Clinical Outcomes Following Toric Intraocular Lens Implantation: A Case Series Study
Abstract
:1. Introduction
- Allow for the even distribution of the compression forces at the haptic-capsular bag junction [8].
- Ensure the uniform spread of the squeezing pressures at the intersection point between the haptic-capsular bag [8].
- Keep the angle and vertical movement minimal [9].
- Achieve precise centering and stability in rotation [9].
- Moreover, this design facilitates effortless handling during the surgery by offering the choice to either rotate in a clockwise or counterclockwise direction, thereby decreasing the chance of improper alignment. The distinctive RidgeTech technology minimizes the occurrence of adhesive haptics on the lenses during and following the procedure.
- The aim of this research was to examine the accuracy of postoperative vision by measuring the error in predicting the residual astigmatism after the implantation of PODEYE, a monofocal toric intraocular lens (TIOL) (BVI) Physiol., (BVI).
2. Methods
2.1. Patients and Methods
2.2. Clinical Protocol
2.3. Intraocular Lens
2.4. Surgical Technique
2.5. Statistical Analysis
3. Results
4. Discussion
Rotational Stability of Toric IOL
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kretz, F.T.A.; Müller, M.; Gerl, M.; Gerl, R.H.; Auffarth, G.U. Binocular function to increase visual outcome in patients implanted with a diffractive trifocal intraocular lens. BMC Ophthalmol. 2015, 15, 110. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, F.J.; Ferreira, T.B.; Relha, C.; Esteves, C.; Gaspar, S. Predictability of different calculators in the minimization of postoperative astigmatism after implantation of a toric intraocular lens. Clin. Ophthalmol. 2019, 13, 1649–1656. [Google Scholar] [CrossRef] [PubMed]
- Wagoner, M.D. Sutureless Cataract Surgery: An Evolution Toward Minimally Invasive Technique. J. Refract. Surg. 1992, 8, 333. [Google Scholar] [CrossRef]
- Sheen-Ophir, S.; Reitblat, O.; Levy, A.; Assia, E.I.; Kleinmann, G. Deviation from the planned axis of three toric intraocular lenses. Sci. Rep. 2022, 12, 13760. [Google Scholar]
- Visser, N.; Bauer, N.J.C.; Nuijts, R.M.M.A. Toric intraocular lenses: Historical overview, patient selection, IOL calculation, surgical techniques, clinical outcomes, and complications. J. Cataract. Refract. Surg. 2013, 39, 624–637. [Google Scholar] [CrossRef]
- Maedel, S.; Hirnschall, N.; Chen, Y.A.; Findl, O. Rotational performance and corneal astigmatism correction during cataract surgery: Aspheric toric intraocular lens versus aspheric nontoric intraocular lens with opposite clear corneal incision. J. Cataract. Refract. Surg. 2014, 40, 1355–1362. [Google Scholar] [CrossRef]
- Vandekerckhove, K. Rotational Stability of Monofocal and Trifocal Intraocular Toric Lenses with Identical Design and Material but Different Surface Treatment. J. Refract. Surg. 2018, 34, 84–91. [Google Scholar] [CrossRef]
- Savini, G.; Hoffer, K.J.; Carbonelli, M.; Ducoli, P.; Barboni, P. Influence of axial length and corneal power on the astigmatic power of toric intraocular lenses. J. Cataract. Refract. Surg. 2013, 39, 1900–1903. [Google Scholar] [CrossRef]
- Draschl, P.; Hirnschall, N.; Luft, N.; Schuschitz, S.; Wiesinger, J.; Rigal, K.; Findl, O. Rotational stability of 2 intraocular lenses with an identical design and different materials. J. Cataract. Refract. Surg. 2017, 43, 234–238. [Google Scholar] [CrossRef]
- Shimizu, K.; Misawa, A.; Suzuki, Y. Toric intraocular lenses: Correcting astigmatism while controlling axis shift. J. Cataract. Refract. Surg. 1994, 20, 523–526. [Google Scholar] [CrossRef]
- Holland, E.; Lane, S.; Horn, J.D.; Ernest, P.; Arleo, R.; Miller, K.M. The acrysof toric intraocular lens in subjects with cataracts and corneal astigmatism: A randomized, subject-masked, parallel-group, 1-year study. Ophthalmology 2010, 117, 2104–2111. [Google Scholar] [CrossRef] [PubMed]
- Ferrer-Blasco, T.; Montés-Micó, R.; Peixoto-de-Matos, S.C.; González-Méijome, J.M.; Cerviño, A. Prevalence of corneal astigmatism before cataract surgery. J. Cataract. Refract. Surg. 2009, 35, 70–75. [Google Scholar] [CrossRef]
- Hoffmann, P.C.; Hütz, W.W. Analysis of biometry and prevalence data for corneal astigmatism in 23,239 eyes. J. Cataract. Refract. Surg. 2010, 36, 1479–1485. [Google Scholar] [CrossRef]
- Kaur, M.; Shaikh, F.; Falera, R.; Titiyal, J. Optimizing outcomes with toric intraocular lenses. Indian J. Ophthalmol. 2017, 65, 1301–1313. [Google Scholar] [CrossRef]
- Ashena, Z.; Maqsood, S.; Ahmed, S.N.; Nanavaty, M.A. Effect of intraocular lens tilt and decentration on visual acuity, dysphotopsia and wavefront aberrations. Vision 2020, 4, 41. [Google Scholar] [CrossRef]
- Weikert, M.P.; Golla, A.; Wang, L. Astigmatism induced by intraocular lens tilt evaluated via ray tracing. J. Cataract. Refract. Surg. 2018, 44, 745–749. [Google Scholar] [CrossRef]
- Shah, G.D.; Praveen, M.R.; Vasavada, A.R.; Vasavada, V.A.; Rampal, G.; Shastry, L.R. Rotational stability of a toric intraocular lens: Influence of axial length and alignment in the capsular bag. J. Cataract. Refract. Surg. 2012, 38, 54–59. [Google Scholar] [CrossRef]
- Leyland, M.; Zinicola, E.; Bloom, P.; Lee, N. Prospective evaluation of a plate haptic toric intraocular lens. Eye 2001, 15, 202–205. [Google Scholar] [CrossRef]
- Inoue, Y.; Takehara, H.; Oshika, T. Axis Misalignment of Toric Intraocular Lens: Placement Error and Postoperative Rotation. Ophthalmology 2017, 124, 1424–1425. [Google Scholar] [CrossRef]
- Lee, B.S.; Chang, D.F. Comparison of the Rotational Stability of Two Toric Intraocular Lenses in 1273 Consecutive Eyes. Ophthalmology 2018, 125, 1325–1331. [Google Scholar] [CrossRef]
- Felipe, A.; Artigas, J.M.; Díez-Ajenjo, A.; García-Domene, C.; Alcocer, P. Residual astigmatism produced by toric intraocular lens rotation. J. Cataract. Refract. Surg. 2011, 37, 1895–1901. [Google Scholar] [CrossRef] [PubMed]
- Chang, D.F. Repositioning technique and rate for toric intraocular lenses. J. Cataract. Refract. Surg. 2009, 35, 1315–1316. [Google Scholar] [CrossRef] [PubMed]
- Miyake, T.; Kamiya, K.; Amano, R.; Iida, Y.; Tsunehiro, S.; Shimizu, K. Long-term clinical outcomes of toric intraocular lens implantation in cataract cases with preexisting astigmatism. J. Cataract. Refract. Surg. 2014, 40, 1654–1660. [Google Scholar] [CrossRef] [PubMed]
- Waltz, K.L.; Featherstone, K.; Tsai, L.; Trentacost, D. Clinical outcomes of TECNIS toric intraocular lens implantation after cataract removal in patients with corneal astigmatism. Ophthalmology 2015, 122, 39–47. [Google Scholar] [CrossRef]
- Lam, D.K.T.; Chow, V.W.S.; Ye, C.; Ng, P.K.F.; Wang, Z.; Jhanji, V. Comparative evaluation of aspheric toric intraocular lens implantation and limbal relaxing incisions in eyes with cataracts and ≤3 dioptres of astigmatism. Br. J. Ophthalmol. 2016, 100, 258–262. [Google Scholar] [CrossRef]
- Osawa, R.; Oshika, T.; Sano, M.; Yuguchi, T.; Kaiya, T. Rotational stability of modified toric intraocular lens. PLoS ONE 2021, 16, e0247844. [Google Scholar] [CrossRef]
- Harrer, A.; Hirnschall, N.; Maedel, S.; Findl, O. Influence of the overall intraocular lens diameter on rotational stability. Ophthalmic Res. 2015, 53, 117–121. [Google Scholar] [CrossRef]
- Patel, C.K.; Ormonde, S.; Rosen, P.H.; Bron, A.J. Postoperative intraocular lens rotation: A randomized comparison of plate and loop haptic implants. Ophthalmology 1999, 106, 2190–2196. [Google Scholar] [CrossRef]
- Poyales, F.; Garzón, N.; Pizarro, D.; Cobreces, S.; Hernández, A. Stability and visual outcomes yielded by three intraocular trifocal lenses with same optical zone design but differing material or toricity. Eur. J. Ophthalmol. 2019, 29, 417–425. [Google Scholar] [CrossRef]
Parameter | All Eyes | Regular Eyes | Post Refractive Surgery Eyes |
---|---|---|---|
Eyes | 51 | 43 | 8 |
Gender F;M | 30 (58.8%); 21 (41.2%) | 22 (51.2%); 21 (48.8%) | 8 (100%); 0(%) |
Age (years) | 71.31 (9.96) | 71.77 (10.28) | 68.88 (8.17) |
Laterality (RE) | 29 (56.9%) | 24 (55.8%) | 5 (62.5%) |
Distance; Monovision | 37 (72.5%); 14 (27.5%) | 31 (72.1%); 12 (27.9%) | 6 (75%); 2 (25%) |
Axial Length (mm) | 24.68 (1.6) | 24.41 (1.52) | 26.08 (1.29) |
Average K (D) | 43.51 (2.19) | 44.03 (1.67) | 40.71 (2.65) |
Preoperative Corneal Astigmatism (absolute mean) (D) | 2.07 (0.96) | 1.99 (0.81) | 2.49 (1.55) |
Preoperative Corneal Astigmatism (centroid mean) (D) | 0.17 (2.29) 141° | 0.18 (2.16) 117° | 0.85 (2.94) 171° |
IOL Power (D) | 19.38 (5.12) | 19.34 (5) | 19.62 (6.09) |
IOL Cylinder (D) | 2.81 (1.23) | 2.77 (1.02) | 3.06 (2.12) |
Postoperative Refraction SE (D) | −0.57 (0.81) | −0.58 (0.86) | −0.53 (0.47) |
Postoperative Refraction Cylinder (absolute mean) (D) | −0.48 (0.48) | −0.47 (0.43) | −0.52 (0.70) |
Postoperative Refraction Cylinder (centroid mean) (D) | 0.28 (0.63) 30° | 0.25 (0.59) 33° | 0.44 (0.8) 21° |
Parameter | All Eyes (n = 47) | Regular Eyes (n = 39) | Post Refractive Surgery Eyes (n = 8) |
---|---|---|---|
Mean (SD) [range] Rotation Direction | 2.66 (2.26) [0–9] | 2.59 (2.22) [0–9] | 3 (2.56) [0–7] |
Rotation Direction | CCW: 26 (63.4%); CW: 15 (36.6%) | CCW: 24 (68.6%); CW: 11 (31.4%) | CCW: 2 (33.3%); CW: 4 (66.7%) |
0° Rotation | 6 | 4 | 2 |
1° Rotation | 14 | 14 | 0 |
2° Rotation | 7 | 5 | 2 |
3° Rotation | 4 | 3 | 1 |
4° Rotation | 7 | 6 | 1 |
5° Rotation | 3 | 3 | 0 |
6° Rotation | 3 | 2 | 1 |
7° Rotation | 1 | 0 | 1 |
8° Rotation | 1 | 1 | 0 |
9° Rotation | 1 | 1 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nemet, A.Y.; Reitblat, O.; Levy, A.; Nemet, A.; Assia, E.I. Clinical Outcomes Following Toric Intraocular Lens Implantation: A Case Series Study. J. Clin. Med. 2025, 14, 2316. https://doi.org/10.3390/jcm14072316
Nemet AY, Reitblat O, Levy A, Nemet A, Assia EI. Clinical Outcomes Following Toric Intraocular Lens Implantation: A Case Series Study. Journal of Clinical Medicine. 2025; 14(7):2316. https://doi.org/10.3390/jcm14072316
Chicago/Turabian StyleNemet, Arie Y., Olga Reitblat, Adi Levy, Achia Nemet, and Ehud I. Assia. 2025. "Clinical Outcomes Following Toric Intraocular Lens Implantation: A Case Series Study" Journal of Clinical Medicine 14, no. 7: 2316. https://doi.org/10.3390/jcm14072316
APA StyleNemet, A. Y., Reitblat, O., Levy, A., Nemet, A., & Assia, E. I. (2025). Clinical Outcomes Following Toric Intraocular Lens Implantation: A Case Series Study. Journal of Clinical Medicine, 14(7), 2316. https://doi.org/10.3390/jcm14072316