Spinal Drainage and Combined Pharmacotherapy as Potential Strategies to Improve Outcomes for Patients with Poor-Grade Subarachnoid Hemorrhage Treated with Clipping or Coiling but Not Receiving Nimodipine
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Analyzed Clinical Variables
2.3. Statistical Analysis
3. Results
3.1. Study Population
3.2. Univariate Analyses to Detect Variables Potentially Related to Outcomes
3.3. Independent Variables Related to Favorable Outcomes
3.4. Effects of Spinal Drainage or the Triple Prophylactic Anti-DCI Medications on Outcomes
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
aVSP | Angiographic vasospasm |
CSF | Cerebrospinal fluid |
CT | Computed tomography |
DCI | Delayed cerebral ischemia |
EPA | Eicosapentaenoic acid |
IQR | Interquartile range |
MR | Magnetic resonance |
mRS | Modified Rankin Scale |
pSEED | Prospective Registry for Searching Mediators of Neurovascular Events After Aneurysmal Subarachnoid Hemorrhage |
PTA | Percutaneous transluminal angioplasty |
SAH | Subarachnoid hemorrhage |
SDHC | Shunt-dependent hydrocephalus |
WFNS | World Federation of Neurological Surgeons |
Appendix A
References
- Sasaki, T.; Naraoka, M.; Shimamura, N.; Takemura, A.; Hasegawa, S.; Akasaka, K.; Ohkuma, H. Factors affecting outcomes of poor-grade subarachnoid hemorrhage. World Neurosurg. 2024, 285, e516–e522. [Google Scholar] [CrossRef] [PubMed]
- Scibilia, A.; Rustici, A.; Linari, M.; Zenesini, C.; Belotti, L.M.B.; Dall’Olio, M.; Princiotta, C.; Cuoci, A.; Aspide, R.; Migliorino, E.; et al. Factors affecting 30-day mortality in poor-grade aneurysmal subarachnoid hemorrhage: A 10-year single-center experience. Front. Neurol. 2024, 15, 1286862. [Google Scholar] [CrossRef] [PubMed]
- Hironaka, K.; Aso, S.; Suzuki, M.; Matano, F.; Matsui, H.; Fushimi, K.; Yasunaga, H.; Morita, A. Outcomes in elderly Japanese patients treated for aneurysmal subarachnoid hemorrhage: A retrospective nationwide study. J. Stroke Cerebrovasc. Dis. 2020, 29, 104795. [Google Scholar] [CrossRef]
- Nakajima, H.; Kawakita, F.; Okada, T.; Oinaka, H.; Suzuki, Y.; Nampei, M.; Kitano, Y.; Nishikawa, H.; Fujimoto, M.; Miura, Y.; et al. Treatment factors to suppress delayed cerebral ischemia after aneurysmal subarachnoid hemorrhage based on VASOGRADE: Multicenter cohort study. Neurosurg. Rev. 2024, 47, 564. [Google Scholar] [CrossRef]
- Lenkeit, A.; Oppong, M.D.; Dinger, T.F.; Gümüs, M.; Rauschenbach, L.; Chihi, M.; Ahmadipour, Y.; Uerschels, A.K.; Dammann, P.; Deuschl, C.; et al. Risk factors for poor outcome after aneurysmal subarachnoid hemorrhage in patients with initial favorable neurological status. Acta Neurochir. 2024, 166, 93. [Google Scholar] [CrossRef]
- Suzuki, H.; Kanamaru, H.; Kawakita, F.; Asada, R.; Fujimoto, M.; Shiba, M. Cerebrovascular pathophysiology of delayed cerebral ischemia after aneurysmal subarachnoid hemorrhage. Histol. Histopathol. 2021, 36, 143–158. [Google Scholar] [CrossRef]
- Suzuki, H.; Kawakita, F.; Asada, R. Neuroelectric mechanisms of delayed cerebral ischemia after aneurysmal subarachnoid hemorrhage. Int. J. Mol. Sci. 2022, 23, 3102. [Google Scholar] [CrossRef]
- Wolf, S.; Mielke, D.; Barner, C.; Malinova, V.; Kerz, T.; Wostrack, M.; Czorlich, P.; Salih, F.; Engel, D.C.; Ehlert, A.; et al. Effectiveness of lumbar cerebrospinal fluid drain among patients with aneurysmal subarachnoid hemorrhage: A randomized clinical trial. JAMA Neurol. 2023, 80, 833–842. [Google Scholar] [CrossRef] [PubMed]
- Hoh, B.L.; Ko, N.U.; Amin-Hanjani, S.; Chou, S.-Y.; Cruz-Flores, S.; Dangayach, N.S.; Derdeyn, C.P.; Du, R.; Hänggi, D.; Hetts, S.W.; et al. 2023 guideline for the management of patients with aneurysmal subarachnoid hemorrhage: A guideline from the American Heart Association/American Stroke Association. Stroke 2023, 54, e314–e370. [Google Scholar] [CrossRef]
- Nishikawa, Y.; Yamada, S.; Uchida, M.; Yamanaka, T.; Hayashi, Y.; Katano, H.; Tanikawa, M.; Iwama, T.; Iihara, K.; Morioka, M.; et al. Japanese nationwide questionnaire survey on delayed cerebral infarction due to vasospasm after subarachnoid hemorrhage. Front. Neurol. 2023, 14, 1296995. [Google Scholar] [CrossRef]
- Endo, H.; Hagihara, Y.; Kimura, N.; Takizawa, K.; Niizuma, K.; Togo, O.; Tominaga, T. Effects of clazosentan on cerebral vasospasm-related morbidity and all-cause mortality after aneurysmal subarachnoid hemorrhage: Two randomized phase 3 trials in Japanese patients. J. Neurosurg. 2022, 137, 1707–1717. [Google Scholar] [CrossRef] [PubMed]
- Pontes, J.P.M.; Santos, M.D.C.; Gibram, F.C.; Rodrigues, N.M.V.; Cavalcante-Neto, J.F.; Barros, A.D.M.; Solla, D.J.F. Efficacy and safety of clazosentan after aneurysmal subarachnoid hemorrhage: An updated meta-analysis. Neurosurgery 2023, 93, 1208–1219. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, H.; Nakajima, H.; Ichikawa, T.; Yasuda, R.; Okada, T.; Goto, F.; Ito, S.; Horiuchi, Y.; Kitano, Y.; Nishikawa, H.; et al. Beneficial effects of clazosentan add-on treatment on delayed cerebral microcirculatory disturbances after aneurysmal subarachnoid hemorrhage. Brain Hemorrhages 2024, 5, 62–68. [Google Scholar] [CrossRef]
- Mochizuki, T.; Ryu, B.; Shima, S.; Kamijyo, E.; Ito, K.; Ando, T.; Kushi, K.; Sato, S.; Inoue, T.; Kawashima, A.; et al. Comparison of efficacy between clazosentan and fasudil hydrochloride-based management of vasospasm after subarachnoid hemorrhage focusing on older and WFNS grade V patients: A single-center experience in Japan. Neurosurg. Rev. 2024, 47, 113. [Google Scholar] [CrossRef]
- Frontera, J.A.; Claassen, J.; Schmidt, J.M.; Wartenberg, K.E.; Temes, R.; Connolly, E.S., Jr.; MacDonald, R.L.; Mayer, S.A. Prediction of symptomatic vasospasm after subarachnoid hemorrhage: The modified fisher scale. Neurosurgery 2006, 59, 21–27; discussion 21–27. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, H.; Miura, Y.; Yasuda, R.; Yago, T.; Mizutani, H.; Ichikawa, T.; Miyazaki, T.; Kitano, Y.; Nishikawa, H.; Kawakita, F.; et al. Effects of new-generation antiepileptic drug prophylaxis on delayed neurovascular events after aneurysmal subarachnoid hemorrhage. Transl. Stroke Res. 2023, 14, 899–909. [Google Scholar] [CrossRef]
- Macdonald, R.L.; Kassell, N.F.; Mayer, S.; Ruefenacht, D.; Schmiedek, P.; Weidauer, S.; Frey, A.; Roux, S.; Pasqualin, A. Clazosentan to overcome neurological ischemia and infarction occurring after subarachnoid hemorrhage (CONSCIOUS-1): Randomized, double-blind, placebo-controlled phase 2 dose-finding trial. Stroke 2008, 39, 3015–3021. [Google Scholar] [CrossRef]
- Macdonald, R.L.; Higashida, R.T.; Keller, E.; Mayer, S.A.; Molyneux, A.; Raabe, A.; Vajkoczy, P.; Wanke, I.; Bach, D.; Frey, A.; et al. Clazosentan, an endothelin receptor antagonist, in patients with aneurysmal subarachnoid haemorrhage undergoing surgical clipping: A randomised, double-blind, placebo-controlled phase 3 trial (CONSCIOUS-2). Lancet Neurol. 2011, 10, 618–625. [Google Scholar] [CrossRef]
- Macdonald, R.L.; Higashida, R.T.; Keller, E.; Mayer, S.A.; Molyneux, A.; Raabe, A.; Vajkoczy, P.; Wanke, I.; Bach, D.; Frey, A.; et al. Randomized trial of clazosentan in patients with aneurysmal subarachnoid hemorrhage undergoing endovascular coiling. Stroke 2012, 43, 1463–1469. [Google Scholar] [CrossRef]
- Philippon, J.; Grob, R.; Dagreou, F.; Guggiari, M.; Rivierez, M.; Viars, P. Prevention of vasospasm in subarachnoid haemorrhage. A controlled study with nimodipine. Acta Neurochir. 1986, 82, 110–114. [Google Scholar] [CrossRef]
- Petruk, K.C.; West, M.; Mohr, G.; Weir, B.K.; Benoit, B.G.; Gentili, F.; Disney, L.B.; Khan, M.I.; Grace, M.; Holness, R.O.; et al. Nimodipine treatment in poor-grade aneurysm patients. Results of a multicenter double-blind placebo-controlled trial. J. Neurosurg. 1988, 68, 505–517. [Google Scholar] [CrossRef] [PubMed]
- Matsuda, N.; Naraoka, M.; Ohkuma, H.; Shimamura, N.; Ito, K.; Asano, K.; Hasegawa, S.; Takemura, A. Effect of cilostazol on cerebral vasospasm and outcome in patients with aneurysmal subarachnoid hemorrhage: A randomized, double-blind, placebo-controlled trial. Cerebrovasc. Dis. 2016, 42, 97–105. [Google Scholar] [CrossRef] [PubMed]
- Al-Tamimi, Y.Z.; Bhargava, D.; Feltbower, R.G.; Hall, G.; Goddard, A.J.; Quinn, A.C.; Ross, S.A. Lumbar drainage of cerebrospinal fluid after aneurysmal subarachnoid hemorrhage: A prospective, randomized, controlled trial (LUMAS). Stroke 2012, 43, 677–682. [Google Scholar] [CrossRef]
- Oka, F.; Sadeghian, H.; Yaseen, M.A.; Fu, B.; Kura, S.; Qin, T.; Sakadžić, S.; Sugimoto, K.; Inoue, T.; Ishihara, H.; et al. Intracranial pressure spikes trigger spreading depolarizations. Brain 2022, 145, 194–207. [Google Scholar] [CrossRef] [PubMed]
- Naraoka, M.; Shimamura, N.; Ohkuma, H. Cilostazol alleviates delayed cerebral ischemia after subarachnoid hemorrhage by attenuating microcirculatory dysfunction. Transl. Stroke Res. 2024; in press. [Google Scholar] [CrossRef]
- Kawano, A.; Sugimoto, K.; Nomura, S.; Inoue, T.; Kawano, R.; Oka, F.; Sadahiro, H.; Ishihara, H.; Suzuki, M. Association between spreading depolarization and delayed cerebral ischemia after subarachnoid hemorrhage: Post hoc analysis of a randomized trial of the effect of cilostazol on delayed cerebral ischemia. Neurocrit. Care 2021, 35, 91–99. [Google Scholar] [CrossRef]
- Sugimoto, K.; Nomura, S.; Shirao, S.; Inoue, T.; Ishihara, H.; Kawano, R.; Kawano, A.; Oka, F.; Suehiro, E.; Sadahiro, H.; et al. Cilostazol decreases duration of spreading depolarization and spreading ischemia after aneurysmal subarachnoid hemorrhage. Ann. Neurol. 2018, 84, 873–885. [Google Scholar] [CrossRef]
- Li, L.; Fu, X.; Qiu, H.; Shi, P. Effects of cilostazol treatment for patients with aneurysmal subarachnoid hemorrhage: A meta-analysis of 14 studies. J. Clin. Neurosci. 2022, 99, 190–203. [Google Scholar] [CrossRef]
- Snyder, M.H.; Ironside, N.; Kumar, J.S.; Doan, K.T.; Kellogg, R.T.; Provencio, J.J.; Starke, R.M.; Park, M.S.; Ding, D.; Chen, C.J. Antiplatelet therapy and delayed cerebral ischemia in aneurysmal subarachnoid hemorrhage: A systematic review and meta-analysis. J. Neurosurg. 2022, 137, 95–107. [Google Scholar] [CrossRef]
- Liu, J.; He, J.; Chen, X.; Feng, Y.; Wang, C.; Awil, M.A.; Wang, Y.; Tian, Y.; Hou, D. Cilostazol for aneurysmal subarachnoid hemorrhage: An updated systematic review and meta-analysis. Cerebrovasc. Dis. 2022, 51, 138–148. [Google Scholar] [CrossRef]
- Dayyani, M.; Sadeghirad, B.; Grotta, J.C.; Zabihyan, S.; Ahmadvand, S.; Wang, Y.; Guyatt, G.H.; Amin-Hanjani, S. Prophylactic therapies for morbidity and mortality after aneurysmal subarachnoid hemorrhage: A systematic review and network meta-analysis of randomized trials. Stroke 2022, 53, 1993–2005. [Google Scholar] [CrossRef] [PubMed]
- Ye, H.; Liu, Z.; Zhou, L.; Cai, Q. Effect of nimodipine combined with fasudil on vascular endothelial function and inflammatory factors in patients with cerebral vasospasm induced by aneurysmal subarachnoid hemorrhage. Am. J. Transl. Res. 2022, 14, 2617–2624. [Google Scholar] [PubMed]
- Yoneda, H.; Shirao, S.; Nakagawara, J.; Ogasawara, K.; Tominaga, T.; Suzuki, M. A prospective, multicenter, randomized study of the efficacy of eicosapentaenoic acid for cerebral vasospasm: The EVAS study. World Neurosurg. 2014, 81, 309–315. [Google Scholar] [CrossRef]
- Nakagawa, I.; Yokoyama, S.; Omoto, K.; Takeshima, Y.; Matsuda, R.; Nishimura, F.; Yamada, S.; Yokota, H.; Motoyama, Y.; Park, Y.S.; et al. ω-3 fatty acids ethyl esters suppress cerebral vasospasm and improve clinical outcome following aneurysmal subarachnoid hemorrhage. World Neurosurg. 2017, 99, 457–464. [Google Scholar] [CrossRef] [PubMed]
- De Caterina, R. n-3 fatty acids in cardiovascular disease. N. Engl. J. Med. 2011, 364, 2439–2450. [Google Scholar] [CrossRef]
- Nakashima, S.; Tabuchi, K.; Shimokawa, S.; Fukuyama, K.; Mineta, T.; Abe, M. Combination therapy of fasudil hydrochloride and ozagrel sodium for cerebral vasospasm following aneurysmal subarachnoid hemorrhage. Neurol. Med. Chir. 1998, 38, 805–810; discussion 810–811. [Google Scholar] [CrossRef]
- Magara, H.; Tani, T.; Imai, S.; Kiyomi, A.; Fushimi, K.; Sugiura, M. Fasudil hydrochloride and ozagrel sodium combination therapy for patients with aneurysmal subarachnoid hemorrhage: A cross-sectional study using a nationwide inpatient database. J. Pharm. Health Care Sci. 2024, 10, 49. [Google Scholar] [CrossRef]
- Suzuki, H.; Fujimoto, M.; Kawakita, F.; Liu, L.; Nakatsuka, Y.; Nakano, F.; Nishikawa, H.; Okada, T.; Kanamaru, H.; Imanaka-Yoshida, K.; et al. Tenascin-C in brain injuries and edema after subarachnoid hemorrhage: Findings from basic and clinical studies. J. Neurosci. Res. 2020, 98, 42–56. [Google Scholar] [CrossRef]
- Luo, Y.; Li, M. The progressive frontier of aneurysmal subarachnoid hemorrhage: Diagnosis and treatment advances. Brain Hemorrhages, 2024; in press. [Google Scholar] [CrossRef]
- Lauzier, D.C.; Jayaraman, K.; Yuan, J.Y.; Diwan, D.; Vellimana, A.K.; Osbun, J.W.; Chatterjee, A.R.; Athiraman, U.; Dhar, R.; Zipfel, G.J. Early brain injury after subarachnoid hemorrhage: Incidence and mechanisms. Stroke 2023, 54, 1426–1440. [Google Scholar] [CrossRef]
Variables | Overall (n = 357) | Favorable (n = 118) | Unfavorable (n = 239) | p Value |
---|---|---|---|---|
Age (years), median (IQR) | 68 (56, 77) | 60 (49, 70) | 72 (62, 80) | <0.001 a |
Female | 264 (73.9%) | 93 (78.8%) | 171 (71.5%) | 0.141 b |
Past history | ||||
SAH | 13 (3.6%) | 4 (3.4%) | 9 (3.8%) | 1.000 c |
Cerebral infarction | 17 (4.8%) | 2 (1.7%) | 15 (6.3%) | 0.066 c |
Comorbidity | ||||
Hypertension | 162 (45.4%) | 53 (44.9%) | 109 (45.6%) | 0.902 b |
Diabetes mellitus | 31 (8.7%) | 6 (5.1%) | 25 (10.5%) | 0.110 c |
Dyslipidemia | 50 (14.0%) | 10 (8.5%) | 40 (16.7%) | 0.034 b |
Current smoking | 70 (19.6%) | 24 (20.3%) | 46 (19.2%) | 0.807 b |
WFNS grade | ||||
IV | 166 (46.5%) | 74 (62.7%) | 92 (38.5%) | <0.001 b |
V | 191 (53.5%) | 44 (37.3%) | 147 (61.5%) | <0.001 b |
Modified Fisher grade | ||||
1 | 4 (1.1%) | 2 (1.7%) | 2 (0.8%) | 0.602 c |
2 | 12 (3.4%) | 3 (2.5%) | 9 (3.8%) | 0.757 c |
3 | 116 (32.5%) | 57 (48.3%) | 59 (24.7%) | <0.001 b |
4 | 225 (63.0%) | 56 (47.5%) | 169 (70.7%) | <0.001 b |
Acute hydrocephalus | 133 (37.3%) | 34 (28.8%) | 99 (41.4%) | 0.020 b |
Aneurysm location | ||||
Anterior circulation | 317 (88.8%) | 104 (88.1%) | 213 (89.1%) | 0.781 b |
Posterior circulation | 40 (11.2%) | 14 (11.9%) | 26 (10.9%) | 0.781 b |
Treatment modality | ||||
Endovascular coiling | 104 (29.1%) | 40 (33.9%) | 64 (26.8%) | 0.164 b |
Surgical clipping | 253 (70.9%) | 78 (66.1%) | 175 (73.2%) | 0.164 b |
Coiling/clipping-related complication | ||||
Total | 85 (23.8%) | 24 (20.3%) | 61 (25.5%) | 0.279 b |
Cerebral contusion | 14 (3.9%) | 3 (2.5%) | 11 (4.6%) | 0.403 c |
Cerebral infarction | 71 (19.9%) | 21 (17.8%) | 50 (20.9%) | 0.487 b |
Cerebrospinal fluid drainage | ||||
Total | 167 (46.8%) | 50 (42.4%) | 117 (49.0%) | 0.241 b |
Ventricular | 126 (35.3%) | 31 (26.3%) | 95 (39.7%) | 0.012 b |
Cisternal | 43 (12.0%) | 12 (10.2%) | 31 (13.0%) | 0.444 b |
Spinal | 49 (13.7%) | 25 (21.2%) | 24 (10.0%) | 0.004 b |
Prophylaxis for DCI | ||||
Cilostazol | 288 (80.7%) | 105 (89.0%) | 183 (76.6%) | 0.005 b |
Fasudil hydrochloride | 312 (87.4%) | 114 (96.6%) | 198 (82.8%) | <0.001 c |
Eicosapentaenoic acid | 201 (56.3%) | 77 (65.3%) | 124 (51.9%) | 0.017 b |
Statin | 148 (41.5%) | 51 (43.2%) | 97 (40.6%) | 0.635 b |
Low molecular dextran | 159 (44.5%) | 60 (50.8%) | 99 (41.4%) | 0.092 b |
Ozagrel sodium | 29 (8.1%) | 11 (9.3%) | 18 (7.5%) | 0.560 b |
Edaravone | 99 (27.7%) | 22 (18.6%) | 77 (32.2%) | 0.007 b |
Mineralocorticoid | 16 (4.5%) | 5 (4.2%) | 11 (4.6%) | 1.000 c |
DCI | 46 (12.9%) | 11 (9.3%) | 35 (14.6%) | 0.158 b |
Angiographic vasospasm | 93 (26.1%) | 31 (26.3%) | 62 (25.9%) | 0.947 b |
Endovascular treatment for vasospasm | ||||
Intra-arterial fasudil hydrochloride | 11 (3.1%) | 5 (4.2%) | 6 (2.5%) | 0.516 c |
PTA | 2 (0.6%) | 1 (0.8%) | 1 (0.8%) | 0.552 c |
Delayed cerebral infarction | 80 (22.4%) | 10 (8.5%) | 70 (29.3%) | <0.001 b |
On CT | 49 (13.7%) | 6 (5.1%) | 43 (18.0%) | <0.001 c |
On MR imaging | 31 (8.7%) | 4 (3.4%) | 27 (11.3%) | 0.015 c |
SDHC | 120 (33.6%) | 28 (23.7%) | 92 (38.5%) | 0.005 b |
Variables | Overall (n = 357) | Favorable (n = 118) | Unfavorable (n = 239) | p Value |
---|---|---|---|---|
CIL alone | 5 (1.4%) | 0 (0.0%) | 5 (2.1%) | 0.175 a |
FAS alone | 24 (6.7%) | 6 (5.1%) | 18 (7.5%) | 0.502 a |
EPA alone | 4 (1.1%) | 1 (0.8%) | 3 (1.3%) | 1.000 a |
CIL + FAS without EPA | 99 (27.7%) | 34 (28.8%) | 65 (27.2%) | 0.748 b |
FAS + EPA without CIL | 13 (3.6%) | 5 (4.2%) | 8 (3.3%) | 0.765 a |
EPA + CIL without FAS | 8 (2.2%) | 2 (1.7%) | 6 (2.5%) | 1.000 a |
CIL + FAS + EPA | 176 (49.3%) | 69 (58.5%) | 107 (44.8%) | 0.015 b |
Variables | Adjusted Odds Ratio | 95% Confidence Interval | p Value |
---|---|---|---|
Spinal drainage | 6.118 | 2.687–13.927 | <0.001 |
Modified Fisher grade 3 | 2.929 | 1.668–5.143 | <0.001 |
CIL + FAS + EPA | 1.869 | 1.065–3.279 | 0.029 |
Age | 0.943 | 0.924–0.964 | <0.001 |
WFNS grade V | 0.545 | 0.317–0.937 | 0.028 |
Ventricular drainage | 0.527 | 0.284–0.977 | 0.042 |
Edaravone | 0.453 | 0.235–0.874 | 0.018 |
Delayed cerebral infarction | 0.204 | 0.090–0.466 | <0.001 |
SDHC | 0.617 | 0.321–1.186 | 0.148 |
Dyslipidemia | 0.544 | 0.219–1.349 | 0.189 |
Variables | Adjusted Odds Ratio | 95% Confidence Interval | p Value |
---|---|---|---|
Spinal drainage | 4.444 | 2.090–9.448 | <0.001 |
Modified Fisher grade 3 | 3.129 | 1.814–5.398 | <0.001 |
CIL + FAS + EPA | 1.859 | 1.089–3.174 | 0.023 |
Age | 0.944 | 0.926–0.964 | <0.001 |
WFNS grade V | 0.504 | 0.299–0.849 | 0.010 |
Ventricular drainage | 0.482 | 0.270–0.861 | 0.014 |
Edaravone | 0.369 | 0.196–0.692 | 0.002 |
Dyslipidemia | 0.564 | 0.235–1.353 | 0.200 |
Variables | Overall (n = 98) | SD (n = 49) | No SD (n = 49) | p Value |
---|---|---|---|---|
Age (years), median (IQR) | 69 (61, 75) | 68 (55, 75) | 69 (62, 75) | 0.865 a |
Female | 76 (77.6%) | 42 (85.7%) | 34 (69.4%) | 0.089 c |
Past history | ||||
SAH | 6 (6.1%) | 4 (8.2%) | 2 (4.1%) | 0.678 c |
Cerebral infarction | 5 (5.1%) | 3 (6.1%) | 2 (4.1%) | 1.000 c |
Comorbidity | ||||
Hypertension | 46 (46.9%) | 23 (46.9%) | 23 (46.9%) | 1.000 b |
Diabetes mellitus | 10 (10.2%) | 3 (6.1%) | 7 (14.3%) | 0.317 c |
Dyslipidemia | 11 (11.2%) | 8 (16.3%) | 3 (6.1%) | 0.199 c |
Current smoking | 20 (20.4%) | 7 (14.3%) | 13 (26.5%) | 0.210 c |
WFNS grade | ||||
IV | 55 (56.1%) | 28 (57.1%) | 27 (55.1%) | 0.839 b |
V | 43 (43.9%) | 21 (42.9%) | 22 (44.9%) | 0.839 b |
Modified Fisher grade | ||||
1 | 0 (0.0%) | 0 (0.0%) | 0 (0.0%) | − |
2 | 2 (2.0%) | 1 (2.0%) | 1 (2.0%) | 1.000 c |
3 | 27 (27.6%) | 14 (28.6%) | 13 (26.5%) | 0.821 b |
4 | 69 (70.4%) | 34 (69.4%) | 35 (71.4%) | 0.825 b |
Acute hydrocephalus | 51 (52.0%) | 27 (55.1%) | 24 (49.0%) | 0.544 b |
Aneurysm location | ||||
Anterior circulation | 80 (81.6%) | 38 (77.6%) | 42 (85.7%) | 0.435 c |
Posterior circulation | 18 (18.4%) | 11 (22.4%) | 7 (14.3%) | 0.435 c |
Treatment modality | ||||
Endovascular coiling | 58 (59.2%) | 29 (59.2%) | 29 (59.2%) | 1.000 b |
Surgical clipping | 40 (40.8%) | 20 (40.8%) | 20 (40.8%) | 1.000 b |
Coiling/clipping-related complication | ||||
Total | 30 (30.6%) | 11 (22.4%) | 19 (38.8%) | 0.080 b |
Cerebral contusion | 1 (1.0%) | 0 (0.0%) | 1 (2.0%) | 1.000 c |
Cerebral infarction | 29 (29.6%) | 11 (22.4%) | 18 (36.7%) | 0.121 b |
Cerebrospinal fluid drainage | ||||
Total | 73 (74.5%) | 49 (100.0%) | 24 (49.0%) | <0.001 b |
Ventricular | 47 (48.0%) | 26 (53.1%) | 21 (42.9%) | 0.312 b |
Cisternal | 5 (5.1%) | 0 (0.0%) | 5 (10.2%) | 0.056 c |
Prophylaxis for DCI | ||||
Cilostazol | 78 (79.6%) | 39 (79.6%) | 39 (79.6%) | 1.000 b |
Fasudil hydrochloride | 89 (90.8%) | 45 (91.8%) | 44 (89.8%) | 1.000 c |
Eicosapentaenoic acid | 42 (42.9%) | 19 (38.8%) | 23 (46.9%) | 0.414 b |
Statin | 39 (39.8%) | 25 (51.0%) | 14 (28.6%) | 0.023 b |
Low molecular dextran | 49 (50.0%) | 27 (55.1%) | 22 (44.9%) | 0.312 b |
Ozagrel sodium | 10 (10.2%) | 8 (16.3%) | 2 (4.1%) | 0.091 c |
Edaravone | 24 (24.5%) | 15 (30.6%) | 9 (18.4%) | 0.240 c |
Mineralocorticoid | 2 (2.0%) | 1 (2.0%) | 1 (2.0%) | 1.000 c |
DCI | 17 (17.3%) | 6 (12.2%) | 11 (22.4%) | 0.286 c |
Angiographic vasospasm | 31 (31.6%) | 15 (30.6%) | 16 (32.7%) | 0.828 b |
Endovascular treatment for vasospasm | ||||
Intra-arterial fasudil hydrochloride | 5 (5.1%) | 3 (6.1%) | 2 (4.1%) | 1.000 c |
PTA | 0 (0.0%) | 0 (0.0%) | 0 (0.0%) | − |
Delayed cerebral infarction | 26 (26.5%) | 16 (32.7%) | 10 (20.4%) | 0.170 b |
On CT | 12 (12.2%) | 6 (12.2%) | 6 (12.2%) | 1.000 c |
On MR imaging | 14 (14.3%) | 10 (20.4%) | 4 (8.2%) | 0.147 c |
SDHC | 46 (46.9%) | 27 (55.1%) | 19 (38.8%) | 0.105 b |
90-day modified Rankin Scale 0–2 | 38 (38.8%) | 25 (51.0%) | 13 (26.5%) | 0.013 b |
Variables | Overall (n = 204) | CIL + FAS + EPA (n = 102) | No CIL + FAS + EPA (n = 102) | p Value |
---|---|---|---|---|
Age (years), median (IQR) | 69.0 (56.5, 77.0) | 66.5 (58.0, 76.0) | 70.0 (54.0, 80.0) | 0.262 a |
Female | 154 (75.5%) | 75 (73.5%) | 79 (77.5%) | 0.515 b |
Past history | ||||
SAH | 8 (3.9%) | 7 (6.9%) | 1 (1.0%) | 0.065 c |
Cerebral infarction | 9 (4.4%) | 4 (3.9%) | 5 (4.9%) | 1.000 c |
Comorbidity | ||||
Hypertension | 85 (41.7%) | 43 (42.2%) | 42 (41.2%) | 1.000 b |
Diabetes mellitus | 17 (8.3%) | 6 (5.9%) | 11 (10.8%) | 0.311 c |
Dyslipidemia | 20 (9.8%) | 12 (11.8%) | 8 (7.8%) | 0.481 c |
Current smoking | 40 (19.6%) | 17 (16.7%) | 23 (22.5%) | 0.290 b |
WFNS grade | ||||
IV | 96 (47.1%) | 52 (51.0%) | 44 (43.1%) | 0.262 b |
V | 108 (52.9%) | 50 (49.0%) | 58 (56.9%) | 0.262 b |
Modified Fisher grade | ||||
1 | 1 (0.5%) | 0 (0.0%) | 1 (1.0%) | 1.000 c |
2 | 3 (1.5%) | 1 (1.0%) | 2 (2.0%) | 1.000 c |
3 | 62 (30.4%) | 30 (29.4%) | 32 (31.4%) | 0.761 b |
4 | 138 (67.6%) | 71 (69.6%) | 67 (65.7%) | 0.549 b |
Acute hydrocephalus | 81 (39.7%) | 43 (42.2%) | 38 (37.3%) | 0.474 b |
Aneurysm location | ||||
Anterior circulation | 182 (89.2%) | 88 (86.3%) | 94 (92.2%) | 0.259 b |
Posterior circulation | 22 (10.8%) | 14 (13.7%) | 8 (7.8%) | 0.259 b |
Treatment modality | ||||
Endovascular coiling | 51 (25.0%) | 29 (28.4%) | 22 (21.6%) | 0.258 b |
Surgical clipping | 153 (75.0%) | 73 (71.6%) | 80 (78.4%) | 0.258 b |
Coiling/clipping-related complication | ||||
Total | 45 (22.1%) | 21 (20.6%) | 24 (23.5%) | 0.612 b |
Cerebral contusion | 7 (3.4%) | 4 (3.9%) | 3 (2.9%) | 1.000 c |
Cerebral infarction | 38 (18.6%) | 17 (16.7%) | 21 (20.6%) | 0.472 b |
Cerebrospinal fluid drainage | ||||
Total | 93 (45.6%) | 46 (45.1%) | 47 (46.1%) | 0.888 b |
Ventricular | 72 (35.3%) | 35 (34.3%) | 37 (36.3%) | 0.770 b |
Cisternal | 21 (10.3%) | 12 (11.8%) | 9 (8.8%) | 0.646 c |
Spinal | 28 (13.7%) | 15 (14.7%) | 13 (12.7%) | 0.684 b |
Prophylaxis for DCI | ||||
CIL alone | 5 (2.5%) | 0 (0.0%) | 5 (4.9%) | 0.059 c |
FAS alone | 14 (6.9%) | 0 (0.0%) | 14 (13.7%) | <0.001 c |
EPA alone | 4 (2.0%) | 0 (0.0%) | 4 (3.9%) | 0.121 c |
CIL + FAS without EPA | 54 (26.5%) | 0 (0.0%) | 54 (52.9%) | <0.001 c |
FAS + EPA without CIL | 11 (5.4%) | 0 (0.0%) | 11 (10.8%) | <0.001 c |
EPA + CIL without FAS | 5 (2.5%) | 0 (0.0%) | 5 (4.9%) | 0.059 c |
Statin | 93 (45.6%) | 45 (44.1%) | 48 (47.1%) | 0.673 b |
Low molecular dextran | 87 (42.6%) | 46 (45.1%) | 41 (40.2%) | 0.571 b |
Ozagrel sodium | 19 (9.3%) | 10 (9.8%) | 9 (8.8%) | 1.000 c |
Edaravone | 51 (25.0%) | 26 (25.5%) | 25 (24.5%) | 0.872 b |
Mineralocorticoid | 6 (2.9%) | 4 (3.9%) | 2 (2.0%) | 0.638 c |
DCI | 30 (14.7%) | 16 (15.7%) | 14 (13.7%) | 0.693 b |
Angiographic vasospasm | 59 (28.9%) | 29 (28.4%) | 30 (29.4%) | 0.877 b |
Endovascular treatment for vasospasm | ||||
Intra-arterial fasudil hydrochloride | 10 (4.9%) | 7 (6.9%) | 3 (2.9%) | 0.331 c |
PTA | 2 (1.0%) | 2 (2.0%) | 0 (0.0%) | 0.498 c |
Delayed cerebral infarction | 46 (22.5%) | 21 (20.6%) | 25 (24.5%) | 0.503 b |
On CT | 32 (15.7%) | 15 (14.7%) | 17 (16.7%) | 0.700 b |
On MR imaging | 14 (6.9%) | 6 (5.9%) | 8 (7.8%) | 0.783 c |
SDHC | 79 (38.7%) | 40 (39.2%) | 39 (38.2%) | 0.886 b |
90-day modified Rankin Scale 0–2 | 72 (35.3%) | 43 (42.2%) | 29 (28.4%) | 0.040 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hakozaki, K.; Kawakita, F.; Aoki, K.; Suzuki, H.; pSEED Group. Spinal Drainage and Combined Pharmacotherapy as Potential Strategies to Improve Outcomes for Patients with Poor-Grade Subarachnoid Hemorrhage Treated with Clipping or Coiling but Not Receiving Nimodipine. J. Clin. Med. 2025, 14, 2715. https://doi.org/10.3390/jcm14082715
Hakozaki K, Kawakita F, Aoki K, Suzuki H, pSEED Group. Spinal Drainage and Combined Pharmacotherapy as Potential Strategies to Improve Outcomes for Patients with Poor-Grade Subarachnoid Hemorrhage Treated with Clipping or Coiling but Not Receiving Nimodipine. Journal of Clinical Medicine. 2025; 14(8):2715. https://doi.org/10.3390/jcm14082715
Chicago/Turabian StyleHakozaki, Koichi, Fumihiro Kawakita, Kazuaki Aoki, Hidenori Suzuki, and pSEED Group. 2025. "Spinal Drainage and Combined Pharmacotherapy as Potential Strategies to Improve Outcomes for Patients with Poor-Grade Subarachnoid Hemorrhage Treated with Clipping or Coiling but Not Receiving Nimodipine" Journal of Clinical Medicine 14, no. 8: 2715. https://doi.org/10.3390/jcm14082715
APA StyleHakozaki, K., Kawakita, F., Aoki, K., Suzuki, H., & pSEED Group. (2025). Spinal Drainage and Combined Pharmacotherapy as Potential Strategies to Improve Outcomes for Patients with Poor-Grade Subarachnoid Hemorrhage Treated with Clipping or Coiling but Not Receiving Nimodipine. Journal of Clinical Medicine, 14(8), 2715. https://doi.org/10.3390/jcm14082715