koňaříková, A.; et al. Contribution of non-HLA incompatibility between donor and recipient to kidney allograft survival: Genome-wide analysis in a prospective cohort. Lancet 2019, 393, 910–917. [Google Scholar] [CrossRef]
Overall Data = 45 | ||
---|---|---|
Women | 15 (33) | |
Age | ||
Diabetes mellitus | 27 (60) | |
Body mass index, kg/m2 | 27 | |
Hypertension | 39 (87) | |
Active smoking | 9 (20) | |
Pulmonary disease | 7 (16) | |
Stroke/TIA | 3 (7) | |
Heart failure | 14 (31) | |
Coronary artery disease | 21 (47) | |
ASA Score |
| 2 (4) |
| 15 (33) | |
| 28 (62) | |
Peripheral arterial disease | 34 (76) | |
Active cancer | 1 (2) | |
Prior kidney transplant | 0 (0) | |
Immunosuppressive drugs | 0 (0) | |
Corticosteroids | 2 (4) | |
Anticoagulants | 13 (29) |
Lower Limb Arterial Bypass n = 29 | Vascular Access for Haemodialysis n = 16 | OR (95%CI) | p-Value | ||
---|---|---|---|---|---|
Age, years ± SD | 71 ± 10 | 71 ± 15 | |||
Gender, male (%) | 22 (75.9) | 8 (50) | 3.06 [0.71; 13.93] | 0.105 | |
CSVA characteristics | |||||
Living donor (%) | 27 (93) | 15 (94) | 0.90 [0.01; 18.71] | 1 | |
Gender, male (%) | 18 (56) | 10 (62.5) | 0.98 [0.23; 4.06] | 1 | |
Length, mm ± SD | 42.8 ± 8.8 | 17.5 ± 4.5 | [21.26; 29.26] | <0.001 | |
Time from harvesting to placement in weeks ± SD | 15.9 ± 6.4 | 17.3 ± 6.8 | [−5.67; 2.78] | 0.489 |
Class I (mPRA%, Range Min–Max) | Class II (mPRA%, Range Min–Max) | Class I and II (Cl I mPRA%, Range Min–Max) (Cl II mPRA%, Range Min–Max) | |
---|---|---|---|
Anti-HLA antibodies present at inclusion n = 17 | 11 (5, 1–19) | 0 | 6 (20.5, 2–95) (14, 1–65) |
Anti-HLA antibodies present at M1 n = 14 | 9 (3, 2–24) | 0 | 5 (32, 6–94) (20, 4–64) |
Anti-HLA Antibodies Absent at Inclusion n = 28 (62) | Anti-HLA Antibodies Present at Inclusion n = 17 (38) | ||||
---|---|---|---|---|---|
LLA bypass n = 20 (71) | VAH n = 8 (29) | LLA bypass n = 9 (53) | VAH n = 8 (47) | ||
One-month follow-up | |||||
Appearance of de novo anti-HLA antibody | 0 (0) | 0 (0) | 0 (0) | 0 (0) | |
Increase in anti-HLA antibody levels | 0 (0) | 0 (0) | 0 (0) | 0 (0) | |
Aneurysmal degeneration | 1 (5) | 0 (0) | 0 (0) | 0 (0) | |
Primary patency | 20 (100) | 8 (100) | 9 (100) | 7 (87.5) | |
Primary assisted patency | 20 (100) | 8 (100) | 9 (100) | 7 (87.5) | |
Secondary patency | 20 (100) | 8 (100) | 9 (100) | 8 (100) | |
6-month follow-up | |||||
Aneurysmal degeneration | 0 (0) | 0 (0) | 0 (0) | 0 (0) | |
Primary patency | 18 (90) | 6 (75) | 6 (67) | 5 (62.5) | |
Primary assisted patency | 19 (95) | 7 (87.5) | 6 (67) | 5 (62.5) | |
Secondary patency | 19 (95) | 8 (100) | 6 (67) | 7 (87.5) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Faure, E.M.; Pedini, P.; Bouchet, C.; Branchereau, P.; Cosma, C.; Picard, E.; Picard, C. Prospective Study of Recipient Human Leukocyte Antigen (HLA) Alloimmunization Following the Use of Cold-Stored Saphenous Vein Allografts in Vascular Surgery. J. Clin. Med. 2025, 14, 1224. https://doi.org/10.3390/jcm14041224
Faure EM, Pedini P, Bouchet C, Branchereau P, Cosma C, Picard E, Picard C. Prospective Study of Recipient Human Leukocyte Antigen (HLA) Alloimmunization Following the Use of Cold-Stored Saphenous Vein Allografts in Vascular Surgery. Journal of Clinical Medicine. 2025; 14(4):1224. https://doi.org/10.3390/jcm14041224
Chicago/Turabian StyleFaure, Elsa Madeleine, Pascal Pedini, Caroline Bouchet, Pascal Branchereau, Catalin Cosma, Eric Picard, and Christophe Picard. 2025. "Prospective Study of Recipient Human Leukocyte Antigen (HLA) Alloimmunization Following the Use of Cold-Stored Saphenous Vein Allografts in Vascular Surgery" Journal of Clinical Medicine 14, no. 4: 1224. https://doi.org/10.3390/jcm14041224
APA StyleFaure, E. M., Pedini, P., Bouchet, C., Branchereau, P., Cosma, C., Picard, E., & Picard, C. (2025). Prospective Study of Recipient Human Leukocyte Antigen (HLA) Alloimmunization Following the Use of Cold-Stored Saphenous Vein Allografts in Vascular Surgery. Journal of Clinical Medicine, 14(4), 1224. https://doi.org/10.3390/jcm14041224