Association of Subclinical Inflammation Markers with Primary Hypertension in Children—A Systematic Review with Meta-Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Criteria for Considering Studies for This Review
2.2. Search Methods for Identification of Studies
2.3. Study Selection and Analysis
2.4. Data Extraction and Management
2.5. Risk of Bias Assessment
2.6. Data Synthesis and Analysis
3. Results
Author, Publication Year (Ref.) | Study Design | Country | Population (n) | Markers | Preliminary Hypertension Definition | Results |
---|---|---|---|---|---|---|
Dziedzic-Jankowska et al. [29] | Case–control | Poland | Untreated children with PH n = 56, CG n = 30 | hs-CRP (mg/L), IL-18 (pg/mL), neutrophils (109/L), lymphocytes (109/L), monocytes (109/L), platelets (109/L), MPV (fL), NLR, PLR, LMR, MNR, PMPVR | Arterial hypertension was diagnosed according to the ESH 2016 guidelines and confirmed by ABPM | hs-CRP (2.9 (1.5–7.3) vs. 0.9 (0.5–1.9)); neutrophil count (3.89 ± 1.44 vs. 2.63 ± 0.96; p = 0.001), monocyte count (0.53 (0.45–0.65) vs. 0.44 (0.34–0.53); p = 0.026) were significantly higher in children with PH |
Gackowska et al., 2020 [14] | Case–control | Poland | Untreated children with PH n = 33, CG n = 35 | hs-CRP (mg/dL) | Arterial hypertension was diagnosed according to the ESH 2016 and American 2004 guidelines and confirmed by ABPM | hs-CRP concentration was significantly higher in children with PH (0.7 ± 0.7 vs. 0.4 ± 0.1; p = 0.02) |
Garanty-Bogacka et al., 2005 [18] | Case–control | Poland | Children with PH n = 50, CG n = 143 No data on anti-hypertensive treatment | hs-CRP (mg/L), IL-6 (pg/mL), ICAM-1 (ng/mL), VCAM-1 (ng/mL) | Arterial hypertension was recognized based on ABPM when 24 h systolic and/or diastolic BP values exceed 95 th percentile for sex and height | hs-CRP (1.7 ± 0.9 vs. 0.9 ± 0.4; p < 0.001), IL-6 (2.1 (0.7–14.8) vs. 1.2 (0.1–3.6); p < 0.001), ICAM-1 (331.2 ± 138.3 vs. 230.9 ± 109.3; p < 0.001) and VCAM-1 (1258.1 ± 368.3 vs. 872 ± 439.1; p < 0.001) were significantly higher in children with PH |
Głowińska- Olszewska et al., 2007 [19] | Case–control | Poland | Children with PH n = 31 CG n = 26 No data on anti-hypertensive treatment | ICAM-1 (ng/mL), VCAM-1 (ng/mL), E-selectin (ng/mL) | Arterial hypertension was diagnosed when at least 30% of the 24 h ABPM recordings exceeded the 95th percentile, matched for age and gender | ICAM-1 (319.6 ± 137 vs. 255.2 ± 43; p = 0.02), VCAM-1 (540.7 ± 209 vs. 396.8 ± 57; p = 0.02) and E-selectin (87.4 ± 28 vs. 65.4 ± 22; p = 0.001) were significantly higher in children with PH |
Hou et al., 2021 [20] | Case–control | China | Untreated children with PH n = 65, CG n = 54 | hs-CRP (mg/dL), WBC (109/L), neutrophils (109/L), lymphocytes (109/L), monocytes (109/L), platelets (109/L), NLR, PLR, LMR | Arterial hypertension was defined as systolic and/or diastolic pressure ≥95 th percentile for sex, age, and height according to the reference values of the Chinese Child Blood Pressure References Collaborative Group | hs-CRP (2.22 ± 5.03 vs. 0.32 ± 0.42; p =0.004), WBC (7.65 ± 2.27 vs. 6.70 ± 1.71; p = 0.017), neutrophil count (4.62 ± 1.72 vs. 3.77 ± 1.27; p = 0.003) and NLR (2.18 ± 1.12 vs.1.68 ± 0.75; p = 0.005) were significantly higher in children with PH |
Kołakowska et al., 2018 [21] | Case–control | Poland | Untreated children with PH n = 58, CG n = 30 | hs-CRP (mg/L) | Arterial hypertension was confirmed by ABPM (24 h SBP or DBP >95th percentile for gender and height and SBP or DBP load > 25%) | hs-CRP (1.05 (0.54–1.33) vs. 0.17 (0.16–0.20), p < 0.01) was significantly higher in children with PH |
Litwin et al., 2010 [22] | Case–control | Poland | Untreated children with PH n = 44, CG n = 30 | hs-CRP (mg/L), MCP-1 (pg/mL), MIP-1β (pg/mL), MIP-1α (pg/mL), TNF-α (pg/mL), angiogenin (ng/mL), IL-6 (pg/mL), RANTES (ng/mL) | Normal office blood pressure values were taken from the Updated 4th Task Force Report. Diagnosis of arterial hypertension was confirmed by ABPM—SBP and/or DBP ≥ 95th percentile. | hs-CRP (1.2 ± 1.1 vs. 0.3 ± 0.2; p = 0.0001), MIP-1β (117.9 ± 140.6 vs. 58.3 ± 21.9; p = 0.04), and RANTES (19.7 ± 25.8 vs.10.7 ± 10.6; p = 0.04) were significantly higher in children with PH |
Musiał et al., 2022 [23] | Case–control | Poland | Untreated children with PH n = 70, CG n = 20 | hs-CRP (mg/L), neutrophils (103/µL), platelets (103/µL), lymphocytes (103/µL), monocytes (103/µL), NLR, PLR, LMR | Arterial hypertension was diagnosed according to 2016 ESH guidelines, based on three independent oscillometric office blood pressure measurements showing values > 95th percentile for age, sex, and height | NLR (2.0 ± 1.0 vs.1.5 ± 0.5; p < 0.05), PLR (135.6 ± 43.2 vs.121.4 ± 45.6; p < 0.05) were significantly higher and LMR (4.0 ± 1.4 vs. 4.9 ± 1.5; p < 0.05) was significantly lower in children with PH |
Skrzypczyk et al., 2018 [24] | Case–control | Poland | Untreated children with PH n = 54, CG n = 20 | Neutrophils (103/µL), lymphocytes (103/µL), platelets (103/µL), NLR, PLR, MPV (fL) | Arterial hypertension was defined as systolic and/or diastolic pressure ≥ 95th percentile for sex, age, and height during 24 h according to AHA guidelines | There were no significant differences in evaluated inflammatory markers between children with PH and the control group |
Skrzypczyk et al., 2021 [25] | Case–control | Poland | Children with PH n = 119 (55/119 on pharmacological treatment), CG n = 45 | neutrophils (103/µL), lymphocytes (103/µL), platelets (103/µL), NLR, PLR, MPV (fL) | Arterial hypertension was diagnosed according to Polish 2019 guidelines | Neutrophil count (3.9 ± 1.7 vs. 3.0 ± 1.0; p < 0.001), platelet count (271.9 ± 62.3 vs. 250.3 ± 60.3; p = 0.047), NLR (1.9 ± 1.5 vs. 1.3 ± 0.4; p = 0.01) and PLR (131.4 ± 41.9 vs. 114.7 ± 37.6; p = 0.02) were significantly higher in children with PH |
Skrzypczyk et al., 2022 [26] | Case–control | Poland | Untreated children with PH n = 28, CG n = 25 | NLR, PLR, MPV (fl) | Arterial hypertension was diagnosed according to Polish 2019 guidelines | No significant differences in evaluated inflammatory markers between children with PH and the control group |
Trojanek et al., 2019 [27] | Case–control | Poland | Untreated children with PH n = 80, CG n = 78 | hs-CRP (mg/L) | Arterial hypertension was diagnosed according to the 2016 ESH guidelines and confirmed by 24 h ambulatory blood pressure monitoring | hs-CRP (0.32 ± 0.18 vs. 0.12 ± 0.13; p = 0.0001) was significantly higher in children with PH |
Wasilewska et al., 2010 [28] | Case–control | Poland | Untreated children with PH n = 57, CG n = 25 | hs-CRP (mg/L), platelets (103/µL), MPV (fL) | Arterial hypertension was diagnosed when SBP or DBP was ≥95th percentile (according to Polish normative values) and confirmed by 24 h ABPM | hs-CRP (0.66 (0.76–1.19) vs. 0.17 (0.14–0.31); p < 0.01), platelet count (284.5 (265.09–302.98) vs. 245 (232.75–268.2); p < 0.05) and MPV (11.3 (10.94–11.37) vs.10.3 (10.09–10.77); p < 0.01) were significantly higher in children with PH |
3.1. Risk of Bias of Included Studies
3.2. High-Sensitivity C-Reactive Protein
3.3. Interleukin 6
3.4. Intercellular Adhesion Molecule 1
3.5. Vascular Cell Adhesion Molecule 1
3.6. Neutrophils
3.7. Lymphocytes
3.8. Monocytes
3.9. Platelets
3.10. Mean Platelet Volume
3.11. Neutrophil-to-Lymphocyte Ratio
3.12. Platelet-to-Lymphocyte Ratio
3.13. Lymphocyte-to-Monocyte Ratio
3.14. Additional Markers
4. Discussion
4.1. Summary of Main Findings
4.2. Comparison with Other Studies
4.3. Strengths and Limitations
4.4. Implications for Practice and Further Research
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mancia, G.; Kreutz, R.; Brunström, M.; Burnier, M.; Grassi, G.; Januszewicz, A.; Muiesan, M.L.; Tsioufis, K.; Agabiti-Rosei, E.; Algharably, E.A.E.; et al. 2023 ESH Guidelines for the management of arterial hypertension the Task Force for the management of arterial hypertension of the European Society of Hypertension: Endorsed by the International Society of Hypertension (ISH) and the European Renal Association (ERA). J. Hypertens. 2023, 41, 1874–2071. [Google Scholar] [PubMed]
- Song, P.; Zhang, Y.; Yu, J.; Zha, M.; Zhu, Y.; Rahimi, K.; Rudan, I. Global Prevalence of Hypertension in Children: A Systematic Review and Meta-analysis. JAMA Pediatr. 2019, 173, 1154–1163. [Google Scholar] [CrossRef] [PubMed]
- Gupta-Malhotra, M.; Banker, A.; Shete, S.; Hashmi, S.S.; Tyson, J.E.; Barratt, M.S.; Hecht, J.T.; Milewicz, D.M.; Boerwinkle, E. Essential hypertension vs. secondary hypertension among children. Am. J. Hypertens. 2015, 28, 73–80. [Google Scholar] [PubMed]
- Symonides, B.; Jędrusik, P.; Artyszuk, L.; Gryboś, A.; Dziliński, P.; Gaciong, Z. Different diagnostic criteria significantly affect the rates of hypertension in 18-year-old high school students. Arch. Med. Sci. 2010, 6, 689–694. [Google Scholar] [CrossRef]
- Litwin, M.; Feber, J.; Niemirska, A.; Michałkiewicz, J. Primary hypertension is a disease of premature vascular aging associated with neuro-immuno-metabolic abnormalities. Pediatr. Nephrol. 2016, 31, 185–194. [Google Scholar] [CrossRef]
- Madhur, M.S.; Elijovich, F.; Alexander, M.R.; Pitzer, A.; Ishimwe, J.; Van Beusecum, J.P.; Patrick, D.M.; Smart, C.D.; Kleyman, T.R.; Kingery, J.; et al. Hypertension: Do Inflammation and Immunity Hold the Key to Solving this Epidemic? Circ. Res. 2021, 128, 908–933. [Google Scholar] [CrossRef]
- Norlander, A.E.; Madhur, M.S.; Harrison, D.G. The immunology of hypertension. J. Exp. Med. 2018, 215, 21–33. [Google Scholar] [CrossRef]
- Chrysohoou, C.; Pitsavos, C.; Panagiotakos, D.B.; Skoumas, J.; Stefanadis, C. Association between prehypertension status and inflammatory markers related to atherosclerotic disease: The ATTICA Study. Am. J. Hypertens. 2004, 17, 568–573. [Google Scholar] [CrossRef]
- Mahmud, A.; Feely, J. Arterial stiffness is related to systemic inflammation in essential hypertension. Hypertension 2005, 46, 1118–1122. [Google Scholar] [CrossRef]
- McMaster, W.G.; Kirabo, A.; Madhur, M.S.; Harrison, D.G. Inflammation, immunity, and hypertensive end-organ damage. Circ. Res. 2015, 116, 1022–1033. [Google Scholar] [CrossRef]
- Bhat, T.; Teli, S.; Rijal, J.; Bhat, H.; Raza, M.; Khoueiry, G.; Meghani, M.; Akhtar, M.; Costantino, T. Neutrophil to lymphocyte ratio and cardiovascular diseases: A review. Expert. Rev. Cardiovasc. Ther. 2013, 11, 55–59. [Google Scholar] [PubMed]
- Kurtul, A.; Ornek, E. Platelet to Lymphocyte Ratio in Cardiovascular Diseases: A Systematic Review. Angiology 2019, 70, 802–818. [Google Scholar] [CrossRef] [PubMed]
- Sarejloo, S.; Dehesh, M.; Fathi, M.; Khanzadeh, M.; Lucke-Wold, B.; Ghaedi, A.; Khanzadeh, S. Meta-analysis of differences in neutrophil to lymphocyte ratio between hypertensive and non-hypertensive individuals. BMC Cardiovasc. Disord. 2023, 23, 283. [Google Scholar]
- Gackowska, L.; Michałkiewicz, J.; Niemirska, A.; Helmin-Basa, A.; Kłosowski, M.; Kubiszewska, I.; Obrycki, Ł.; Szalecki, M.; Wierzbicka, A.; Kułaga, Z.; et al. Loss of CD31 receptor in CD4+ and CD8+ T-cell subsets in children with primary hypertension is associated with hypertension severity and hypertensive target organ damage. J. Hypertens. 2018, 36, 2148–2156. [Google Scholar]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar]
- Wells, G.; Shea, B.; O’Connell, D.; Peterson, J.; Welch, V.; Losos, M.; Tugwell, P. The Newcastle-Ottawa Scale (NOS) for Assessing the Quality of Nonrandomised Studies in Meta-Analyses; ScienceOpen, Inc.: Berlin, Germany, 2013. [Google Scholar]
- Wan, X.; Wang, W.; Liu, J.; Tong, T. Estimating the sample mean and standard deviation from the sample size, median, range and/or interquartile range. BMC Med. Res. Methodol. 2014, 14, 135. [Google Scholar]
- Garanty-Bogacka, B.; Syrenicz, M.; Syrenicz, A.; Gebala, A.; Lulka, D.; Walczak, M. Serum markers of inflammation and endothelial activation in children with obesity-related hypertension. Neuro Endocrinol. Lett. 2005, 26, 242–246. [Google Scholar]
- Głowińska-Olszewska, B.; Tołwińska, J.; Urban, M. Relationship between endothelial dysfunction, carotid artery intima media thickness and circulating markers of vascular inflammation in obese hypertensive children and adolescents. J. Pediatr. Endocrinol. Metab. 2007, 20, 1125–1136. [Google Scholar]
- Hou, M.; Cao, L.; Ding, Y.; Chen, Y.; Wang, B.; Shen, J.; Zhou, W.; Huang, J.; Xu, Q.; Lv, H.; et al. Neutrophil to Lymphocyte Ratio Is Increased and Associated with Left Ventricular Diastolic Function in Newly Diagnosed Essential Hypertension Children. Front. Pediatr. 2021, 9, 576005. [Google Scholar]
- Kołakowska, U.; Kuroczycka-Saniutycz, E.; Olański, W.; Wasilewska, A. Correlation of Salusin Beta with hs-CRP and ADMA in Hypertensive Children and Adolescents. Curr. Pharm. Des. 2018, 24, 3551–3557. [Google Scholar]
- Litwin, M.; Michałkiewicz, J.; Niemirska, A.; Gackowska, L.; Kubiszewska, I.; Wierzbicka, A.; Wawer, Z.T.; Janas, R. Inflammatory activation in children with primary hypertension. Pediatr. Nephrol. 2010, 25, 1711–1718. [Google Scholar] [PubMed]
- Musiał, K.; Bargenda-Lange, A.; Mazurkiewicz, P.; Gaik, M.; Gralec, S.; Zwolińska, D. Lymphocyte to monocyte ratio and blood pressure variability in childhood hypertension-a pilot study. Pediatr. Res. 2023, 93, 137–142. [Google Scholar] [PubMed]
- Skrzypczyk, P.; Przychodzień, J.; Bombińska, M.; Kaczmarska, Z.; Mazur, M.; Pańczyk-Tomaszewska, M. Complete blood count-derived inflammatory markers in adolescents with primary arterial hypertension: A preliminary report. Cent. Eur. J. Immunol. 2018, 43, 434–441. [Google Scholar]
- Skrzypczyk, P.; Zacharzewska, A.; Szyszka, M.; Ofiara, A.; Pańczyk-Tomaszewska, M. Arterial stiffness in children with primary hypertension is related to subclinical inflammation. Cent. Eur. J. Immunol. 2021, 46, 336–343. [Google Scholar]
- Skrzypczyk, P.; Bujanowicz, A.; Ofiara, A.; Szyszka, M.; Pańczyk-Tomaszewska, M. 24-hour central blood pressure and immune system activation in adolescents with primary hypertension—A preliminary study. Cent. Eur. J. Immunol. 2022, 47, 160–167. [Google Scholar] [CrossRef]
- Trojanek, J.B.; Niemirska, A.; Grzywa, R.; Wierzbicka, A.; Obrycki, Ł.; Kułaga, Z.; Szalecki, M.; Michałkiewicz, J.; Litwin, M. Leukocyte matrix metalloproteinase and tissue inhibitor gene expression patterns in children with primary hypertension. J. Hum. Hypertens. 2020, 34, 355–363. [Google Scholar]
- Wasilewska, A.; Tenderenda, E.; Taranta-Janusz, K.; Zoch- Zwierz, W. High-sensitivity CRP and mean platelet volume (MPV) in pediatric hypertension. Pediatr. Nephrol. 2010, 25, 1933. [Google Scholar]
- Dziedzic-Jankowska, K.; Bujanowicz, A.; Szyszka, M.; Stelmaszczyk-Emmel, A.; Skrzypczyk, P. Subclinical inflammation in paediatric patients with primary hypertension and white coat hypertension. Pediatr. Med. Rodz. 2024, 20, 215–224. [Google Scholar]
- Ridker, P.M.; Rane, M. Interleukin-6 Signaling and Anti-Interleukin-6 Therapeutics in Cardiovascular Disease. Circ. Res. 2021, 128, 1728–1746. [Google Scholar] [CrossRef]
- Pathak, A.; Agrawal, A. Evolution of C-Reactive Protein. Front. Immunol. 2019, 10, 943. [Google Scholar]
- Jayedi, A.; Rahimi, K.; Bautista, L.E.; Nazarzadeh, M.; Zargar, M.S.; Shab-Bidar, S. Inflammation markers and risk of developing hypertension: A meta-analysis of cohort studies. Heart 2019, 105, 686–692. [Google Scholar] [CrossRef] [PubMed]
- Demerath, E.; Towne, B.; Blangero, J.; Siervogel, R.M. The relationship of soluble ICAM-1, VCAM-1, P-selectin and E-selectin to cardiovascular disease risk factors in healthy men and women. Ann. Hum. Biol. 2001, 28, 664–678. [Google Scholar] [CrossRef] [PubMed]
- Hwang, S.J.; Ballantyne, C.M.; Sharrett, A.R.; Smith, L.C.; Davis, C.E.; Gotto, A.M., Jr.; Boerwinkle, E. Circulating adhesion molecules VCAM-1, ICAM-1, and E-selectin in carotid atherosclerosis and incident coronary heart disease cases: The Atherosclerosis Risk In Communities (ARIC) study. Circulation 1997, 96, 4219–4225. [Google Scholar] [CrossRef] [PubMed]
- Jude, E.B.; Douglas, J.T.; Anderson, S.G.; Young, M.J.; Boulton, A.J. Circulating cellular adhesion molecules ICAM-1, VCAM-1, P- and E-selectin in the prediction of cardiovascular disease in diabetes mellitus. Eur. J. Intern. Med. 2002, 13, 185–189. [Google Scholar] [CrossRef]
- Schmidt, C.; Hulthe, J.; Fagerberg, B. Baseline ICAM-1 and VCAM-1 are increased in initially healthy middle-aged men who develop cardiovascular disease during 6.6 years of follow-up. Angiology 2009, 60, 108–114. [Google Scholar] [CrossRef]
- Araos, P.; Figueroa, S.; Amador, C.A. The Role of Neutrophils in Hypertension. Int. J. Mol. Sci. 2020, 21, 8536. [Google Scholar] [CrossRef]
- Wilck, N.; Matus, M.G.; Kearney, S.M.; Olesen, S.W.; Forslund, K.; Bartolomaeus, H.; Haase, S.; Mähler, A.; Balogh, A.; Markó, L.; et al. Salt-responsive gut commensal modulates T(H)17 axis and disease. Nature 2017, 551, 585–589. [Google Scholar] [CrossRef]
- Guzik, T.J.; Nosalski, R.; Maffia, P.; Drummond, G.R. Immune and inflammatory mechanisms in hypertension. Nat. Rev. Cardiol. 2024, 21, 396–416. [Google Scholar] [CrossRef]
- Wang, Q.; Ma, J.; Jiang, Z.; Wu, F.; Ping, J.; Ming, L. Association of lymphocyte-to-monocyte ratio with in-hospital and long-term major adverse cardiac and cerebrovascular events in patients with ST-elevated myocardial infarction. Medicine 2017, 96, e7897. [Google Scholar] [CrossRef]
- Wang, L.; Gao, J.; Liu, B.; Fu, Y.; Yao, Z.; Guo, S.; Song, Z.; Zhang, Z.; He, J.; Wang, C.; et al. The association between lymphocyte-to-monocyte ratio and all-cause mortality in obese hypertensive patients with diabetes and without diabetes: Results from the cohort study of NHANES 2001–2018. Front. Endocrinol. 2024, 15, 1387272. [Google Scholar] [CrossRef]
- Li, W.; Liu, Q.; Tang, Y. Platelet to lymphocyte ratio in the prediction of adverse outcomes after acute coronary syndrome: A meta-analysis. Sci. Rep. 2017, 7, 40426. [Google Scholar]
- Dong, G.; Huang, A.; Liu, L. Platelet-to-lymphocyte ratio and prognosis in STEMI: A meta-analysis. Eur. J. Clin. Investig. 2021, 51, e13386. [Google Scholar] [CrossRef] [PubMed]
- Pruc, M.; Peacock, F.W.; Rafique, Z.; Swieczkowski, D.; Kurek, K.; Tomaszewska, M.; Katipoglu, B.; Koselak, M.; Cander, B.; Szarpak, L. The Prognostic Role of Platelet-to-Lymphocyte Ratio in Acute Coronary Syndromes: A Systematic Review and Meta-Analysis. J. Clin. Med. 2023, 12, 6903. [Google Scholar] [CrossRef] [PubMed]
- Qiu, Z.; Jiang, Y.; Jiang, X.; Yang, R.; Wu, Y.; Xu, Y.; Cheng, X. Relationship Between Platelet to Lymphocyte Ratio and Stable Coronary Artery Disease: Meta-Analysis of Observational Studies. Angiology 2020, 71, 909–915. [Google Scholar]
- Willim, H.A.; Harianto, J.C.; Cipta, H. Platelet-to-Lymphocyte Ratio at Admission as a Predictor of In-Hospital and Long-Term Outcomes in Patients With ST-Segment Elevation Myocardial Infarction Undergoing Primary Percutaneous Coronary Intervention: A Systematic Review and Meta-Analysis. Cardiol. Res. 2021, 12, 109–116. [Google Scholar]
- Varol, E.; Akcay, S.; Icli, A.; Yucel, H.; Ozkan, E.; Erdogan, D.; Ozaydin, M. Mean platelet volume in patients with prehypertension and hypertension. Clin. Hemorheol. Microcirc. 2010, 45, 67–72. [Google Scholar]
- Bellos, I.; Fitrou, G.; Pergialiotis, V.; Papantoniou, N.; Daskalakis, G. Mean platelet volume values in preeclampsia: A systematic review and meta-analysis. Pregnancy Hypertens. 2018, 13, 174–180. [Google Scholar]
- Sansanayudh, N.; Anothaisintawee, T.; Muntham, D.; McEvoy, M.; Attia, J.; Thakkinstian, A. Mean platelet volume and coronary artery disease: A systematic review and meta-analysis. Int. J. Cardiol. 2014, 175, 433–440. [Google Scholar]
- Chu, S.G.; Becker, R.C.; Berger, P.B.; Bhatt, D.L.; Eikelboom, J.W.; Konkle, B.; Mohler, E.R.; Reilly, M.P.; Berger, J.S. Mean platelet volume as a predictor of cardiovascular risk: A systematic review and meta-analysis. J. Thromb. Haemost. 2010, 8, 148–156. [Google Scholar]
- Wyszyńska, T.; Cichocka, E.; Wieteska-Klimczak, A.; Jobs, K.; Januszewicz, P. A single pediatric center experience with 1025 children with hypertension. Acta Paediatr 1992, 81, 244–246. [Google Scholar] [CrossRef]
- Huang, C.G.; Lin, W.N.; Hsin, L.J.; Fang, T.J.; Li, H.Y.; Lee, C.C.; Lee, L.A. Exploring the Interplay of Gut Microbiota and Systemic Inflammation in Pediatric Obstructive Sleep Apnea Syndrome and Its Impact on Blood Pressure Status: A Cross-Sectional Study. Int. J. Mol. Sci. 2024, 25, 13344. [Google Scholar] [CrossRef] [PubMed]
- Nogueira, M.D.A.; Braga, R.A.M.; Manios, Y.; Androutsos, O.; Molnár, D.; Polito, A.; Gómez-Martínez, S.; Béghin, L.; Widhalm, K.; Bueno, G.; et al. New indices in predicting cardiometabolic risk and its relation to endothelial dysfunction in adolescents: The HELENA study. Nutr. Metab. Cardiovasc. Dis. 2023, 33, 1037–1048. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Wang, Q.; Liu, H.; Hong, F.; Tang, Q.; Hu, C.; Xu, T.; Lu, H.; Ye, L.; Zhu, Y.; et al. Systemic inflammation markers and the prevalence of hypertension in 8- to 17-year-old children and adolescents: A NHANES cross-sectional study. Nutr. Metab. Cardiovasc. Dis. 2025, 35, 103727. [Google Scholar] [CrossRef]
- Muñoz Aguilera, E.; Suvan, J.; Buti, J.; Czesnikiewicz-Guzik, M.; Barbosa Ribeiro, A.; Orlandi, M.; Guzik, T.J.; Hingorani, A.D.; Nart, J.; D’Aiuto, F. Periodontitis is associated with hypertension: A systematic review and meta-analysis. Cardiovasc. Res. 2020, 116, 28–39. [Google Scholar] [CrossRef]
- Ostalska-Nowicka, D.; Paszyńska, E.; Dmitrzak-Węglarz, M.; Neyman-Bartkowiak, A.; Rabiega, A.; Zachwieja, J.; Nowicki, M. Dental caries-related primary hypertension in children and adolescents: Cross-sectional study. Oral. Dis. 2021, 27, 1822–1833. [Google Scholar] [CrossRef]
- Paszynska, E.; Dmitrzak-Weglarz, M.; Ostalska-Nowicka, D.; Nowicki, M.; Gawriolek, M.; Zachwieja, J. Association of Oral Status and Early Primary Hypertension Biomarkers among Children and Adolescents. Int. J. Environ. Res. Public. Health 2020, 17, 7981. [Google Scholar] [CrossRef]
- Takagi, H.; Mizuno, Y.; Yamamoto, H.; Goto, S.N.; Umemoto, T. Effects of telmisartan therapy on interleukin-6 and tumor necrosis factor-alpha levels: A meta-analysis of randomized controlled trials. Hypertens. Res. 2013, 36, 368–373. [Google Scholar] [CrossRef]
- Soltani, S.; Chitsazi, M.J.; Salehi-Abargouei, A. The effect of dietary approaches to stop hypertension (DASH) on serum inflammatory markers: A systematic review and meta-analysis of randomized trials. Clin. Nutr. 2018, 37, 542–550. [Google Scholar] [CrossRef]
- Ashoori, M.; Soltani, S.; Kolahdouz-Mohammadi, R.; Moghtaderi, F.; Clayton, Z.; Abdollahi, S. The effect of whole grape products on blood pressure and vascular function: A systematic review and meta-analysis of randomized controlled trials. Nutr. Metab. Cardiovasc. Dis. 2023, 33, 1836–1848. [Google Scholar]
- Chen, Y.; Yuan, J.; Lei, X.; Cheng, Y.; Wei, X. Metabolic status and vascular endothelial structure in obese hypertensive patients treated with non-pharmacological therapies: A systematic review and meta-analysis. PLoS ONE 2022, 17, e0279582. [Google Scholar]
- Brie, D.; Sahebkar, A.; Penson, P.E.; Dinca, M.; Ursoniu, S.; Serban, M.C.; Zanchetti, A.; Howard, G.; Ahmed, A.; Aronow, W.S.; et al. Effects of pentoxifylline on inflammatory markers and blood pressure: A systematic review and meta-analysis of randomized controlled trials. J. Hypertens. 2016, 34, 2318–2329. [Google Scholar] [CrossRef] [PubMed]
- Silva, L.R.; Stefanello, J.M.; Pizzi, J.; Timossi, L.S.; Leite, N. Atherosclerosis subclinical and inflammatory markers in obese and nonobese children and adolescents. Rev. Bras. Epidemiol. 2012, 15, 804–816. [Google Scholar]
- Litwin, M.; Niemirska, A.; Sladowska-Kozlowska, J.; Wierzbicka, A.; Janas, R.; Wawer, Z.T.; Wisniewski, A.; Feber, J. Regression of target organ damage in children and adolescents with primary hypertension. Pediatr. Nephrol. 2010, 25, 2489–2499. [Google Scholar]
Quality Assessment Criteria | Criterion to be Fulfilled to Award Asterix (*) | Dziedzic-Jankowska et al. [29] | Gackowska et al. 2020 [14] | Garanty-Bogacka et al.2005 [18] | Głowińska-Olszewska et al. 2007 [19] | Hou et al. 2021 [20] | Kołakowska et al.2018 [21] | Litwin et al.2010 [22] | Musiał et al.2022 [23] | Skrzypczyk et al. 2018 [24] | Skrzypczyk et al.2021 [25] | Skrzypczyk et al.2022 [26] | Trojanek et al.2019 [27] | Wasilewska et al.2010 [28] |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Is the case definition adequate? | (a) Yes, with independent validation * (b) Yes, e.g., record linkage or based on self-reports (c) No description | * | * | * | * | * | * | * | * | * | * | * | * | * |
Representativeness of the cases | (a) Consecutive or obviously representative series of cases * (b) Potential for selection biases or not stated | * | * | * | * | * | * | * | * | * | * | * | * | * |
Selection of controls | (a) Community controls * (b) Hospital controls (c) No description | c | * | c | * | * | b | c | c | c | c | c | * | b |
Definition of controls | (a) No history of disease (endpoint) * (b) No description of source | * | * | b | b | * | * | * | * | b | b | b | b | * |
Comparability of cases and controls on the basis of the design or analysis | (a) Study controls for presence of primary hypertension* (b) Study controls for body mass index * | * | * | ** | ** | * | * | * | * | * | * | * | ** | * |
Ascertainment of exposure | (a) Secure record (e.g., surgical records) * (b) Structured interview blind to case/control status * (c) Interview not blinded to case/control status (d) Written self-report or medical record only (e) No description | * | * | * | * | * | * | * | * | * | * | * | * | * |
Same method of ascertainment for cases and controls | (a) Yes * (b) No | * | * | * | * | * | * | * | * | * | * | * | * | * |
Non-response rate | (a) Same rate for both groups * (b) Non-respondents described (c) Rate different and no designation | * | * | * | * | * | * | * | * | * | * | * | * | * |
Total score | 7 | 8 | 7 | 8 | 8 | 7 | 7 | 7 | 6 | 6 | 6 | 8 | 7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dziedzic-Jankowska, K.; Kołodziej, M.; Skrzypczyk, P. Association of Subclinical Inflammation Markers with Primary Hypertension in Children—A Systematic Review with Meta-Analysis. J. Clin. Med. 2025, 14, 2319. https://doi.org/10.3390/jcm14072319
Dziedzic-Jankowska K, Kołodziej M, Skrzypczyk P. Association of Subclinical Inflammation Markers with Primary Hypertension in Children—A Systematic Review with Meta-Analysis. Journal of Clinical Medicine. 2025; 14(7):2319. https://doi.org/10.3390/jcm14072319
Chicago/Turabian StyleDziedzic-Jankowska, Katarzyna, Maciej Kołodziej, and Piotr Skrzypczyk. 2025. "Association of Subclinical Inflammation Markers with Primary Hypertension in Children—A Systematic Review with Meta-Analysis" Journal of Clinical Medicine 14, no. 7: 2319. https://doi.org/10.3390/jcm14072319
APA StyleDziedzic-Jankowska, K., Kołodziej, M., & Skrzypczyk, P. (2025). Association of Subclinical Inflammation Markers with Primary Hypertension in Children—A Systematic Review with Meta-Analysis. Journal of Clinical Medicine, 14(7), 2319. https://doi.org/10.3390/jcm14072319