Integrating Blinatumomab in the Frontline Treatment in B-Cell Acute Lymphoblastic Leukemia: A New Era in Therapeutic Management
Abstract
:1. Introduction
2. The FDA Approval of Blinatumomab for First Line Setting
3. Ph-Negative Adult ALL (Age up to 65 Years)
4. Ph-like Subgroup
5. Older Patients with Ph-Negative ALL (>65–70 Years)
6. Ph Negative ALL-Pediatrics
7. Ph-Positive ALL
8. Incorporating Immunotherapy and CAR-T into the Treatment Strategies of B-ALL
9. Discussion
10. Conclusions and Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gökbuget, N.; Boissel, N.; Chiaretti, S.; Dombret, H.; Doubek, M.; Fielding, A.; Foà, R.; Giebel, S.; Hoelzer, D.; Hunault, M.; et al. Diagnosis, prognostic factors, and assessment of ALL in adults: 2024 ELN recommendations from a European expert panel. Blood 2024, 143, 1891–1902. [Google Scholar] [CrossRef] [PubMed]
- Gökbuget, N.; Boissel, N.; Chiaretti, S.; Dombret, H.; Doubek, M.; Fielding, A.; Foà, R.; Giebel, S.; Hoelzer, D.; Hunault, M.; et al. Management of ALL in adults: 2024 ELN recommendations from a European expert panel. Blood 2024, 143, 1903–1930. [Google Scholar] [CrossRef] [PubMed]
- Stock, W.; Luger, S.M.; Advani, A.S.; Yin, J.; Harvey, R.C.; Mullighan, C.G.; Willman, C.L.; Fulton, N.; Laumann, K.M.; Malnassy, G.; et al. A pediatric regimen for older adolescents and young adults with acute lymphoblastic leukemia: Results of CALGB 10403. Blood 2019, 133, 1548–1559. [Google Scholar] [CrossRef]
- Kantarjian, H.M.; O’Brien, S.; Smith, T.L.; Cortes, J.; Giles, F.J.; Beran, M.; Pierce, S.; Huh, Y.; Andreeff, M.; Koller, C.; et al. Results of treatment with hyper-CVAD, a dose-intensive regimen, in adult acute lymphocytic leukemia. J. Clin. Oncol. 2000, 18, 547. [Google Scholar] [CrossRef]
- Bassan, R.; Chiaretti, S.; Della Starza, I.; Spinelli, O.; Santoro, A.; Paoloni, F.; Messina, M.; Elia, L.; De Propris, M.S.; Scattolin, A.M.; et al. Pegaspargase-modified risk-oriented program for adult acute lymphoblastic leukemia: Results of the GIMEMA LAL1913 trial. Blood Adv. 2023, 7, 4448–4461. [Google Scholar] [CrossRef]
- Topp, M.S.; Gökbuget, N.; Zugmaier, G.; Klappers, P.; Stelljes, M.; Neumann, S.; Viardot, A.; Marks, R.; Diedrich, H.; Faul, C.; et al. Phase II trial of the anti-CD19 bispecifc T cell-engager blinatumomab shows hematologic and molecular remissions in patients with relapsed or refractory B-precursor acute lymphoblastic leukemia. J. Clin. Oncol. 2014, 32, 4134–4140. [Google Scholar] [CrossRef] [PubMed]
- Topp, M.S.; Gökbuget, N.; Stein, A.S.; Zugmaier, G.; O’Brien, S.; Bargou, R.C.; Dombret, H.; Fielding, A.K.; Heffner, L.; Larson, R.A.; et al. Safety and activity of blinatumomab for adult patients with relapsed or refractory B-precursor acute lymphoblastic leukaemia: A multicentre, single-arm, phase 2 study. Lancet Oncol. 2015, 16, 57–66. [Google Scholar] [CrossRef]
- Kantarjian, H.; Thomas, D.; Jorgensen, J.; Jabbour, E.; Kebriaei, P.; Rytting, M. Inotuzumab ozogamicin, an anti-CD22-calecheamicin conjugate, for refractory and relapsed acute lymphocytic leukaemia: A phase 2 study. Lancet Oncol. 2012, 13, 403–411. [Google Scholar] [CrossRef]
- Kantarjian, H.; Stein, A.; Gökbuget, N.; Fielding, A.K.; Schuh, A.C.; Ribera, J.-M.; York, S.; Ravandi, F.; Kwari, M.; Faderl, S.; et al. Blinatumomab versus chemotherapy for advanced acute lymphoblastic leukemia. N. Engl. J. Med. 2017, 376, 836–847. [Google Scholar] [CrossRef]
- Kantarjian, H.M.; DeAngelo, D.J.; Stelljes, M.; Martinelli, G.; Liedtke, M.; Stock, W.; Gökbuget, N.; O’Brien, S.; Wang, K.; Wang, T.; et al. Inotuzumab ozogamicin versus standard therapy for acute lymphoblastic leukemia. N. Engl. J. Med. 2016, 375, 740–753. [Google Scholar] [CrossRef]
- Jabbour, E.; Short, N.J.; Jain, N.; Thompson, P.A.; Kadia, T.M.; Ferrajoli, A.; Huang, X.; Yilmaz, M.; Alvarado, Y.; Patel, K.P.; et al. Hyper-CVAD and sequential blinatumomab for newly diagnosed Philadelphia chromosome-negative B-cell acute lymphocytic leukaemia: A single-arm, single-centre, phase 2 trial. Lancet Haematol. 2022, 9, e878–e885. [Google Scholar] [CrossRef]
- Bassan, R.; Chiaretti, S.; Della Starza, I.; Santoro, A.; Spinelli, O.; Tosi, M.; Elia, L.; Cardinali, D.; De Propris, M.S.; Piccini, M.; et al. Up-front Blinatumomab Improves MRD Clearance and Outcome in Adult Ph- B-lineage ALL: The GIMEMA LAL2317 Phase 2 Study. Blood 2025, 26, 2024027500. [Google Scholar] [CrossRef] [PubMed]
- Litzow, M.R.; Sun, Z.; Mattison, R.J.; Paietta, E.M.; Roberts, K.G.; Zhang, Y.; Racevskis, J.; Lazarus, H.M.; Rowe, J.M.; Arber, D.A.; et al. Blinatumomab for MRD-negative acute lymphoblastic leukemia in adults. N. Engl. J. Med. 2024, 391, 320–333. [Google Scholar] [CrossRef] [PubMed]
- Foà, R.; Chiaretti, S. Philadelphia Chromosome-Positive Acute Lymphoblastic Leukemia. N. Engl. J. Med. 2022, 386, 2399–2411. [Google Scholar] [CrossRef] [PubMed]
- Foà, R.; Vitale, A.; Vignetti, M.; Meloni, G.; Guarini, A.; De Propris, M.S.; Elia, L.; Paoloni, F.; Fazi, P.; Cimino, G.; et al. Dasatinib as first-line treatment for adult patients with Philadelphia chromosome-positive acute lymphoblastic leukemia. Blood 2011, 118, 6521–6528. [Google Scholar] [CrossRef]
- Vignetti, M.; Fazi, P.; Cimino, G.; Martinelli, G.; Di Raimondo, F.; Ferrara, F.; Meloni, G.; Ambrosetti, A.; Quarta, G.; Pagano, L.; et al. Imatinib plus steroids induces complete remissions and prolonged survival in elderly Philadelphia chromosome-positive patients with acute lymphoblastic leukemia without additional chemotherapy: Results of the Gruppo Italiano Malattie Ematologiche dell’Adulto (GIMEMA) LAL0201-B protocol. Blood 2007, 109, 3676–3678. [Google Scholar]
- Chiaretti, S.; Vitale, A.; Vignetti, M.; Piciocchi, A.; Fazi, P.; Elia, L.; Falini, B.; Ronco, F.; Ferrara, F.; De Fabritiis, P.; et al. A sequential approach with imatinib, chemotherapy and transplant for adult Ph+ acute lymphoblastic leukemia: Final results of the GIMEMA LAL 0904 study. Haematologica 2016, 101, 1544–1552. [Google Scholar] [CrossRef]
- Chiaretti, S.; Ansuinelli, M.; Vitale, A.; Elia, L.; Matarazzo, M.; Piciocchi, A.; Fazi, P.; Di Raimondo, F.; Santoro, L.; Fabbiano, F.; et al. A multicenter total therapy strategy for de novo adult Philadelphia chromosome positive acute lymphoblastic leukemia patients: Final results of the GIMEMA LAL1509 protocol. Haematologica 2021, 106, 1828–1838. [Google Scholar] [CrossRef]
- Foà, R.; Bassan, R.; Vitale, A.; Elia, L.; Piciocchi, A.; Puzzolo, M.C.; Canichella, M.; Viero, P.; Ferrara, F.; Lunghi, M.; et al. Dasatinib-Blinatumomab for Ph-Positive Acute Lymphoblastic Leukemia in Adults. N. Engl. J. Med. 2020, 383, 1613–1623. [Google Scholar] [CrossRef] [PubMed]
- Foà, R.; Bassan, R.; Elia, L.; Piciocchi, A.; Soddu, S.; Messina, M.; Ferrara, F.; Lunghi, M.; Mulè, A.; Bonifacio, M.; et al. Long-Term Results of the Dasatinib-Blinatumomab Protocol for Adult Philadelphia-Positive ALL. J. Clin. Oncol. 2024, 42, 881–885. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Jabbour, E.; Short, N.J.; Jain, N.; Huang, X.; Montalban-Bravo, G.; Banerjee, P.; Rezvani, K.; Jiang, X.; Kim, K.H.; Kanagal-Shamanna, R.; et al. Ponatinib and blinatumomab for Philadelphia chromosome-positive acute lymphoblastic leukaemia: A US, single-centre, single-arm, phase 2 trial. Lancet Haematol. 2023, 10, e24–e34. [Google Scholar] [CrossRef] [PubMed]
- Chiaretti, S.; Leoncin, M.; Elia, L.; Soddu, S.; Piciocchi, A.; Matarazzo, M.; Di Trani, M.; Martelli, M.; Borlenghi, E.; Parisi, M.; et al. Efficacy and Toxicity of Frontline Ponatinib Plus Blinatumomab for Adult Ph+ ALL Patients of All Ages. Intermediate Analysis of the Gimema ALL2820. Blood 2024, 144 (Suppl. S1), 835. [Google Scholar] [CrossRef]
- Kantarjian, H.; Short, N.J.; Haddad, F.G.; Jain, N.; Huang, X.; Montalban-Bravo, G.; Kanagal-Shamanna, R.; Kadia, T.M.; Daver, N.; Chien, K.; et al. Results of the Simultaneous Combination of Ponatinib and Blinatumomab in Philadelphia Chromosome-Positive ALL. J. Clin. Oncol. 2024, 42, 4246–4251. [Google Scholar] [CrossRef] [PubMed]
- Testa, U.; Sica, S.; Pelosi, E.; Castelli, G.; Leone, G. CAR-T Cell Therapy in B-Cell Acute Lymphoblastic Leukemia. Mediterr. J. Hematol. Infect. Dis. 2024, 16, e2024010. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- FDA Approves Blinatumomab as Consolidation for CD19-Positive Philadelphia Chromosome-Negative B-Cell Precursor Acute Lymphoblastic Leukemia. FDA. 14 June 2024. Available online: https://www.fda.gov/drugs/resources-information-approved-drugs/fda-approves-blinatumomab-consolidation-cd19-positive-philadelphia-chromosome-negative-b-cell (accessed on 14 June 2024).
- Berry, D.H.; Fernbach, D.J.; Herson, J.; Pullen, J.; Sullivan, M.P.; Vietti, T.J. Comparison of prednisolone, vincristine, methotrexate and 6-mercaptopurine vs. 6-mercaptopurine and prednisone maintenance therapy in childhood acute leukemia: A Southwest Oncology Group Study. Cancer 1980, 46, 1098–1103. [Google Scholar] [CrossRef] [PubMed]
- Locatelli, F.; Zugmaier, G.; Rizzari, C.; Morris, J.D.; Gruhn, B.; Klingebiel, T.; Parasole, R.; Linderkamp, C.; Flotho, C.; Petit, A.; et al. Effect of blinatumomab vs chemotherapy on event-free survival among children with high-risk first-relapse B-cell acute lymphoblastic leukemia: A randomized clinical trial. JAMA 2021, 325, 843–854. [Google Scholar] [CrossRef] [PubMed]
- Boissel, N.; Huguet, F.; Graux, C.; Hicheri, Y.; Chevallier, P.; Kim, R.; Balsat, M.; Leguay, T.; Hunault, M.; Maury, S.; et al. Frontline consolidation with blinatumomab for high-risk Philadelphia-negative acute lymphoblastic adult patients. Early results from the graall-2014-QUEST phase 2. Blood 2021, 138 (Suppl. S1), 1232. [Google Scholar] [CrossRef]
- Short, N.J.; Kantarjian, H.M.; Ravandi, F.; Huang, X.; Ferrajoli, A.; Kadia, T.M.; Huang, X.; Yilmaz, M.; Alvarado, Y.; Patel, K.P.; et al. Hyper-CVAD and sequential blinatumomab in adults with newly diagnosed philadelphia chromosome-negative B-cell acute lymphoblastic leukemia: Results from a phase II study. Blood 2020, 136 (Suppl. S1), 9–11. [Google Scholar] [CrossRef]
- Short, N.J.; Kantarjian, H.M.; Ravandi, F.; Yilmaz, M.; Kadia, T.M.; Thompson, P.A.; Konopleva, M.; Ferrajoli, A.; Jain, N.; Sasaki, K.; et al. A phase II study of hyper-CVAD with sequential blinatumomab (Blina), with or without inotuzumab ozogamicin (INO), in adults with newly diagnosed B-cell acute lymphoblastic leukemia (ALL). J. Clin. Oncol. 2022, 40 (Suppl. S16), 7034. [Google Scholar] [CrossRef]
- Fleming, S.; Reynolds, J.; Bajel, A.; Venn, N.; Kwan, J.; Moore, J.; Yeung, D.T.; Pati, N.; Leahy, M.F.; Nkyekyer, J.; et al. Sequential blinatumomab with reduced intensity chemotherapy in the treatment of older adults with newly diagnosed ph negative B-precursor acute lymphoblastic leukemia - interim analysis of the Australasian leukemia and lymphoma group ALL08 study. Blood 2021, 138 (Suppl. S1), 1234. [Google Scholar] [CrossRef]
- Den Boer, M.L.; van Slegtenhorst, M.; De Menezes, R.X.; Cheok, M.H.; Buijs-Gladdines, J.G.; Peters, S.T.; Van Zutven, L.J.; Beverloo, H.B.; Van der Spek, P.J.; Escherich, G.; et al. A subtype of childhood acute lymphoblastic leukaemia with poor treatment outcome: A genome-wide classification study. Lancet Oncol. 2009, 10, 125–134. [Google Scholar] [CrossRef] [PubMed]
- Khoury, J.D.; Solary, E.; Abla, O.; Akkari, Y.; Alaggio, R.; Apperley, J.F.; Bejar, R.; Berti, E.; Busque, L.; Chan, J.K.C.; et al. The 5th edition of the World Health Organization classification of haemato lymphoid tumours: Myeloid and histiocytic/dendritic neoplasms. Leukemia 2022, 36, 1703–1719. [Google Scholar] [CrossRef] [PubMed]
- Arber, D.A.; Orazi, A.; Hasserjian, R.P.; Borowitz, M.J.; Calvo, K.R.; Kvasnicka, H.M.; Wang, S.A.; Bagg, A.; Barbui, T.; Branford, S.; et al. International consensus classification of myeloid neoplasms and acute leukemia: Integrating morphological, clinical, and genomic data. Blood 2022, 140, 1200–1228. [Google Scholar] [CrossRef] [PubMed]
- Moorman, A.V. The clinical relevance of chromosomal and genomic abnormalities in B-cell precursor acute lymphoblastic leukaemia. Blood Rev. 2012, 26, 123–135. [Google Scholar] [CrossRef]
- Roberts, K.G.; Li, Y.; Payne-Turner, D.; Harvey, R.C.; Yang, Y.-L.; Pei, D.; Ding, L.; Lu, C.; Song, G.; Ma, J.; et al. Targetable kinase-activating lesions in Ph-like acute lymphoblastic leukemia. N. Engl. J. Med. 2014, 371, 1005–1015. [Google Scholar] [CrossRef]
- Chiaretti, S.; Messina, M.; Grammatico, S.; Piciocchi, A.; Fedullo, A.L.; Di Giacomo, F.; Peragine, N.; Gianfelici, V.; Lauretti, A.; Bareja, R.; et al. Rapid identification of BCR/ABL1-like acute lymphoblastic leukaemia patients using a predictive statistical model based on quantitative real time-polymerase chain reaction: Clinical, prognostic and therapeutic implications. Br. J. Haematol. 2018, 181, 642–652. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mullighan, C.G.; Su, X.; Zhang, J.; Radtke, I.; Phillips, L.A.A.; Miller, C.B.; Ma, J.; Liu, W.; Cheng, C.; Schulman, B.A.; et al. Deletion of IKZF1and prognosis in acute lymphoblastic leukemia. N. Engl. J. Med. 2009, 360, 470–480. [Google Scholar] [CrossRef]
- Chiaretti, S.; Messina, M.; Della Starza, I.; Piciocchi, A.; Cafforio, L.; Cavalli, M.; Taherinasab, A.; Ansuinelli, M.; Elia, L.; Albertini Petroni, G.; et al. Philadelphia-like acute lymphoblastic leukemia is associated with minimal residual disease persistence and poor outcome. First report of the minimal residual disease-oriented GIMEMA LAL1913. Haematologica 2021, 106, 1559–1568. [Google Scholar] [CrossRef]
- Ashouri, K.; Hom, B.; Ginosyan, A.A.; Rahimi, Y.; Resnick, K.; Nittur, V.; Hwang, J.; Ireland, R.; Ann, B.; Adnani, B.; et al. Philadelphia-like B-cell acute lymphoblastic Leukaemia: Disease features and outcomes in the era of immunotherapy. Br. J. Haematol. 2024. online ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Lu, S.; Zhang, X.; Yang, Z.; Sun, A.; Wu, D.; Zhou, H.; Miao, M. The combination of a tyrosine kinase inhibitor and blinatumomab in patients with Philadelphia chromosome-positive acute lymphoblastic leukemia or Philadelphia chromosome-like acute lymphoblastic leukemia. Cancer Med. 2024, 13, e70161. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Iacobucci, I.; Papayannidis, C. SOHO State of the Art Updates and Next Questions|Approach to BCR::ABL1-Like Acute Lymphoblastic Leukemia. Clin. Lymphoma Myeloma Leuk. 2025, 25, 13–22. [Google Scholar] [CrossRef] [PubMed]
- Jabbour, E.; Patel, K.; Jain, N.; Duose, D.; Luthra, R.; Short, N.J.; Zugmaier, G.; San Lucas, A.; Velasco, K.; Tran, Q.; et al. Impact of Philadelphia chromosome-like alterations on efficacy and safety of blinatumomab in adults with relapsed/refractory acute lymphoblastic leukemia: A post hoc analysis from the phase 3 TOWER study. Am. J. Hematol. 2021, 96, E379–E383. [Google Scholar] [CrossRef] [PubMed]
- Goekbuget, N.; Beck, J.; Brueggemann, M.; Burmeister, T.; Buss, E.C.; Frickhofen, N.; Huettmann, A.; Morgner, A.; Reichle, A.; Schmidt-Wolf, I.; et al. Moderate intensive chemotherapy including CNS-prophylaxis with liposomal cytarabine is feasible and effective in older patients with Ph-negative acute lymphoblastic leukemia (ALL): Results of a prospective trial from the german multicenter study group for adult ALL (GMALL). Blood 2012, 120, 1493. [Google Scholar]
- O’Brien, S.; Thomas, D.A.; Ravandi, F.; Faderl, S.; Pierce, S.; Kantarjian, H. Results of the hyperfractionated cyclophosphamide, vincristine, doxorubicin, and dexamethasone regimen in elderly patients with acute lymphocytic leukemia. Cancer 2008, 113, 2097–2101. [Google Scholar] [CrossRef]
- Jabbour, E.J.; Sasaki, K.; Ravandi, F.; Short, N.J.; Garcia-Manero, G.; Daver, N.; Kadia, T.; Konopleva, M.; Jain, N.; Cortes, J.; et al. Inotuzumab ozogamicin in combination with low-intensity chemotherapy (mini-HCVD) with or without blinatumomab versus standard intensive chemotherapy (HCVAD) as frontline therapy for older patients with Philadelphia chromosome-negative acute lymphoblastic leukemia: A propensity score analysis. Cancer 2019, 125, 2579–2586. [Google Scholar] [CrossRef]
- Kantarjian, H.; Ravandi, F.; Short, N.J.; Huang, X.; Jain, N.; Sasaki, K.; Daver, N.; Pemmaraju, N.; Khoury, J.D.; Jorgensen, J.; et al. Inotuzumab ozogamicin in combination with low-intensity chemotherapy for older patients with Philadelphia chromosome-negative acute lymphoblastic leukaemia: A single-arm, phase 2 study. Lancet Oncol. 2018, 19, 240–248. [Google Scholar] [CrossRef]
- Short, N.J.; Kantarjian, H.M.; Ravandi, F.; Huang, X.; Jain, N.; Kadia, T.M.; Joseph, D.; Khoury, J.D.; Jorgensen, J.L.; Wang, S.A.; et al. Reduced-intensity chemotherapy with mini-hyper-CVD plus inotuzumab ozogamicin, with or without blinatumomab, in older adults with newly diagnosed philadelphia chromosome-negative acute lymphoblastic leukemia: Results from a phase II study. Blood 2020, 136 (Suppl. S1), 15–17. [Google Scholar] [CrossRef]
- Advani, A.S.; Moseley, A.; O’Dwyer, K.M.; Wood, B.L.; Fang, M.; Wieduwilt, M.J.; Aldoss, I.; Park, J.H.; Klisovic, R.B.; Baer, M.R.; et al. SWOG 1318: A Phase II Trial of Blinatumomab Followed by POMP Maintenance in Older Patients With Newly Diagnosed Philadelphia Chromosome-Negative B-Cell Acute Lymphoblastic Leukemia. J. Clin. Oncol. 2022, 40, 1574–1582. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wieduwilt, M.; Yin, J.; Kour, O.; Teske, R.; Stock, W.; Byrd, K.; Doucette, K.; Mangan, J.; Masters, G.; Mims, A.; et al. Chemotherapy-Free Treatment with Inotuzumab Ozogamicin and Blinatumomab for Older Adults with Newly Diagnosed, Ph-Negative, cd22-Positive, B-Cell Acute Lymphoblastic Leukemia: ALLIANCE A041703; Wieduwilt, M., Ed.; EHA Library: The Hague, The Netherlands, 2023; Volume 387817, p. S117. [Google Scholar]
- Goekbuget, N.; Schwartz, S.; Faul, C.; Topp, M.S.; Subklewe, M.; Renzelmann, A.; Stoltefuss, A.; Hertenstein, B.; Wilke, A.; Raffel, S.; et al. Dose reduced chemotherapy in sequence with blinatumomab for newly diagnosed older patients with B-precursor adult lymphoblastic leukemia (ALL): Results of the ongoing GMALL bold trial. Blood 2021, 138 (Suppl. S1), 3399. [Google Scholar] [CrossRef]
- Jabbour, E.; Aldoss, I.; Fleming, S.; Bajel, A.; Cannell, P.; Brüggemann, M.; Zugmaier, G.; Morris, J.; Chen, Y.; Powar, S.; et al. Blinatumomab alternating with low-intensity chemotherapy (CT) treatment for older adults with newly diagnosed philadelphia (Ph)-negative B-cell precursor acute lymphoblastic leukemia (BCP-ALL) is well tolerated and efficacious: Safety run-in results for the phase 3 randomized controlled golden gate study. Blood 2022, 140 (Suppl. S1), 6134–6136. [Google Scholar] [CrossRef]
- Inaba, H.; Mullighan, C.G. Pediatric acute lymphoblastic leukemia. Haematologica 2020, 105, 2524–2539. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Locatelli, F.; Zugmaier, G.; Mergen, N.; Bader, P.; Jeha, S.; Schlegel, P.G.; Bourquin, J.P.; Handgretinger, R.; Brethon, B.; Rössig, C.; et al. Blinatumomab in pediatric relapsed/refractory B-cell acute lymphoblastic leukemia: RIALTO expanded access study final analysis. Blood Adv. 2022, 6, 1004–1014. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Brown, P.A.; Ji, L.; Xu, X.; Devidas, M.; Hogan, L.E.; Borowitz, M.J.; Raetz, E.A.; Zugmaier, G.; Sharon, E.; Bernhardt, M.B.; et al. Effect of Postreinduction Therapy Consolidation With Blinatumomab vs. Chemotherapy on Disease-Free Survival in Children, Adolescents, and Young Adults With First Relapse of B-Cell Acute Lymphoblastic Leukemia: A Randomized Clinical Trial. JAMA 2021, 325, 833–842. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Li, X.L.; Zhao, B.B.; Wan, Y.; An, W.B.; Liu, F.; Liu, L.P.; Wang, S.C.; Qi, B.Q.; Liu, T.F.; Liu, X.M.; et al. The safety and efficacy of blinatumomab in the treatment of B-cell acute lymphoblastic leukemia in children. Zhonghua Yi Xue Za Zhi 2024, 104, 2563–2567. (In Chinese) [Google Scholar] [CrossRef] [PubMed]
- Rau, R.E.; Sumit Gupta, S.; John AKairalla, J.A.; Rabin, K.R.; Angiolillo, A.; Wang, C.; Carroll, A.J.; Conway, S.; Devidas, M.; Gore, L.; et al. Blinatumomab Added to Chemotherapy Improves Disease-Free Survival in Newly Diagnosed NCI Standard Risk Pediatric B-Acute Lymphoblastic Leukemia: Results from the Randomized Children’s Oncology Group Study AALL1731. Blood 2024, 144, 1–3. [Google Scholar] [CrossRef]
- Gupta, S.; Rau, R.E.; Kairalla, J.A.; Rabin, K.R.; Wang, C.; Angiolillo, A.L.; Alexander, S.; Carroll, A.J.; Conway, S.; Gore, L.; et al. Blinatumomab in Standard-Risk B-Cell Acute Lymphoblastic Leukemia in Children. N. Engl. J. Med. 2024, 392, 875–891. [Google Scholar] [CrossRef] [PubMed]
- Chiaretti, S.; Vitale, A.; Cazzaniga, G.; Silvestri, D.; Fazi, P.; Valsecchi, M.G.; Elia, L.; Testi, A.M.; Mancini, F.; Conter, V.; et al. Clinico-biological features of 5202 patients with acute lymphoblastic leukemia enrolled in the Italian AIEOP and GIMEMA protocols and stratified in age cohorts. Haematologica 2013, 98, 1702–1710. [Google Scholar] [CrossRef]
- Rambaldi, A.; Ribera, J.M.; Kantarjian, H.M.; Dombret, H.; Ottmann, O.G.; Stein, A.S.; Tuglus, C.A.; Zhao, X.; Kim, C.; Martinelli, G. Blinatumomab compared with standard of care for the treatment of adult patients with relapsed/refractory Philadelphia chromosome-positive B-precursor acute lymphoblastic leukemia. Cancer 2020, 126, 304–310. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Martinelli, G.; Boissel, N.; Chevallier, P.; Ottmann, O.; Gökbuget, N.; Rambaldi, A.; Ritchie, E.K.; Papayannidis, C.; Tuglus, C.A.; Morris, J.D.; et al. Long-term follow-up of blinatumomab in patients with relapsed/refractory Philadelphia chromosome-positive B-cell precursor acute lymphoblastic leukaemia: Final analysis of ALCANTARA study. Eur. J. Cancer 2021, 146, 107–114. [Google Scholar] [CrossRef] [PubMed]
- Short, N.J.; Kantarjian, H.M.; Konopleva, M.; Jain, N.; Huang, X.; Ravandi, F.; Wierda, W.G.; Borthakur, G.; Sasaki, K.; Issa, G.C.; et al. Combination of ponatinib and blinatumomab in Philadelphia chromosome-positive acute lymphoblastic leukemia: Early results from a phase II study. J. Clin. Oncol. 2021, 39 (Suppl. S15), 7001. [Google Scholar] [CrossRef]
- Abou Dalle, I.; Moukalled, N.; El Cheikh, J.; Mohty, M.; Bazarbachi, A. Philadelphia-chromosome positive acute lymphoblastic leukemia: Ten frequently asked questions. Leukemia 2024, 38, 1876–1884. [Google Scholar] [CrossRef] [PubMed]
- Referenced with Permission from the NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines®) for Acute Lymphoblastic Leukemia Version 2.2024; National Comprehensive Cancer Network, Inc.: Fort Washington, PA, USA, 2024.
- Jabbour, E.; Short, N.J.; Senapati, J.; Jain, N.; Huang, X.; Daver, N.; DiNardo, C.D.; Pemmaraju, N.; Wierda, W.; Garcia-Manero, G.; et al. Mini-hyper-CVD plus inotuzumab ozogamicin, with or without blinatumomab, in the subgroup of older patients with newly diagnosed Philadelphia chromosome-negative B-cell acute lymphocytic leukaemia: Long-term results of an open-label phase 2 trial. Lancet Haematol. 2023, 10, e433–e444, Erratum in Lancet Haematol. 2023, 10, e490. https://doi.org/10.1016/S2352-3026(23)00167-9. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Jabbour, E.; Zugmaier, G.; Agrawal, V.; Martínez-Sánchez, P.; Rifón Roca, J.J.; Cassaday, R.D.; Böll, B.; Rijneveld, A.; Abdul-Hay, M.; Huguet, F.; et al. Single agent subcutaneous blinatumomab for advanced acute lymphoblastic leukemia. Am. J. Hematol. 2024, 99, 586–595. [Google Scholar] [CrossRef] [PubMed]
- Roddie, C.; Sandhu, K.S.; Tholouli, E.; Logan, A.C.; Shaughnessy, P.; Barba, P.; Ghobadi, A.; Guerreiro, M.; Yallop, D.; Abedi, M.; et al. Obecabtagene Autoleucel in Adults with B-Cell Acute Lymphoblastic Leukemia. N. Engl. J. Med. 2024, 391, 2219–2230. [Google Scholar] [CrossRef] [PubMed]
Study | Author Year | Study Design | N. of Patients | Age (yrs) Range | Grade ≥ 3 CRS | Grade ≥ 3 Neurotoxicity | CR Rate | MRD-Negative Patients | Induction Dead | OS | RFS/DFS |
---|---|---|---|---|---|---|---|---|---|---|---|
ECOG-ACRIN E1910 | Litzow et al. 2024 [13] | CHT vs. CHT plus blinatumomab based on MRD status | 224 | 51 (30–70) | 14% | N/A | 81% | N/A | N/A | 85% (3 yrs) | RFS 80% (3 yrs) |
GIMEMA LAL 2317 | Chiaretti et al. 2023 [5] | Sequential blinatumomab following early and late consolidation | 146 |
41 (18–65) | N/A | N/A | 90.4% | 73% (after early 96% (following first consolidation) blinatumomab) | N/A |
83.8% (12 mo) |
DFS 71.6% (12 mo) |
MDACC | Jabbour et al. 2022 [11] | CHT followed by blinatumomab consolidation | 38 |
37 (17–59) | 3% | 11% | 100% | 76% (induction) 95% (any time over therapy course) | N/A |
85% (3 yrs) |
RFS 84% (3 yrs) |
GRAALL-2014 | Boissel et al. 2021 [28] | Blinatumomab for consolidation and maintenance | 95 | 35 (18–60) | 0% | 6% | N/A | 74% | N/A |
92.1% (18 mo) | DFS 68.8% (18 mo) |
Study | Author Year | Study Design | N. of Patients | Age (yrs) Range | Grade ≥ 3 CRS | Grade ≥ 3 Neurotoxicity | CR Rate | MRD-Negative Patients | Induction Dead | OS | EFS/DFS |
---|---|---|---|---|---|---|---|---|---|---|---|
Ashouri et al. 2024 [40] | Blinatumomab consolidation before allo-HSCT | 268 | 43 (18–80) | N/A | N/A | 91.0% | 47.4% | N/A | 88.4% (2 yrs) | EFS 5.8% (2 yrs) | |
Wu et al. 2024 [41] | Combination of blinatumomab and a TKI in the frontline setting | 19 | 27 (16–60) | N/A | N/A | 90% | 57% | N/A | 100% (13 mo) | DFS 91.7% (13 mo) | |
TOWER | Jabbour et al. 2021 [43] | Post hoc analysis of blinatumomab versus CHT in R/R patients | 142 | 40.8 ± 17.1 | N/A | N/A | 33% | 50% | N/A | 40% (12 mo) | N/A |
Study | Author Year | Study Design | N. of Patients | Age (yrs) Range | Grade ≥ 3 CRS | Grade ≥ 3 Neurotoxicity | CR Rate | MRD-Negative Patients | Induction Dead | OS | DFS/EFS |
---|---|---|---|---|---|---|---|---|---|---|---|
SWOG1318 | Advani et al. 2022 [49] | Single-agent blinatumomab induction and consolidation followed by CHT maintenance | 29 | 75 | 3% | 3% | 66% | N/A | N/A | 37% (3 yrs) | DFS 37% (3 yrs) |
ALLIANCE A041703 | Wieduwilt et al. 2023 [50] | Sequential InO induction and blinatumomab consolidation | 33 | 71 60–84) | N/A | N/A | 85% (induction IA/B/C) 97% (course II) | N/A | N/A |
84% (1 yr) |
EFS 75% (1 yr) |
GOLDEN GATE | Jabbour et al. 2022 [52] | Blinatumomab alternating with low-intensity induction CHT | 10 |
69 (57–77) | 0% | 0% | 100% | 90% after induction cycle; 100% after induction cycle 1 2 | N/A | 76% (3 yrs) | N/A |
GMALL BOLD TRIAL | Goekbuget et al. 2021 [51] | Blinatumomab in sequence with induction CHT | 33 | 65 (56–76) | N/A | N/A | 76% (after induction) | N/A | 6% | 100% (1 yr) | DFS 89% (1 yr) |
Kantarjian et al. 2018 [47] | Hyper mini-CVAD with InO, followed by consolidation and maintenance with blinatumomab | 52 | 68 (60–81) | N/A | N/A | 98% | 94% | N/A | 54% | EFS 59% (29 mo) |
Study | Author Year | Study Design | N. of Patients | Age (yrs) Range | Grade ≥ 3 CRS | Grade ≥ 3 Neurotoxicity | CR Rate | MRD-Negative Patients | Induction Dead | OS | EFS/RFS |
---|---|---|---|---|---|---|---|---|---|---|---|
Locatelli et al. 2021 [27] | CHT vs. blinatumomab as consolidation before allo-HSCT | 108 | 5 (28 days–18 years) | N/A | N/A | 90% | N/A | 80% (24 mo) | EFS 66.2% (24 mo) | ||
RIALTO | Locatelli et al. 2022 [54] | Blinatumomab in R/R B-ALL prior to allo-HSCT | 110 | 8.5 years (0.4–17) | 1.80% | 3.60% | 63% | 57% | N/A | 60% (14.6 mo) | RFS 50% (11.5 mo) |
AALL1331 | Brown et al. 2021 [55] | Blinatumomab versus CHT in post reinduction | 208 | 9 (6–16) | 1% | 1% | N/A | 75% (Blinatumomab group) | N/A |
71.3% (2 yrs) | RFS 54.4% (2 yrs) |
Li et al. 2024 [56] | Retrospective analysis of blinatumomab use in R/R, MRD-positive or CHT-intolerant patients | 35 |
9.9 (0.6–16.4) | N/A | 1.8% | N/A | 80% | N/A | 40.0% ± 21.9% (1 yr) | EFS 100% (7.1 mo) | |
AALL1731 | Gupta et al. 2024 [58] |
Phase 3 randomized trial CHT alone or CHT plus blinatumomab | 1440 | median 4.3 years | N/A | N/A | N/A | N/A | N/A | 3-year OS 98.4% in blinatumomab arm vs. 97.1% in CHT | 3-year DFS 96% in blinatumomab arm vs. 87.9% in CHT |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Canichella, M.; De Fazio, L.; Molica, M. Integrating Blinatumomab in the Frontline Treatment in B-Cell Acute Lymphoblastic Leukemia: A New Era in Therapeutic Management. J. Clin. Med. 2025, 14, 2055. https://doi.org/10.3390/jcm14062055
Canichella M, De Fazio L, Molica M. Integrating Blinatumomab in the Frontline Treatment in B-Cell Acute Lymphoblastic Leukemia: A New Era in Therapeutic Management. Journal of Clinical Medicine. 2025; 14(6):2055. https://doi.org/10.3390/jcm14062055
Chicago/Turabian StyleCanichella, Martina, Laura De Fazio, and Matteo Molica. 2025. "Integrating Blinatumomab in the Frontline Treatment in B-Cell Acute Lymphoblastic Leukemia: A New Era in Therapeutic Management" Journal of Clinical Medicine 14, no. 6: 2055. https://doi.org/10.3390/jcm14062055
APA StyleCanichella, M., De Fazio, L., & Molica, M. (2025). Integrating Blinatumomab in the Frontline Treatment in B-Cell Acute Lymphoblastic Leukemia: A New Era in Therapeutic Management. Journal of Clinical Medicine, 14(6), 2055. https://doi.org/10.3390/jcm14062055