Discrepancy Between Conventional Coagulation Tests and Thromboelastography During the Early Postoperative Phase of Liver Resection in Neoplastic Patients: A Prospective Study Using the New-Generation TEG®6s
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Population
2.2. Conventional Coagulation Tests
2.3. Thromboelastography 6s Analysis
2.4. Anesthesia and Perioperative Management
2.5. Types of Resections
2.6. Postoperative Care in ICU
2.7. Data Collection
2.8. Statistical Analysis
3. Results
3.1. Patients’ Characteristics
3.2. Coagulation Data
3.3. Clinical Data
3.4. Correlations Between CCTs and TEG Parameters
3.5. Linear Regression
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kawaguchi, Y.; Hasegawa, K.; Hagiwara, Y.; De Bellis, M.; Famularo, S.; Panettieri, E.; Matsuyama, Y.; Tateishi, R.; Ichikawa, T.; Kokudo, T.; et al. Effect of Diameter and Number of Hepatocellular Carcinomas on Survival After Resection, Transarterial Chemoembolization, and Ablation. Am. J. Gastroenterol. 2021, 116, 1698–1708. [Google Scholar] [CrossRef]
- Mavros, M.N.; Economopoulos, K.P.; Alexiou, V.G.; Pawlik, T.M. Treatment and Prognosis for Patients With Intrahepatic Cholangiocarcinoma: Systematic Review and Meta-analysis. JAMA Surg. 2014, 149, 565–574. [Google Scholar] [CrossRef]
- Creasy, J.M.; Sadot, E.; Koerkamp, B.G.; Chou, J.F.; Gonen, M.; Kemeny, N.E.; Saltz, L.B.; Balachandran, V.P.; Peter Kingham, T.; DeMatteo, R.P.; et al. The Impact of Primary Tumor Location on Long-Term Survival in Patients Undergoing Hepatic Resection for Metastatic Colon Cancer. Ann. Surg. Oncol. 2018, 25, 431–438. [Google Scholar] [CrossRef] [PubMed]
- Tzimas, P.; Lefkou, E.; Karakosta, A.; Argyrou, S.; Papapetrou, E.; Pantazi, D.; Tselepis, A.; Dreden, P.V.; Stratigopoulou, P.; Gerotziafas, G.; et al. Perioperative Coagulation Profile in Major Liver Resection for Cancer: A Prospective Observational Study. Thromb. Haemost. 2022, 22, 1662–1672. [Google Scholar] [CrossRef] [PubMed]
- Colomina, M.J.; Méndez, E.; Sabate, A. Altered Fibrinolysis during and after Surgery. Semin. Thromb. Hemost. 2021, 47, 512–519. [Google Scholar] [CrossRef]
- Bezeaud, A.; Denninger, M.H.; Dondero, F.; Saada, V.; Venisse, L.; Huisse, M.G.; Belghiti, J.; Guillin, M.C. Hypercoagulability after partial liver resection. Thromb. Haemost. 2007, 98, 1252–1256. [Google Scholar] [PubMed]
- Weinberg, L.; Scurrah, N.; Parker, F.C.; Dauer, R.; Marshall, J.; McCall, P.; Story, D.; Smith, C.; McNicol, L. Markers of coagulation activation after hepatic resection for cancer: Evidence of sustained upregulation of coagulation. Anaesth. Intensive Care 2011, 39, 847–853. [Google Scholar] [CrossRef]
- Elterman, K.G.; Xiong, Z. Coagulation profile changes and safety of epidural analgesia after hepatectomy: A retrospective study. J. Anesth. 2015, 29, 367–372. [Google Scholar] [CrossRef]
- Louis, S.G.; Barton, J.S.; Riha, G.M.; Orloff, S.L.; Sheppard, B.C.; Pommier, R.F.; Underwood, S.J.; Differding, J.A.; Schreiber, M.A.; Billingsley, K.G. The international normalized ratio overestimates coagulopathy in patients after major hepatectomy. Am. J. Surg. 2014, 207, 723–727. [Google Scholar] [CrossRef]
- Mallett, S.V.; Sugavanam, A.; Krzanicki, D.A.; Patel, S.; Broomhead, R.H.; Davidson, B.R.; Riddell, A.; Gatt, A.; Chowdary, P. Alterations in coagulation following major liver resection. Anaesthesia 2016, 71, 657–668. [Google Scholar] [CrossRef]
- Semple, J.W.; Rebetz, J.; Kapur, R. Transfusion-associated circulatory overload and transfusion-related acute lung injury. Blood 2019, 133, 1840–1853. [Google Scholar] [CrossRef] [PubMed]
- Melloul, E.; Dondéro, F.; Vilgrain, V.; Raptis, D.A.; Paugam-Burtz, C.; Belghiti, J. Pulmonary embolism after elective liver resection: A prospective analysis of risk factors. J. Hepatol. 2012, 57, 1268–1275. [Google Scholar] [CrossRef] [PubMed]
- Ramanujam, V.; DiMaria, S.; Varma, V. Thromboelastography in the Perioperative Period: A Literature Review. Cureus 2023, 15, e39407. [Google Scholar] [CrossRef] [PubMed]
- Janko, N.; Majeed, A.; Kemp, W.; Roberts, S.K. Viscoelastic Tests as Point-of-Care Tests in the Assessment and Management of Bleeding and Thrombosis in Liver Disease. Semin. Thromb. Hemost. 2020, 46, 704–715. [Google Scholar] [CrossRef]
- Mpaili, E.; Tsilimigras, D.I.; Moris, D.; Sigala, F.; Frank, S.M.; Hartmann, J.; Pawlik, T.M. Utility of viscoelastic coagulation testing in liver surgery: A systematic review. HPB 2021, 23, 331–343. [Google Scholar] [CrossRef]
- De Pietri, L.; Montalti, R.; Begliomini, B.; Scaglioni, G.; Marconi, G.; Reggiani, A.; Di Benedetto, F.; Aiello, S.; Pasetto, A.; Rompianesi, G.; et al. Thromboelastographic changes in liver and pancreatic cancer surgery: Hypercoagulability, hypocoagulability or normocoagulability? Eur. J. Anaesthesiol. 2010, 27, 608–616. [Google Scholar] [CrossRef]
- McCrossin, K.E.; Bramley, D.E.; Hessian, E.; Hutcheon, E.; Imberger, G. Viscoelastic testing for hepatic surgery: A systematic review with meta-analysis-a protocol. Syst. Rev. 2016, 5, 151. [Google Scholar] [CrossRef]
- Volod, O.; Runge, A. The TEG 6s System: System Description and Protocol for Measurements. Methods Mol. Biol. 2023, 2663, 735–742. [Google Scholar] [CrossRef]
- Demailly, Z.; Wurtz, V.; Barbay, V.; Surlemont, E.; Scherrer, V.; Compère, V.; Billoir, P.; Clavier, T.; Besnier, E. Point-of-Care Viscoelastic Hemostatic Assays in Cardiac Surgery Patients: Comparison of Thromboelastography 6S, Thromboelastometry Sigma, and Quantra. J. Cardiothorac. Vasc. Anesth. 2023, 37, 948–955. [Google Scholar] [CrossRef]
- Roberts, T.C.D.; De Lloyd, L.; Bell, S.F.; Cohen, L.; James, D.; Ridgway, A.; Jenkins, V.; Field, V.; Collis, R.E.; Collins, P.W. Utility of viscoelastography with TEG 6s to direct management of haemostasis during obstetric haemorrhage: A prospective observational study. Int. J. Obstet. Anesth. 2021, 47, 103192. [Google Scholar] [CrossRef]
- Neal, M.D.; Moore, E.E.; Walsh, M.; Thomas, S.; Callcut, R.A.; Kornblith, L.Z.; Schreiber, M.; Ekeh, A.P.; Singer, A.J.; Lottenberg, L.; et al. A comparison between the TEG 6s and TEG 5000 analyzers to assess coagulation in trauma patients. J. Trauma Acute Care Surg. 2020, 88, 279–285. [Google Scholar] [CrossRef] [PubMed]
- Robson, J.L.; Dj Watts, A.; McCulloch, T.J.; Paleologos, M.S.; Mortimer, R.A.; Kam, P.C. Correlation and agreement between the TEG® 5000 and the TEG® 6s during liver transplant surgery. Anaesth. Intensive Care 2019, 47, 32–39. [Google Scholar] [CrossRef]
- Ramspoth, T.; Roehl, A.B.; Macko, S.; Heidenhain, C.; Junge, K.; Binnebösel, M.; Schmeding, M.; Neumann, U.P.; Rossaint, R.; Hein, M. Risk factors for coagulopathy after liver resection. J. Clin. Anesth. 2014, 26, 654–662. [Google Scholar] [CrossRef] [PubMed]
- Muzaffar, S.N.; Baronia, A.K.; Azim, A.; Verma, A.; Gurjar, M.; Poddar, B.; Singh, R.K. Thromboelastography for Evaluation of Coagulopathy in Nonbleeding Patients with Sepsis at Intensive Care Unit Admission. Indian J. Crit. Care Med. 2017, 21, 268–273. [Google Scholar] [CrossRef] [PubMed]
- Halvorsen, S.; Mehilli, J.; Cassese, S.; Hall, T.S.; Abdelhamid, M.; Barbato, E.; De Hert, S.; de Laval, I.; Geisler, T.; Hinterbuchner, L.; et al. 2022 ESC Guidelines on cardiovascular assessment and management of patients undergoing non-cardiac surgery. Eur. Heart J. 2022, 43, 3826–3924. [Google Scholar] [CrossRef]
- Som, A.; Maitra, S.; Bhattacharjee, S.; Baidya, D.K. Goal directed fluid therapy decreases postoperative morbidity but not mortality in major non-cardiac surgery: A meta-analysis and trial sequential analysis of randomized controlled trials. J. Anesth. 2017, 31, 66–81. [Google Scholar] [CrossRef]
- Anderson, D.R.; Morgano, G.P.; Bennett, C.; Dentali, F.; Francis, C.W.; Garcia, D.A.; Kahn, S.R.; Rahman, M.; Rajasekhar, A.; Rogers, F.B.; et al. American Society of Hematology 2019 guidelines for management of venous thromboembolism: Prevention of venous thromboembolism in surgical hospitalized patients. Blood Adv. 2019, 3, 3898–3944. [Google Scholar] [CrossRef]
- Wakabayashi, G.; Cherqui, D.; Geller, D.A.; Abu Hilal, M.; Berardi, G.; Ciria, R.; Abe, Y.; Aoki, T.; Asbun, H.J.; Chan, A.C.Y.; et al. The Tokyo 2020 terminology of liver anatomy and resections: Updates of the Brisbane 2000 system. J. Hepatobiliary Pancreat. Sci. 2022, 29, 6–15. [Google Scholar] [CrossRef]
- Nates, J.L.; Nunnally, M.; Kleinpell, R.; Blosser, S.; Goldner, J.; Birriel, B.; Fowler, C.S.; Byrum, D.; Miles, W.S.; Bailey, H.; et al. ICU Admission, Discharge, and Triage Guidelines: A Framework to Enhance Clinical Operations, Development of Institutional Policies, and Further Research. Crit. Care Med. 2016, 44, 1553–1602. [Google Scholar] [CrossRef]
- Holcomb, J.B.; Minei, K.M.; Scerbo, M.L.; Radwan, Z.A.; Wade, C.E.; Kozar, R.A.; Gill, B.S.; Albarado, R.; McNutt, M.K.; Khan, S.; et al. Admission rapid thrombelastography can replace conventional coagulation tests in the emergency department: Experience with 1974 consecutive trauma patients. Ann. Surg. 2012, 256, 476–486. [Google Scholar] [CrossRef]
- Tanner, B.; Lu, S.; Zervoudakis, G.; Woodwyk, A.; Munene, G. Coagulation profile following liver resection: Does liver cirrhosis affect thromboelastography? Am. J. Surg. 2018, 215, 406–409. [Google Scholar] [CrossRef] [PubMed]
- Gordon, N.; Riha, G.; Billingsley, K.; Schreiber, M. Malignancy does not dictate the hypercoagulable state following liver resection. Am. J. Surg. 2015, 209, 870–874. [Google Scholar] [CrossRef]
- Cerutti, E.; Stratta, C.; Romagnoli, R.; Schellino, M.M.; Skurzak, S.; Rizzetto, M.; Tamponi, G.; Salizzoni, M. Thromboelastogram monitoring in the perioperative period of hepatectomy for adult living liver donation. Liver Transpl. 2004, 10, 289–294. [Google Scholar] [CrossRef]
- Lloyd-Donald, P.; Vasudevan, A.; Angus, P.; Gow, P.; Mårtensson, J.; Glassford, N.; Eastwood, G.M.; Hart, G.K.; Jones, D.; Weinberg, L.; et al. Comparison of Thromboelastography and Conventional Coagulation Tests in Patients With Severe Liver Disease. Clin. Appl. Thromb. Hemost. 2020, 26, 1076029620925915. [Google Scholar] [CrossRef]
- Teofili, L.; Valentini, C.G.; Aceto, P.; Bartolo, M.; Sollazzi, L.; Agnes, S.; Gaspari, R.; Avolio, A.W. High intraoperative blood product requirements in liver transplantation: Risk factors and impact on the outcome. Eur. Rev. Med. Pharmacol. Sci. 2022, 26, 64–75. [Google Scholar] [CrossRef] [PubMed]
- Aceto, P.; Punzo, G.; Di Franco, V.; Teofili, L.; Gaspari, R.; Avolio, A.W.; Del Tedesco, F.; Posa, D.; Lai, C.; Sollazzi, L. Viscoelastic versus conventional coagulation tests to reduce blood product transfusion in patients undergoing liver transplantation: A systematic review and meta-analysis. Eur. J. Anaesthesiol. 2023, 40, 39–53. [Google Scholar] [CrossRef]
- Yoon, J.U.; Cheon, J.H.; Choi, Y.J.; Byeon, G.J.; Ahn, J.H.; Choi, E.J.; Park, J.Y. The correlation between conventional coagulation tests and thromboelastography in each phase of liver transplantation. Clin. Transplant. 2019, 33, e13478. [Google Scholar] [CrossRef]
- Gaspari, R.; Teofili, L.; Aceto, P.; Valentini, C.G.; Punzo, G.; Sollazzi, L.; Agnes, S.; Avolio, A.W. Thromboelastography does not reduce transfusion requirements in liver transplantation: A propensity score-matched study. J. Clin. Anesth. 2021, 69, 110154. [Google Scholar] [CrossRef] [PubMed]
- Yassen, K.A.; Shahwar, D.I.; Alrasasi, A.Q.; Aldandan, F.; Alali, D.S.; Almuslem, M.Y.; Hassanein, N.; Khan, I.; Görlinger, K. Viscoelastic Hemostatic Testing as a Diagnostic Tool for Hypercoagulability in Liver Transplantation: A Narrative Review. J. Clin. Med. 2024, 13, 6279. [Google Scholar] [CrossRef]
- Mallett, S.V. Clinical Utility of Viscoelastic Tests of Coagulation (TEG/ROTEM) in Patients with Liver Disease and during Liver Transplantation. Semin. Thromb. Hemost. 2015, 41, 527–537. [Google Scholar] [CrossRef]
- Di, Y.; Li, J.; Ye, C.; Wang, Z.; Zhu, Q. Thromboelastography parameters in chronic viral liver disease and liver resection: A retrospective study. Singapore Med. J. 2024, 65, 438–443. [Google Scholar] [CrossRef] [PubMed]
- Dumitrescu, G.; Januszkiewicz, A.; Ågren, A.; Magnusson, M.; Wahlin, S.; Wernerman, J. Thromboelastometry: Relation to the severity of liver cirrhosis in patients considered for liver transplantation. Medicine 2017, 96, e7101. [Google Scholar] [CrossRef] [PubMed]
- Avolio, A.W.; Lai, Q.; Cillo, U.; Romagnoli, R.; De Simone, P. L-GrAFT and EASE scores in liver transplantation: Need for reciprocal external validation and comparison with other scores. J. Hepatol. 2021, 75, 729–731. [Google Scholar] [CrossRef]
- Avolio, A.W.; Halldorson, J.B.; Burra, P.; Dutkowski, P.; Agnes, S.; Clavien, P.A. Balancing utility and need by means of donor-to-recipient matching: A challenging problem. Am. J. Transplant. 2013, 13, 522–523. [Google Scholar] [CrossRef]
- Avolio, A.W.; Nardo, B.; Agnes, S.; Montalti, R.; Pepe, G.; Cavallari, A.; Castagneto, M. The mismatch choice in liver transplantation: A suggestion for the selection of the recipient in relation to the characteristics of the donor. Transplant. Proc. 2005, 37, 2584–2586. [Google Scholar] [CrossRef]
- Avolio, A.W.; Agnes, S.; Chirico, A.S.; Cillo, U.; Frongillo, F.; Castagneto, M. Successful transplantation of an injured liver. Transplant. Proc. 2000, 32, 131–133. [Google Scholar] [CrossRef]
- Lloyd-Donald, P.; Churilov, L.; Cheong, B.; Bellomo, R.; McCall, P.R.; Mårtensson, J.; Glassford, N.; Weinberg, L. Assessing TEG6S reliability between devices and across multiple time points: A prospective thromboelastography validation study. Sci. Rep. 2020, 10, 7045. [Google Scholar] [CrossRef] [PubMed]
- Lloyd-Donald, P.; Churilov, L.; Zia, F.; Bellomo, R.; Hart, G.; McCall, P.; Mårtensson, J.; Glassford, N.; Weinberg, L. Assessment of agreement and interchangeability between the TEG5000 and TEG6S thromboelastography haemostasis analysers: A prospective validation study. BMC Anesthesiol. 2019, 19, 45. [Google Scholar] [CrossRef]
- Birkett, M.A.; Day, S.J. Internal pilot studies for estimating sample size. Stat. Med. 1994, 13, 2455–2463. [Google Scholar] [CrossRef]
- Gogarten, W.; van Aken, H.; Büttner, J.; Riess, H.; Wulf, H.; Bürkle, H. Regional anaesthesia and thromboembolism prophylaxis/anticoagulation—Revised recommendations of the German Society of Anaesthesiology and Intensive Care Medicine. Anasthesiol. Intensivmed. 2007, 48, 109–124. [Google Scholar]
- Kuang, L.; Lin, W.; Wang, D.; Chen, B. Abnormal coagulation after hepatectomy in patients with normal preoperative coagulation function. BMC Surg. 2024, 24, 136. [Google Scholar] [CrossRef] [PubMed]
Variable | Total Sample (n = 46) | NCG Group (n = 27) | HCG Group (n = 19) | p Value |
---|---|---|---|---|
Baseline characteristics | ||||
Males | 30 (65) | 17 (63) | 13 (68) | 0.762 |
Age, years | 70 [59–75] | 69 [59–71] | 73 [57–75] | 0.467 |
BMI, kg/m2 | 26 [23–30] | 26 [22–30] | 27 [25–29] | 0.577 |
ASA 2 | 33 (72) | 20 (74) | 13 (68) | 0.746 |
ASA 3 | 13 (28) | 7 (26) | 6 (32) | 0.746 |
Cirrhosis | 7 (15) | 5 (19) | 2 (11) | 0.682 |
HCC/cholangiocarcinoma | 20 (43) | 11 (41) | 9 (47) | 0.552 |
Metastatic colorectal cancer | 26 (57) | 16 (59) | 10 (53) | 0.766 |
Anticoagulant therapy * | 4 (9) | 3 (11) | 1 (5) | 0.632 |
Heparin therapy * | 0 (0) | 0 (0) | 0 (0) | - |
Antiplatelet therapy * | 11 (24) | 6 (22) | 5 (26) | 0.749 |
Hb *, g/dL | 13.3 [11.6–14.6] | 13.4 [12.3–14.3] | 13.3 [10.8–15.4] | 0.817 |
Intraoperative parameters | ||||
Type of surgery | ||||
Minor | 27 (59) | 17 (63) | 10 (53) | 0.552 |
Major | 13 (28) | 8 (30) | 5 (26) | 0.806 |
Minor complex | 6 (13) | 2 (7) | 4 (21) | 0.213 |
Laparotomic | 25 (54) | 13 (48) | 12 (63) | 0.377 |
Laparoscopic | 21 (46) | 14 (52) | 7 (37) | 0.377 |
Surgery duration, min | 555 [480–660] | 540 [480–600] | 600 [540–720] | 0.087 |
PM duration, min | 103 [59–143] | 95 [53–121] | 113 [87–197] | 0.078 |
EBL, mL | 500 [300–930] | 400 [300–700] | 900 [500–1400] | 0.002 |
Fluids, mL | 3750 [3000–5000] | 3500 [3000–4010] | 4500 [3500–6000] | 0.019 |
PRBC-transfused patients | 15 (33) | 5 (19) | 10 (53) | 0.025 |
FFP-transfused patients | 2 (4) | 0 (0) | 2 (11) | 0.165 |
PLT-transfused patients | 0 (0) | 0 (0) | 0 (0) | - |
Variable | Total Sample (n = 46) | NCG Group (n = 27) | HCG Group (n = 19) | p Value |
---|---|---|---|---|
Postoperative parameters at ICU admission | ||||
Hemoglobin, g/dL | 10.8 [9.2–12.0] | 11.6 [9.2–12.3] | 10.0 [9.2–11.1] | 0.284 |
PLT, ×109/L | 159 [107–217] | 187 [112–233] | 142 [104–172] | 0.074 |
aPTT, s | 33.3 [30.1–38.5] | 31.0 [27.7–32.8] | 39.2 [36.1–43.3] | <0.001 |
INR | 1.31 [1.19–1.39] | 1.22 [1.13–1.32] | 1.41 [1.32–1.55] | <0.001 |
PT, s | 13.8 [12.7–14.7] | 13 [12–14] | 15.2 [13.9–16.3] | <0.001 |
Fibrinogen, mg/dL | 247 [214–279] | 254 [236–285] | 221 [187–258] | 0.020 |
D-dimer | 6138 [4372–16,270] | 5952 [4238–9880] | 8682 [4749–25,055] | 0.169 |
Antithrombin III, % | 53 [47–65] | 58 [51–72] | 49 [40–53] | 0.002 |
Arterial lactate, mmol/L | 5.5 [3.0–8.1] | 5.1 [2.5–6.6] | 6.3 [4.1–11.2] | 0.036 |
CK-R, min (4.6–9.1) | 6.2 [5.4–6.6] | 5.7 [5.3–6.2] | 6.3 [5.8–7.4] | 0.021 |
CK-K, min (0.8–2.1) | 1.3 [1.2–1.7] | 1.3 [1.2–1.5] | 1.4 [1.2–2.7] | 0.183 |
CK α-angle, degrees (63–78) | 72.4 [69.9–74.1] | 72.5 [71.4–74.2] | 71.2 [60.0–74.1] | 0.160 |
CK-MA, mm (52–69) | 59.0 [55.3–62.8] | 60.8 [57.4–63.5] | 56.9 [52.9–61.3] | 0.035 |
CK-LY30, % (0.0–2.6) | 0.0 [0.0–0.4] | 0.0 [0.0–0.4] | 0.0 [0.0–0.5] | 0.779 |
CRT-ACT, s (82–152) | 106.6 [97.3–125.3] | 97.3 [87.9–116.0] | 116.0 [97.3–144.0] | 0.003 |
CRT-R, min (0.3–1.1) | 0.6 [0.5–0.8] | 0.5 [0.4–0.7] | 0.7 [0.5–1.0] | 0.003 |
CRT-K, min (0.8–2.7) | 1.8 [1.3–2.0] | 1.6 [1.2–1.8] | 1.8 [1.4–2.3] | 0.158 |
CRT α-angle, degree (60–78) | 71.4 [67.8–74.1] | 72.5 [68.6–74.7] | 69.5 [63.4–73.0] | 0.035 |
CRT-MA, mm (52–70) | 59.4 [55.3–62.1] | 60.7 [57.0–62.6] | 56.5 [50.4–60.5] | 0.026 |
CRT-LY30, % (0.0–2.2) | 0.0 [0.0–0.1] | 0.0 [0.0–0.2] | 0.0 [0.0–0.1] | 0.684 |
CFF-MA, mm (15–32) | 18.8 [16.4–20.8] | 19.0 [18.0–21.9] | 17.5 [13.6–19.6] | 0.038 |
CFF-A10, mm (15–30) | 18.2 [15.5–20.3] | 18.7 [16.7–21.1] | 15.5 [11.8–18.7] | 0.009 |
Parameters assessed 12 h after admission to ICU | ||||
Norepinephrine | 10 (22) | 3 (11) | 7 (37) | 0.067 |
EBL, mL | 150 [100–200] | 100 [10–200] | 170 [150–200] | 0.099 |
PRBC-transfused patients | 9 (20) | 4 (15) | 5 (26) | 0.276 |
FFP-transfused patients | 1 (2) | 0 (0) | 1 (5) | 0.413 |
PLT-transfused patients | 0 (0) | 0 (0) | 0 (0) | - |
Fluids, mL | 3050 [2100–4300] | 2800 [2100–4100] | 3200 [2000–4800] | 0.409 |
Arterial lactate, mmol/L | 1.5 [1.1–2.1] | 1.4 [1.1–2.1] | 1.5 [1.4–2.6] | 0.198 |
Outcome | ||||
Thromboembolic events ° | 3 (7) | 0 (0) | 3 (16) | 0.073 |
ICU LoS, days | 1 [1–2] | 1 [1–1] | 1 [1–2] | 0.010 |
ICU mortality ° | 0 | 0 | 0 | - |
INR | aPTT | PLT | Fibrinogen | D-Dimer | |
---|---|---|---|---|---|
Total sample (n = 46) | |||||
CK-R | r = 0.221 (p = 0.144) | r = 0.237 (p = 0.116) | - | - | |
CK-K | r = 0.253 (p = 0.093) | r = −0.031 (p = 0.838) | - | - | |
CK-α-angle | - | - | r = 0.516 (p < 0.001) | r = 0.501 (p < 0.001) | |
r2 = 0.065 (p = 0.091) | r2 = 0.077 (p = 0.065) | ||||
CK-MA | - | - | r = 0.640 (p < 0.001) | r = 0.662 (p < 0.001) | |
r2 = 0.419 (p < 0.001) | r2 = 0.484 (p < 0.001) | ||||
CRT-R | r = 0.647 (p < 0.001) | r = 0.376 (p = 0.011) | - | - | |
r2 = 0.448 (p < 0.001) | r2 = 0.089 (p = 0.046) | ||||
CRT-K | r = 0.254 (p = 0.092) | r = 0.008 (p = 0.958) | - | - | |
CRT-α-angle | - | - | r = 0.413 (p = 0.005) | r = 0.759 (p < 0.001) | |
r2 = 0.200 (p = 0.002) | r2 = 0.542 (p < 0.001) | ||||
CRT-MA | - | - | r = 0.618 (p < 0.001) | r = 0.699 (p < 0.001) | |
r2 = 0.371 (p < 0.001) | r2 = 0.526 (p < 0.001) | ||||
CFF-MA | - | - | - | r = 0.683 (p < 0.001) | |
r2 = 0.514 (p < 0.001) | |||||
CFF-A10 | - | - | - | r = 0.751 (p < 0.001) | |
r2 = 0.598 (p < 0.001) | |||||
CK-Ly30 | r = −0.232 (p = 0.150) | ||||
CRT-Ly30 | r = −0.174 (p = 0.284) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gaspari, R.; Aceto, P.; Carelli, S.; Avolio, A.W.; Bocci, M.G.; Postorino, S.; Spinazzola, G.; Caporale, M.; Giuliante, F.; Antonelli, M. Discrepancy Between Conventional Coagulation Tests and Thromboelastography During the Early Postoperative Phase of Liver Resection in Neoplastic Patients: A Prospective Study Using the New-Generation TEG®6s. J. Clin. Med. 2025, 14, 2866. https://doi.org/10.3390/jcm14092866
Gaspari R, Aceto P, Carelli S, Avolio AW, Bocci MG, Postorino S, Spinazzola G, Caporale M, Giuliante F, Antonelli M. Discrepancy Between Conventional Coagulation Tests and Thromboelastography During the Early Postoperative Phase of Liver Resection in Neoplastic Patients: A Prospective Study Using the New-Generation TEG®6s. Journal of Clinical Medicine. 2025; 14(9):2866. https://doi.org/10.3390/jcm14092866
Chicago/Turabian StyleGaspari, Rita, Paola Aceto, Simone Carelli, Alfonso Wolfango Avolio, Maria Grazia Bocci, Stefania Postorino, Giorgia Spinazzola, Mariagiovanna Caporale, Felice Giuliante, and Massimo Antonelli. 2025. "Discrepancy Between Conventional Coagulation Tests and Thromboelastography During the Early Postoperative Phase of Liver Resection in Neoplastic Patients: A Prospective Study Using the New-Generation TEG®6s" Journal of Clinical Medicine 14, no. 9: 2866. https://doi.org/10.3390/jcm14092866
APA StyleGaspari, R., Aceto, P., Carelli, S., Avolio, A. W., Bocci, M. G., Postorino, S., Spinazzola, G., Caporale, M., Giuliante, F., & Antonelli, M. (2025). Discrepancy Between Conventional Coagulation Tests and Thromboelastography During the Early Postoperative Phase of Liver Resection in Neoplastic Patients: A Prospective Study Using the New-Generation TEG®6s. Journal of Clinical Medicine, 14(9), 2866. https://doi.org/10.3390/jcm14092866