Evaluation of Reliability of Formulas for Intraocular Lens Power Calculation After Hyperopic Refractive Surgery
Abstract
:1. Introduction
2. Materials and Methods
Statistical Analysis
3. Results
- A total of 107 eyes of 107 patients were included in this study. If patients underwent cataract surgery in both eyes, only the first eye was included in the study to avoid bias in the calculation of the IOL of the second eye in relation to knowledge of the refractive result of the first.
- The eyes included in the study had a mean AL of 21.64 ± 0.91 mm, a mean KM of 47.78 ± 2.07 D, and a mean ACD of 3.1 ± 0.36 mm.
- The overall analysis showed that every formula provided a low level of myopic refraction in the evaluated cohort; the MAE calculated with SF provided less accurate (p < 0.05) results compared to both BTKNH and EVO 2.0 formulas; the MAE obtained using Haigis-L, EVO 2.0, Pearl-DGS, and BTKNH showed no significant differences; and all the formulas that were evaluated reported no significant differences in obtaining refraction in the ±0.50 D and ±1.00 D (p > 0.05) ranges (Table 1).
- 4.
- With regard to AL and SL, the accuracy of the formulas in the group of eyes shorter than 21 mm demonstrated a lower accuracy level when compared with BTKNH and Haigis-L; EVO 2.0 showed a higher (p < 0.05) MAE compared to BTKNH; Pearl-DGS showed no significant MAE differences with the other formulas tested; and all the formulas evaluated reported no significant differences in obtaining refraction within the ±0.50 D and ±1.00 D (p > 0.05) ranges (Table 2).
- 5.
- In the group of eyes with AL ranging from 21 to 22 mm, Pearl-DGS showed a higher MAE (p < 0.05) compared to EVO 2.0; no other significant differences were observed when comparing the results obtained with the tested formulas; and all the formulas evaluated reported no significant differences in obtaining refraction in the ±0.50 D and ±1.00 D (p > 0.05) ranges (Table 2).
- 6.
- In the eyes with AL greater than 22 mm, SF showed a higher (p < 0.05) MAE compared to Pearl-DGS, whereas no other significant differences were detected in the other formulas, and Haigis-L and EVO 2.0 formulas showed the highest percentage of eyes with refraction in the ±1.00 D (p < 0.05) range (Table 2).
- 7.
- In the evaluation of the accuracy of formulas according to anterior corneal power, in the eyes with K < 46 D, the evaluated formulas did not show differences in MAE, whilst no significant differences were observed in the percentages of eyes obtaining refraction within the ±0.50 D and ±1.00 D (p > 0.05) ranges (Table 3).
- 8.
- In the eyes with a K ranging from 46 to 49 D, SF showed a higher (p < 0.05) MAE compared to BTKNH; no other significant differences were detected in the MAE provided by the other formulas; and all the formulas evaluated reported no significant differences in obtaining refraction within the ±0.50 D and ±1.00 D (p > 0.05) ranges (Table 3).
- 9.
- In eyes with a K higher than 49 D, SF provided a higher (p < 0.05) MAE in comparison to both BTKNH and EVO 2.0 formulas; no other significant difference was detected when comparing the MAE of the tested formulas; and all the formulas evaluated reported no significant differences in obtaining refraction within the ±0.50 D and ±1.00 D (p > 0.05) ranges (Table 3).
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Alio, J.L.; Abdelghany, A.A.; Fernández-Buenaga, R. Management of residual refractive error after cataract surgery. Curr. Opin. Ophthalmol. 2014, 25, 291–297. [Google Scholar] [CrossRef] [PubMed]
- Kane, J.X.; Chang, D.F. Intraocular Lens Power Formulas, Biometry, and Intraoperative Aberrometry: A Review. Ophthalmology 2021, 128, e94–e114. [Google Scholar] [CrossRef] [PubMed]
- Koch, D.D. New options for IOL calculations after refractive surgery. J. Cataract Refract. Surg. 2006, 32, 371–372. [Google Scholar] [CrossRef] [PubMed]
- Hoffer, K.J. Intraocular lens power calculation after previous laser refractive surgery. J. Cataract Refract. Surg. 2009, 35, 759–765. [Google Scholar] [CrossRef]
- Haigis, W. Intraocular lens calculation after refractive surgery for myopia: Haigis-L formula. J. Cataract Refract. Surg. 2008, 34, 1658–1663. [Google Scholar] [CrossRef]
- Feiz, V.; Mannis, M.J.; Garcia-Ferrer, F.; Kandavel, G.; Darlington, J.K.; Kim, E.; Caspar, J.; Wang, J.L.; Wang, W. Intraocular lens power calculation after laser in situ keratomileusis for myopia and hyperopia; a standardized approach. Cornea 2001, 20, 792–797. [Google Scholar] [CrossRef]
- Kim, J.H.; Lee, D.H.; Joo, C.K. Measuring corneal power for intraocular lens power calculation after refractive surgery; comparison of methods. J. Cataract Refract. Surg. 2002, 28, 1932–1938. [Google Scholar] [CrossRef]
- Shammas, H.J.; Shammas, M.C.; Garabet, A.; Kim, J.H.; Shammas, A.; LaBree, L. Correcting the corneal power measurements for intraocular lens power calculations after myopic laser in situkeratomileusis. Am. J. Ophthalmol. 2003, 36, 426–432. [Google Scholar] [CrossRef]
- Cheng, A.C.K.; Lam, D.S.C. Keratometry for intraocular lens power calculation using Orbscan II in eyes with laser in situ keratomileusis. J. Refract. Surg. 2005, 21, 365–368. [Google Scholar] [CrossRef]
- Rosa, N.; Capasso, L.; Lanza, M.; Iaccarino, G.; Romano, A. Reliability of a new correcting factor in calculating intraocular lens power after refractive corneal surgery. J. Cataract Refract. Surg. 2005, 31, 1020–1024. [Google Scholar] [CrossRef]
- Masket, S.; Masket, S.E. Simple regression formula for intraocular lens power adjustment in eyes requiring cataract surgery after excimer laser photoablation. J. Cataract Refract. Surg. 2006, 32, 430–434. [Google Scholar] [CrossRef] [PubMed]
- Borasio, E.; Stevens, J.; Smith, G.T. Estimation of true corneal power after keratorefractive surgery in eyes requiring cataract surgery: BESSt formula. J. Cataract Refract. Surg. 2006, 32, 2004–2014. [Google Scholar] [CrossRef] [PubMed]
- Rosa, N.; De Bernardo, M.; Borrelli, M.; Lanza, M. New factor to improve reliability of the clinical history method for intraocular lens power calculation after refractive surgery. J. Cataract Refract. Surg. 2010, 36, 2123–2128. [Google Scholar] [CrossRef] [PubMed]
- Savini, G.; Bedei, A.; Barboni, P.; Ducoli, P.; Hoffer, K.J. Intraocular lens power calculation by ray-tracing after myopic excimer laser surgery. Am. J. Ophthalmol. 2014, 157, 150–153. [Google Scholar] [CrossRef]
- Savini, G.; Calossi, A.; Camellin, M.; Carones, F.; Fantozzi, M.; Hoffer, K.J. Corneal ray-tracing versus simulated keratometry for estimating corneal power changes after excimer laser surgery. J. Cataract Refract. Surg. 2014, 40, 1109–1115. [Google Scholar] [CrossRef]
- Abulafia, A.; Hill, W.E.; Koch, D.D.; Wang, L.; Barrett, G.D. Accuracy of the Barrett True-K formula for intraocular lens power prediction after laser in situ keratomileusis or photorefractive keratectomy for myopia. J. Cataract Refract. Surg. 2016, 42, 363–369. [Google Scholar] [CrossRef]
- Koprowski, R.; Lanza, M.; Irregolare, C. Corneal power evaluation after myopic corneal refractive surgery using artificial neural networks. Biomed. Eng. Online 2016, 15, 121. [Google Scholar] [CrossRef]
- Potvin, R.; Hill, W. New algorithm for intraocular lens power calculations after myopic laser in situ keratolileusis based on rotating Scheimpflug camera data. J. Cataract Refract. Surg. 2015, 41, 339–347. [Google Scholar] [CrossRef]
- Huang, D.; Tang, M.; Wang, L.; Zhang, X.; Armour, R.L.; Gattey, D.M.; Lombardi, L.H.; Koch, D.D. Optical coherence tomography-based corneal power measurement and intraocular lens power calculation following laser vision correction. Trans. Am. Ophthalmol. Soc. 2013, 11, 34–45. [Google Scholar]
- Saiki, M.; Negishi, K.; Kato, N.; Arai, H.; Toda, I.; Torii, H.; Dogru, M.; Tsubota, K. A new central-peripheral corneal curvature method for intraocular lens power calculation after excimer laser refractive surgery. Acta Ophthalmol. 2013, 91, e133–e139. [Google Scholar] [CrossRef]
- Vrijman, V.; Abulafia, A.; van der Linden, J.W.; van der Meulen, I.J.E.; Mourits, M.P.; Lapid-Gortzak, R. ASCRS calculator formula accuracy in multifocal intraocular lens implantation in hyperopic corneal refractive laser surgery eyes. J. Cataract Refract. Surg. 2019, 45, 582–586. [Google Scholar] [CrossRef] [PubMed]
- Francone, A.; Lemanski, N.; Charles, M.; Borboli-Gerogiannis, S.; Chen, S.; Robert, M.C.; Pineda, R., 2nd. Retrospective comparative analysis of intraocular lens calculation formulas after hyperopic refractive surgery. PLoS ONE 2019, 14, e0224981. [Google Scholar] [CrossRef]
- Hamill, E.B.; Wang, L.; Chopra, H.K.; Hill, W.; Koch, D.D. Intraocular lens power calculations in eyes with previous hyperopic laser in situ keratomileusis or photorefractive keratectomy. J. Cataract Refract. Surg. 2017, 43, 189–194. [Google Scholar] [CrossRef] [PubMed]
- Khatib, Z.I.; Haldipurkar, S.S.; Shetty, V.; Dahake, H.; Nagvekar, P.; Kashelkar, P. Comparison of three newer generation freely available intraocular lens power calculation formulae across all axial lengths. Indian J. Ophthalmol. 2021, 69, 580–584. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Koch, D.D.; Hill, W.; Abulafia, A. Pursuing perfection in intraocular lens calculations: III. Criteria for analyzing outcomes. J. Cataract Refract. Surg. 2017, 43, 999–1002. [Google Scholar] [CrossRef]
- Li, L.P.; Yuan, L.Y.; Mao, D.S.; Hua, X.; Yuan, X.Y. Systematic bibliometric analysis of research hotspots and trends on the application of premium IOLs in the past 2 decades. Int. J. Ophthalmol. 2024, 17, 736–747. [Google Scholar] [CrossRef]
- Lanza, M.; Ruggiero, A.; Ha, J.; Simonelli, F.; Kane, J.X. Accuracy of Formulas for Intraocular Lens Power Calculation After Myopic Refractive Surgery. J. Refract. Surg. 2022, 38, 443–449. [Google Scholar] [CrossRef]
Formula | MAE 3 | ME 4 | SD 5 | MedAE 6 | ±0.50 D (%) | ±1.00 D (%) |
---|---|---|---|---|---|---|
BTKNH 1 | 0.412 | −0.132 | 0.553 | 0.255 | 65.4 | 87.9 |
SHAMMAS | 0.460 | −0.127 | 0.600 | 0.300 | 63.6 | 86.9 |
Haigis-L | 0.435 | −0.127 | 0.596 | 0.280 | 67.3 | 89.7 |
EVO 2.0 2 | 0.422 | −0.142 | 0.563 | 0.260 | 66.4 | 89.7 |
Pearl-DGS | 0.435 | −0.143 | 0.572 | 0.273 | 64.5 | 88.8 |
Group | BTKNH 3 | Shammas | Haigis-L | EVO 2.0 4 | Pearl-DGS |
---|---|---|---|---|---|
≤21 mm (n = 30) | |||||
±0.50 D (%) | 70.00 | 66.70 | 70.00 | 70.00 | 70.00 |
±1.00 D (%) | 73.30 | 73.30 | 76.70 | 73.30 | 76.70 |
MAE 1 | 0.480 | 0.554 | 0.493 | 0.524 | 0.505 |
MedAE 2 | 0.245 | 0.340 | 0.252 | 0.240 | 0.294 |
21–22 mm (n = 34) | |||||
±0.50 D (%) | 79.40 | 82.35 | 76.47 | 79.40 | 76.47 |
±1.00 D (%) | 88.20 | 88.20 | 91.20 | 91.20 | 85.30 |
MAE 1 | 0.308 | 0.316 | 0.332 | 0.286 | 0.335 |
MedAE 2 | 0.140 | 0.150 | 0.137 | 0.130 | 0.137 |
>22 mm (n = 43) | |||||
±0.50 D (%) | 51.20 | 48.80 | 55.80 | 53.50 | 48.80 |
±1.00 D (%) | 97.70 | 95.30 | 97.70 | 100.00 | 100.00 |
MAE 1 | 0.447 | 0.509 | 0.476 | 0.458 | 0.463 |
MedAE 2 | 0.390 | 0.510 | 0.465 | 0.400 | 0.509 |
Group | BTKNH 3 | Shammas | Haigis-L | EVO 2.0 4 | Pearl-DGS |
---|---|---|---|---|---|
≤46 mm (n = 22) | |||||
±0.50 D (%) | 59.10 | 54.50 | 63.60 | 59.10 | 54.50 |
±1.00 D (%) | 86.40 | 90.90 | 90.90 | 90.90 | 86.40 |
MAE 1 | 0.468 | 0.484 | 0.461 | 0.468 | 0.512 |
MedAE 2 | 0.305 | 0.340 | 0.315 | 0.275 | 0.387 |
46–49 D (n = 58) | |||||
±0.50 D (%) | 67.20 | 65.50 | 69.00 | 69.00 | 67.20 |
±1.00 D (%) | 94.80 | 93.10 | 94.80 | 96.60 | 96.60 |
MAE 1 | 0.367 | 0.417 | 0.399 | 0.372 | 0.377 |
MedAE 2 | 0.230 | 0.285 | 0.280 | 0.262 | 0.199 |
>49 D (n = 27) | |||||
±0.50 D (%) | 66.67 | 62.96 | 70.37 | 66.67 | 70.37 |
±1.00 D (%) | 74.10 | 70.40 | 77.80 | 74.10 | 74.10 |
MAE 1 | 0.465 | 0.534 | 0.493 | 0.491 | 0.496 |
MedAE 2 | 0.230 | 0.290 | 0.275 | 0.240 | 0.300 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boccia, R.; Lanza, M.; Luciano, G.; Fattore, I.; Serra, L.; Ambrosio, S.; Abbate, F.; Simonelli, F. Evaluation of Reliability of Formulas for Intraocular Lens Power Calculation After Hyperopic Refractive Surgery. J. Clin. Med. 2025, 14, 1990. https://doi.org/10.3390/jcm14061990
Boccia R, Lanza M, Luciano G, Fattore I, Serra L, Ambrosio S, Abbate F, Simonelli F. Evaluation of Reliability of Formulas for Intraocular Lens Power Calculation After Hyperopic Refractive Surgery. Journal of Clinical Medicine. 2025; 14(6):1990. https://doi.org/10.3390/jcm14061990
Chicago/Turabian StyleBoccia, Rosa, Michele Lanza, Giuseppe Luciano, Italo Fattore, Luigi Serra, Salvatore Ambrosio, Francesco Abbate, and Francesca Simonelli. 2025. "Evaluation of Reliability of Formulas for Intraocular Lens Power Calculation After Hyperopic Refractive Surgery" Journal of Clinical Medicine 14, no. 6: 1990. https://doi.org/10.3390/jcm14061990
APA StyleBoccia, R., Lanza, M., Luciano, G., Fattore, I., Serra, L., Ambrosio, S., Abbate, F., & Simonelli, F. (2025). Evaluation of Reliability of Formulas for Intraocular Lens Power Calculation After Hyperopic Refractive Surgery. Journal of Clinical Medicine, 14(6), 1990. https://doi.org/10.3390/jcm14061990