Cutaneous Adverse Events Following Nemolizumab Administration: A Review
Abstract
:1. Introduction
1.1. Atopic Dermatitis and Prurigo Nodularis
1.2. Efficacy of Dupilumab and Nemolizumab for the Treatment of AD and PN
1.3. Adverse Events of Dupilumab and Nemolizumab
1.4. Correlation Between Nemolizumab and T Helper 2 or 17 Inflammation
2. Review of Nemolizumab-Associated Cutaneous Adverse Events
2.1. Psoriasis-like Eruptions
2.2. Bullous Pemphigoid
2.3. Exacerbation of Atopic Dermatitis
2.4. Non-Specific Drug-Induced Eruptions Such as Edematous Erythema or Acute Eczema
2.5. Fungal Infection
2.6. Others (Urticaria, Contact Dermatitis, and Acne)
3. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AD | atopic dermatitis |
IL | interleukin |
PN | prurigo nodularis |
Th | T helper |
TARC | thymus and activation-regulated chemokine |
EASI | eczema area and severity index |
CD | cluster of differentiation |
FLG | filaggrin |
OSMRβ | oncostatin m receptor beta subunit |
CCL | C-C motif chemokine ligand |
TSLP | thymic stromal lymphopoietin |
BSA | bullous pemphigoid |
Th2 | T helper type 2 |
TGF-β | transforming growth factor beta |
OSMR | oncostatin m receptor |
References
- Asher, M.I.; Montefort, S.; Björkstén, B.; Lai, C.K.; Strachan, D.P.; Weiland, S.K.; Williams, H.; ISAAC Phase Three Study Group. Worldwide time trends in the prevalence of symptoms of asthma, allergic rhinoconjunctivitis, and eczema in childhood: ISAAC Phases One and Three repeat multicountry cross-sectional surveys. Lancet 2006, 368, 733–743. [Google Scholar] [CrossRef] [PubMed]
- Avena-Woods, C. Overview of atopic dermatitis. Am. J. Manag. Care 2017, 23, S115–S123. [Google Scholar]
- Silverberg, J.I.; Gelfand, J.M.; Margolis, D.J.; Boguniewicz, M.; Fonacier, L.; Grayson, M.H.; Simpson, E.L.; Ong, P.Y.; Fuxench, Z.C.C. Patient burden and quality of life in atopic dermatitis in US adults: A population-based cross-sectional study. Ann. Allergy Asthma Immunol. 2018, 121, 340–347. [Google Scholar] [CrossRef]
- Hill, D.A.; Spergel, J.M. The atopic march: Critical evidence and clinical relevance. Ann. Allergy Asthma Immunol. 2018, 120, 131–137. [Google Scholar] [CrossRef] [PubMed]
- Silverberg, J.I.; Gelfand, J.M.; Margolis, D.J.; Boguniewicz, M.; Fonacier, L.; Grayson, M.H.; Simpson, E.L.; Ong, P.Y.; Fuxench, Z.C.C. Association of atopic dermatitis with allergic, autoimmune, and cardiovascular comorbidities in US adults. Ann. Allergy Asthma Immunol. 2018, 121, 604–612.e3. [Google Scholar] [CrossRef]
- Sroka-Tomaszewska, J.; Trzeciak, M. Molecular mechanisms of atopic dermatitis pathogenesis. Int. J. Mol. Sci. 2021, 22, 4130. [Google Scholar] [CrossRef] [PubMed]
- Torres, T.; Ferreira, E.O.; Gonçalo, M.; Mendes-Bastos, P.; Selores, M.; Filipe, P. Update on atopic dermatitis. Acta Med. Port. 2019, 32, 606–613. [Google Scholar] [CrossRef]
- Paternoster, L.; Standl, M.; Waage, J.; Baurecht, H.; Hotze, M.; Strachan, D.P.; Curtin, J.A.; Bønnelykke, K.; Tian, C.; Takahashi, A.; et al. Multi-ancestry genome-wide association study of 21,000 cases and 95,000 controls identifies new risk loci for atopic dermatitis. Nat. Genet. 2015, 47, 1449–1456. [Google Scholar] [CrossRef]
- Løset, M.; Brown, S.J.; Saunes, M.; Hveem, K. Genetics of atopic dermatitis: From DNA sequence to clinical relevance. Dermatology 2019, 235, 355–364. [Google Scholar] [CrossRef]
- Irvine, A.D.; McLean, W.H.; Leung, D.Y. Filaggrin mutations associated with skin and allergic diseases. N. Engl. J. Med. 2011, 365, 1315–1327. [Google Scholar] [CrossRef]
- Tsukita, S.; Furuse, M. Claudin-based barrier in simple and stratified cellular sheets. Curr. Opin. Cell Biol. 2002, 14, 531–536. [Google Scholar] [CrossRef] [PubMed]
- De Benedetto, A.; Rafaels, N.M.; McGirt, L.Y.; Ivanov, A.I.; Georas, S.N.; Cheadle, C.; Berger, A.E.; Zhang, K.; Vidyasagar, S.; Yoshida, T. Tight junction defects in patients with atopic dermatitis. J. Allergy Clin. Immunol. 2011, 127, 773–786.e7. [Google Scholar] [CrossRef]
- Thepen, T.; Langeveld-Wildschut, E.G.; Bihari, I.C.; van Wichen, D.F.; van Reijsen, F.C.; Mudde, G.C.; Bruijnzeel-Koomen, C.A. Biphasic response against aeroallergen in atopic dermatitis showing a switch from an initial TH2 response to a TH1 response in situ: An immunocytochemical study. J. Allergy Clin. Immunol. 1996, 97, 828–837. [Google Scholar] [CrossRef] [PubMed]
- Pivarcsi, A.; Homey, B. Chemokine networks in atopic dermatitis: Traffic signals of disease. Curr. Allergy Asthma Rep. 2005, 5, 284–290. [Google Scholar] [CrossRef]
- Salimi, M.; Barlow, J.L.; Saunders, S.P.; Xue, L.; Gutowska-Owsiak, D.; Wang, X.; Huang, L.-C.; Johnson, D.; Scanlon, S.T.; McKenzie, A.N.J.; et al. A role for IL-25 and IL-33-driven type-2 innate lymphoid cells in atopic dermatitis. J. Exp. Med. 2013, 210, 2939–2950. [Google Scholar] [CrossRef] [PubMed]
- Cosmi, L.; Maggi, L.; Mazzoni, A.; Liotta, F.; Annunziato, F. Biologicals targeting type 2 immunity: Lessons learned from asthma, chronic urticaria and atopic dermatitis. Eur. J. Immunol. 2019, 49, 1334–1343. [Google Scholar] [CrossRef]
- Matsunaga, M.C.; Yamauchi, P.S. IL-4 and IL-13 inhibition in atopic dermatitis. J. Drugs Dermatol. 2016, 15, 925–929. [Google Scholar]
- Ho, A.W.; Kupper, T.S. T cells and the skin: From protective immunity to inflammatory skin disorders. Nat. Rev. Immunol. 2019, 19, 490–502. [Google Scholar] [CrossRef]
- Brunner, P.M.; Guttman-Yassky, E.; Leung, D.Y. The immunology of atopic dermatitis and its reversibility with broad-spectrum and targeted therapies. J. Allergy Clin. Immunol. 2017, 139, S65–S76. [Google Scholar] [CrossRef]
- Czarnowicki, T.; He, H.; Krueger, J.G.; Guttman-Yassky, E. Atopic dermatitis endotypes and implications for targeted therapeutics. J. Allergy Clin. Immunol. 2019, 143, 1–11. [Google Scholar] [CrossRef]
- Yew, Y.W.; Thyssen, J.P.; Silverberg, J.I. A systematic review and meta-analysis of the regional and age-related differences in atopic dermatitis clinical characteristics. J. Am. Acad. Dermatol. 2019, 80, 390–401. [Google Scholar] [CrossRef]
- Czarnowicki, T.; He, H.; Canter, T.; Han, J.; Lefferdink, R.; Erickson, T.; Rangel, S.; Kameyama, N.; Kim, H.J.; Pavel, A.B.; et al. Evolution of pathologic T-cell subsets in patients with atopic dermatitis from infancy to adulthood. J. Allergy Clin. Immunol. 2020, 145, 215–228. [Google Scholar] [CrossRef]
- Renert-Yuval, Y.; Del Duca, E.; Pavel, A.B.; Fang, M.; Lefferdink, R.; Wu, J.; Diaz, A.; Estrada, Y.D.; Canter, T.; Zhang, N.; et al. The molecular features of normal and atopic dermatitis skin in infants, children, adolescents, and adults. J. Allergy Clin. Immunol. 2021, 148, 148–163. [Google Scholar] [CrossRef] [PubMed]
- Fujii, M. Current understanding of pathophysiological mechanisms of atopic dermatitis: Interactions among skin barrier dysfunction, immune abnormalities and pruritus. Biol. Pharm. Bull. 2020, 43, 12–19. [Google Scholar] [CrossRef]
- Meng, J.; Moriyama, M.; Feld, M.; Buddenkotte, J.; Buhl, T.; Szöllösi, A.; Zhang, J.; Miller, P.; Ghetti, A.; Fischer, M.; et al. New mechanism underlying IL-31-induced atopic dermatitis. J. Allergy Clin. Immunol. 2018, 141, 1677–1689.e8. [Google Scholar] [CrossRef] [PubMed]
- Yosipovitch, G.; Rosen, J.D.; Hashimoto, T. Itch: From mechanism to (novel) therapeutic approaches. J. Allergy Clin. Immunol. 2018, 142, 1375–1390. [Google Scholar] [CrossRef] [PubMed]
- Byrd, A.L.; Belkaid, Y.; Segre, J.A. The human skin microbiome. Nat. Rev. Microbiol. 2018, 16, 143–155. [Google Scholar] [CrossRef]
- Schommer, N.N.; Gallo, R.L. Structure and function of the human skin microbiome. Trends Microbiol. 2013, 21, 660–668. [Google Scholar] [CrossRef]
- Alexander, H.; Paller, A.S.; Traidl-Hoffmann, C.; Beck, L.A.; De Benedetto, A.; Dhar, S.; Girolomoni, G.; Irvine, A.D.; Spuls, P.; Su, J.; et al. The role of bacterial skin infections in atopic dermatitis: Expert statement and review from the International Eczema Council Skin Infection Group. Br. J. Dermatol. 2020, 182, 1331–1342. [Google Scholar] [CrossRef]
- Nakatsuji, T.; Gallo, R.L. The role of the skin microbiome in atopic dermatitis. Ann. Allergy Asthma Immunol. 2019, 122, 263–269. [Google Scholar] [CrossRef]
- Ruzicka, T.; Hanifin, J.M.; Furue, M.; Pulka, G.; Mlynarczyk, I.; Wollenberg, A.; Galus, R.; Etoh, T.; Mihara, R.; Yoshida, H.; et al. XCIMA study group anti-interleukin-31 receptor an antibody for atopic dermatitis. N. Engl. J. Med. 2017, 376, 826–835. [Google Scholar] [CrossRef] [PubMed]
- Pereira, M.P.; Steinke, S.; Zeidler, C.; Forner, C.; Riepe, C.; Augustin, M.; Bobko, S.; Dalgard, F.; Elberling, J.; Garcovich, S.; et al. European academy of dermatology and venereology European prurigo project: Expert consensus on the definition, classification and terminology of chronic prurigo. J. Eur. Acad. Dermatol. Venereol. 2018, 32, 1059–1065. [Google Scholar] [CrossRef]
- Williams, K.A.; Huang, A.H.; Belzberg, M.; Kwatra, S.G. Prurigo nodularis: Pathogenesis and management. J. Am. Acad. Dermatol. 2020, 83, 1567–1575. [Google Scholar] [CrossRef]
- Leis, M.; Fleming, P.; Lynde, C.W. Prurigo nodularis: Review and emerging treatments. Skin. Ther. Lett. 2021, 26, 5–8. [Google Scholar]
- Capellero, S.; Erriquez, J.; Battistini, C.; Porporato, R.; Scotto, G.; Borella, F.; Di Renzo, M.F.; Valabrega, G.; Olivero, M. Ovarian cancer cells in ascites form aggregates that display a hybrid epithelial-mesenchymal phenotype and allows survival and proliferation of metastasizing cells. Int. J. Mol. Sci. 2022, 23, 833. [Google Scholar] [CrossRef] [PubMed]
- Fukushi, S.; Yamasaki, K.; Aiba, S. Nuclear localization of activated STAT6 and STAT3 in epidermis of prurigo nodularis. Br. J. Dermatol. 2011, 165, 990–996. [Google Scholar] [CrossRef]
- Zeidler, C.; Yosipovitch, G.; Stander, S. Prurigo nodularis and its management. Dermatol. Clin. 2018, 36, 189–197. [Google Scholar] [CrossRef]
- Haas, S.; Capellino, S.; Phan, N.Q.; Böhm, M.; Luger, T.A.; Straub, R.H.; Ständer, S. Low density of sympathetic nerve fibers relative to substance P-positive nerve fibers in lesional skin of chronic pruritus and prurigo nodularis. J. Dermatol. Sci. 2010, 58, 193–197. [Google Scholar] [CrossRef]
- Johansson, O.; Liang, Y.; Marcusson, J.A.; Reimert, C.M. Eosinophil cationic protein and eosinophil-derived neurotoxin/eosinophil protein X-immunoreactive eosinophils in prurigo nodularis. Arch. Dermatol. Res. 2000, 292, 371–378. [Google Scholar] [CrossRef]
- Sonkoly, E.; Muller, A.; Lauerma, A.I.; Pivarcsi, A.; Soto, H.; Kemeny, L.; Alenius, H.; Dieu-Nosjean, M.C.; Meller, S.; Rieker, J.; et al. IL-31: A new link between T cells and pruritus in atopic skin inflammation. J. Allergy Clin. Immunol. 2006, 117, 411–417. [Google Scholar] [CrossRef]
- Deng, J.; Parthasarathy, V.; Marani, M.; Bordeaux, Z.; Lee, K.; Trinh, C.; Cornman, H.L.; Kambala, A.; Pritchard, T.; Chen, S.; et al. Extracellular matrix and dermal nerve growth factor dysregulation in prurigo nodularis compared to atopic dermatitis. Front. Med. 2022, 9, 1022889. [Google Scholar] [CrossRef] [PubMed]
- Liao, V.; Cornman, H.L.; Ma, E.; Kwatra, S.G. Prurigo nodularis: New insights into pathogenesis and novel therapeutics. Br. J. Dermatol. 2024, 190, 798–810. [Google Scholar] [CrossRef] [PubMed]
- Elmariah, S.; Kim, B.; Berger, T.; Chisolm, S.; Kwatra, S.G.; Mollanazar, N.; Yosipovitch, G. Practical approaches for diagnosis and management of prurigo nodularis: United States expert panel consensus. J. Am. Acad. Dermatol. 2021, 84, 747–760. [Google Scholar] [CrossRef]
- Nakajima, S.; Yonekura, S.; Nakamizo, S.; Egawa, G.; Kabashima, K. Dupilumab as a novel treatment option for prurigo nodularis. J. Allergy Clin. Immunol. 2023, 152, 870–872. [Google Scholar] [CrossRef] [PubMed]
- Ständer, S.; Yosipovitch, G.; Legat, F.J.; Lacour, J.-P.; Paul, C.; Narbutt, J.; Bieber, T.; Misery, L.; Wollenberg, A.; Reich, A.; et al. Trial of nemolizumab in moderate-to-severe prurigo nodularis. N. Engl. J. Med. 2020, 382, 706–716. [Google Scholar] [CrossRef]
- Salvati, L.; Cosmi, L.; Annunziato, F. From emollients to biologicals: Targeting atopic dermatitis. Int. J. Mol. Sci. 2021, 22, 10381. [Google Scholar] [CrossRef]
- Simpson, E.L.; Bieber, T.; Guttman-Yassky, E.; Beck, L.A.; Blauvelt, A.; Cork, M.J.; Silverberg, J.I.; Deleuran, M.; Kataoka, Y.; Lacour, J.-P.; et al. Two phase 3 trials of dupilumab versus placebo in atopic dermatitis. N. Engl. J. Med. 2016, 375, 2335–2348. [Google Scholar] [CrossRef]
- Deleuran, M.; Thaçi, D.; Beck, L.A.; de Bruin-Weller, M.; Blauvelt, A.; Forman, S.; Bissonnette, R.; Reich, K.; Soong, W.; Hussain, I.; et al. Dupilumab shows long-term safety and efficacy in patients with moderate to severe atopic dermatitis enrolled in a phase 3 open-label extension study. J. Am. Acad. Dermatol. 2020, 82, 377–388. [Google Scholar] [CrossRef]
- Yosipovitch, G.; Mollanazar, N.; Ständer, S.; Kwatra, S.G.; Kim, B.S.; Laws, E.; Mannent, L.P.; Amin, N.; Akinlade, B.; Staudinger, H.W.; et al. Dupilumab in patients with prurigo nodularis: Two randomized, double-blind, placebo-controlled phase 3 trials. Nat. Med. 2023, 29, 1180–1190. [Google Scholar] [CrossRef]
- Paganini, C.; Talamonti, M.; Maffei, V.; Di Raimondo, C.; Bianchi, L.; Galluzzo, M. Dupilumab for treatment of prurigo nodularis: Real-life effectiveness for up to 84 weeks. J. Clin. Med. 2024, 13, 878. [Google Scholar] [CrossRef]
- Kabashima, K.; Matsumura, T.; Komazaki, H.; Kawashima, M.; Nemolizumab-JP01 Study Group. Trial of nemolizumab and topical agents for atopic dermatitis with pruritus. N. Engl. J. Med. 2020, 383, 141–150. [Google Scholar] [CrossRef]
- Kwatra, S.G.; Yosipovitch, G.; Legat, F.J.; Reich, A.; Paul, C.; Simon, D.; Naldi, L.; Lynde, C.; De Bruin-Weller, M.S.; Nahm, W.K.; et al. Phase 3 trial of nemolizumab in patients with prurigo nodularis. N. Engl. J. Med. 2023, 389, 1579–1589. [Google Scholar] [CrossRef] [PubMed]
- Ständer, S.; Yosipovitch, G.; Lacour, J.-P.; Legat, F.J.; Paul, C.; Reich, A.; Chaouche, K.; Ahmad, F.; Piketty, C. Nemolizumab efficacy in prurigo nodularis: Onset of action on itch and sleep disturbances. J. Eur. Acad. Dermatol. Venereol. 2022, 36, 1820–1825. [Google Scholar] [CrossRef] [PubMed]
- Yokozeki, H.; Murota, H.; Matsumura, T. Long-term (68 weeks) administration of nemolizumab and topical corticosteroids for prurigo nodularis in patients aged ≥13 years: Efficacy and safety data from a phase II/III study. Br. J. Dermatol. 2025, ljaf045. [Google Scholar] [CrossRef]
- Waligóra-Dziwak, K.; Dańczak-Pazdrowska, A.; Jenerowicz, D. A comprehensive review of biologics in phase III and IV clinical trials for atopic dermatitis. J. Clin. Med. 2024, 13, 4001–4023. [Google Scholar] [CrossRef]
- Kabashima, K.; Matsumura, T.; Komazaki, H.; Kawashima, M.; Nemolizumab JP01 and JP02 Study Group. Nemolizumab plus topical agents in patients with AD and moderate-to-severe pruritus provide improvement in pruritus and signs of AD for up to 68 weeks: Results from two phase III, long-term studies. Br. J. Dermatol. 2022, 186, 642–651. [Google Scholar] [CrossRef] [PubMed]
- Dillon, S.R.; Sprecher, C.; Hammond, A.; Bilsborough, J.; Rosenfeld-Franklin, M.; Presnell, S.R.; Haugen, H.S.; Maurer, M.; Harder, B.; Johnston, J.; et al. Interleukin 31, a cytokine produced by activated T cells, induces dermatitis in mice. Nat. Immunol. 2004, 5, 752–760. [Google Scholar] [CrossRef]
- Bilsborough, J.; Mudri, S.; Chadwick, E.; Harder, B.; Dillon, S.R. IL-31 receptor (IL-31RA) knockout mice exhibit elevated responsiveness to oncostatin M. J. Immunol. 2010, 185, 6023–6030. [Google Scholar] [CrossRef]
- Fassett, M.S.; Braz, J.M.; Castellanos, C.A.; Salvatierra, J.J.; Sadeghi, M.; Yu, X.; Schroeder, A.W.; Caston, J.; Munoz-Sandoval, P.; Roy, S.; et al. IL-31-dependent neurogenic inflammation restrains cutaneous type 2 immune response in allergic dermatitis. Sci. Immunol. 2023, 8, eabi6887. [Google Scholar] [CrossRef]
- Nedoszytko, B.; Lange, M.; Sokołowska-Wojdyło, M.; Renke, J.; Trzonkowski, P.; Sobjanek, M.; Szczerkowska-Dobosz, A.; Niedoszytko, M.; Górska, A.; Romantowski, J.; et al. The role of regulatory T cells and genes involved in their differentiation in pathogenesis of selected inflammatory and neoplastic skin diseases. Part I: Treg properties and functions. Postep. Dermatol. Alergol. 2017, 34, 285–294. [Google Scholar] [CrossRef]
- Xie, D.; Hai, B.; Xie, X.; Liu, L.; Ayello, J.; Ma, X.; Zhang, J. Peripheral CD4+CD8+cells are the activated T cells expressed granzyme B (GrB), Foxp3, interleukin 17 (IL-17), at higher levels in Th1/Th2 cytokines. Cell Immunol. 2009, 259, 157–164. [Google Scholar] [CrossRef] [PubMed]
- Silverberg, J.I.; Pinter, A.; Pulka, G.; Poulin, Y.; Bouaziz, J.D.; Wollenberg, A.; Murrell, D.F.; Alexis, A.; Lindsey, L.; Ahmad, F.; et al. Phase 2B randomized study of nemolizumab in adults with moderate-to-severe atopic dermatitis and severe pruritus. J. Allergy Clin. Immunol. 2020, 145, 173–182. [Google Scholar] [CrossRef] [PubMed]
- Igarashi, A.; Katsunuma, T.; Matsumura, T.; Komazaki, H.; Nemolizumab-JP04 Study Group. Efficacy and safety of nemolizumab in paediatric patients aged 6–12 years with atopic dermatitis with moderate-to-severe pruritus: Results from a phase III, randomized, double-blind, placebo-controlled, multicentre study. Br. J. Dermatol. 2023, 190, 20–28. [Google Scholar] [CrossRef]
- Igarashi, A.; Katsunuma, T.; Nagano, Y.; Komazaki, H. Long-term (68 weeks) administration of nemolizumab in paediatric patients aged 6–12 years with atopic dermatitis with moderate-to-severe pruritus: Efficacy and safety data from a phase III study. Br. J. Dermatol. 2024, ljae458. [Google Scholar] [CrossRef]
- Armstrong, A.W.; Read, C. Pathophysiology, clinical presentation, and treatment of psoriasis: A review. JAMA 2020, 323, 1945–1960. [Google Scholar] [CrossRef]
- Krueger, J.G. The immunologic basis for the treatment of psoriasis with new biologic agents. J. Am. Acad. Dermatol. 2002, 46, 1–26. [Google Scholar] [CrossRef] [PubMed]
- Krueger, J.G. Hiding under the skin: A welcome surprise in psoriasis. Nat. Med. 2012, 18, 1750–1751. [Google Scholar] [CrossRef]
- Sieminska, I.; Pieniawska, M.; Grzywa, T.M. The immunology of psoriasis-current concepts in pathogenesis. Clin. Rev. Allergy Immunol. 2024, 66, 164–191. [Google Scholar] [CrossRef]
- Man, A.M.; Orăsan, M.S.; Hoteiuc, O.A.; Olănescu-Vaida-Voevod, M.C.; Mocan, T. Inflammation and psoriasis: A comprehensive review. Int. J. Mol. Sci. 2023, 24, 16095. [Google Scholar] [CrossRef]
- Drago, F.; Ciccarese, G.; Rebora, A.; Parodi, A. Pityriasis rosea and pityriasis rosea-like eruption: Can they be distinguished? J. Dermatol. 2014, 41, 864–865. [Google Scholar] [CrossRef]
- Ohtsuka, T. Pityriasis rosea-like arranged eruption after infliximab therapy in a patient with psoriasis vulgaris. J. Dermatol. 2014, 41, 354–355. [Google Scholar] [CrossRef] [PubMed]
- Masuda, T.; Yonekura, S.; Kataoka, K.; Mizoguchi, K.; Hirata, M.; Fujimoto, M.; Nakajima, S.; Kabashima, K. Psoriasis-like lesions in an atopic dermatitis patient possibly associated with nemolizumab treatment. J. Dermatol. 2024, 51, e193–e195. [Google Scholar] [CrossRef]
- Grolleau, C.; Calugareanu, A.; Demouche, S.; Nosbaum, A.; Staumont-Sallé, D.; Aubert, H.; Cassius, C.; Jachiet, M.; Saussine, A.; Bagot, M.; et al. IL-4/IL-13 inhibitors for atopic dermatitis induce psoriatic rash transcriptionally close to pustular psoriasis. J. Investig. Dermatol. 2023, 5, 711–721.e7. [Google Scholar] [CrossRef]
- Kasperkiewicz, M.; Zillikens, D. The Pathophysiology of Bullous Pemphigoid. Clin. Rev. Allergy Immunol. 2007, 33, 67–77. [Google Scholar] [CrossRef]
- Di Zenzo, G.; Thoma-Uszynski, S.; Fontao, L.; Calabresi, V.; Hofmann, S.C.; Hellmark, T.; Sebbag, N.; Pedicelli, C.; Sera, F.; Lacour, J.-P.; et al. Multicenter prospective study of the humoral autoimmune response in bullous pemphigoid. Clin. Immunol. 2008, 128, 415–426. [Google Scholar] [CrossRef]
- Thoma-Uszynski, S.; Uter, W.; Schwietzke, S.; Schuler, G.; Borradori, L.; Hertl, M. Autoreactive T and B Cells from Bullous Pemphigoid (BP) Patients Recognize Epitopes Clustered in Distinct Regions of BP180 and BP230. J. Immunol. 2006, 176, 2015–2023. [Google Scholar] [CrossRef] [PubMed]
- Arakawa, M.; Ishii, N.; Karashima, T.; Nakama, T.; Yasumoto, S.; Tsuruta, D.; Dainichi, T.; Hamada, T.; Hashimoto, T. Lesional Th17 cells and regulatory T-cells in bullous pemphigoid. Exp. Dermatol. 2011, 20, 1022–1024. [Google Scholar] [CrossRef]
- Geisler, A.N.; Phillips, G.S.; Barrios, D.M.; Wu, J.; Leung, D.Y.M.; Moy, A.P.; Kern, J.A.; Lacouture, M.E. Immune checkpoint inhibitor-related dermatologic adverse events. J. Am. Acad. Dermatol. 2024, 83, 1255–1268. [Google Scholar] [CrossRef] [PubMed]
- Moro, F.; Fania, L.; Sinagra, J.L.M.; Salemme, A.; Di Zenzo, G. Bullous pemphigoid: Trigger and predisposing factors. Biomolecules 2020, 10, 1432. [Google Scholar] [CrossRef]
- Mima, Y.; Ohtsuka, T.; Ebato, I.; Nakata, Y.; Tsujita, A.; Nakazato, Y.; Norimatsu, Y. Review of T helper 2-type inflammatory diseases following immune checkpoint inhibitor treatment. Biomedicines 2024, 12, 1886. [Google Scholar] [CrossRef]
- Asdourian, M.S.; Shah, N.; Jacoby, T.V.; Reynolds, K.L.; Chen, S.T. Association of bullous pemphigoid with immune checkpoint inhibitor therapy in patients with cancer: A systematic review. JAMA Dermatol. 2022, 158, 933–941. [Google Scholar] [CrossRef] [PubMed]
- Tabatabaei-Panah, P.-S.; Moravvej, H.; Alirajab, M.; Etaaty, A.; Geranmayeh, M.; Hosseine, F.; Khansari, A.; Mahdian, M.; Mirhashemi, M.; Parvizi, S.; et al. Association between TH2 cytokine gene polymorphisms and risk of bullous pemphigoid. Immunol. Investig. 2022, 51, 343–356. [Google Scholar] [CrossRef]
- Chen, F.; Wang, Y.; Chen, X.; Yang, N.; Li, L. Targeting interleukin 4 and interleukin 13: A novel therapeutic approach in bullous pemphigoid. Ann. Med. 2023, 55, 1156–1170. [Google Scholar] [CrossRef]
- Yan, T.; Xie, Y.; Liu, Y.; Shan, Y.; Wu, X.; Wang, J.; Zuo, Y.G.; Zhang, Z. Dupilumab effectively and rapidly treats bullous pemphigoid by inhibiting the activities of multiple cell types. Front. Immunol. 2023, 14, 1194088. [Google Scholar] [CrossRef]
- Ishikawa, Y.; Washio, K. A case of bullous pemphigoid after nemolizumab administration. J. Dermatol. 2024, 52, e258–e259. [Google Scholar] [CrossRef] [PubMed]
- Masuyuki, R.; Sato, E.; Imafuku, S. A case of bullous pemphigoid following administration of anti-IL-31 receptor A antibody. J. Dermatol. 2024, 51, 1252–1255. [Google Scholar] [CrossRef]
- Kamada, H.; Arakawa, N.; Kato, M.; Tanji, T.; Watabe, D.; Yanagawa, N.; Amano, H. Nemolizumab-induced exacerbation of atopic dermatitis. J. Dermatol. 2024, 52, e316–e318. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, K.; Kubo, A.; Fujita, H.; Yokouchi, M.; Ishii, K.; Kawasaki, H.; Nomura, T.; Shimizu, H.; Kouyama, K.; Ebihara, T.; et al. Distinct behavior of human Langerhans cells and inflammatory dendritic epidermal cells at tight junctions in patients with atopic dermatitis. J. Allergy Clin. Immunol. 2014, 134, 856–864. [Google Scholar] [CrossRef]
- Kamada, H.; Arakawa, N.; Fukui, R.; Tanji, T.; Watabe, D.; Sugai, T.; Amano, H. Nemolizumab-induced drug eruption in a 46-year-old male patient with atopic dermatitis. Eur. J. Dermatol. 2023, 33, 558–559. [Google Scholar] [CrossRef]
- Tohyama, M.; Watanabe, H.; Murakami, S.; Shirakata, Y.; Sayama, K.; Iijima, M.; Hashimoto, K. Possible involvement of CD14+ CD16+ monocyte lineage cells in the epidermal damage of Stevens-Johnson syndrome and toxic epidermal necrolysis. Br. J. Dermatol. 2012, 166, 322–330. [Google Scholar] [CrossRef]
- Mima, Y.; Ohtsuka, T. A case of erythema multiforme following the administration of nemolizumab. Cureus 2025, 17, e79070. [Google Scholar] [CrossRef] [PubMed]
- Sugiyama, A.; Yano-Takamori, A.; Kojima, K.; Nishie, H.; Nishimura, M.; Hiramoto, T.; Nakahara, T. Characteristics of suitable cases for treatment with nemolizumab based on clinical findings and cutaneous adverse events. J. Dermatol. 2025, 52, 740–743. [Google Scholar] [CrossRef]
- Phillips, E.J.; Bigliardi, P.; Bircher, A.J.; Broyles, A.; Chang, Y.S.; Chung, W.H.; Lehloenya, R.; Mockenhaupt, M.; Peter, J.; Pirmohamed, M.; et al. Controversies in drug allergy: Testing for delayed reactions. J. Allergy Clin. Immunol. 2019, 143, 66–73. [Google Scholar] [CrossRef]
- Chen, C.B.; Abe, R.; Pan, R.Y.; Wang, C.W.; Hung, S.I.; Tsai, Y.G.; Chung, W.H. An updated review of the molecular mechanisms in drug hypersensitivity. J. Immunol. Res. 2018, 2018, 6431694. [Google Scholar] [CrossRef] [PubMed]
- Zeeuwen, P.; Kleerebezem, M.; Timmerman, H.M.; Schalkwijk, J. Microbiome and skin diseases. Curr. Opin. Allergy Clin. Immunol. 2013, 13, 514–520. [Google Scholar] [CrossRef] [PubMed]
- Umemoto, N.; Kakurai, M.; Matsumoto, T.; Mizuno, K.; Cho, O.; Sugita, T.; Demitsu, T. Dupilumab alters both the bacterial and fungal skin microbiomes of patients with atopic dermatitis. Microorganisms 2024, 12, 224. [Google Scholar] [CrossRef]
- Sardana, K.; Gupta, A.; Mathachan, S.R. Immunopathogenesis of dermatophytoses and factors leading to recalcitrant infections. Indian. Dermatol. Online J. 2021, 12, 389–399. [Google Scholar] [CrossRef]
- Kozera, E.; Stewart, T.; Gill, K.; De La Vega, M.A.; Frew, J.W. Dupilumab-associated head and neck dermatitis is associated with elevated pretreatment serum Malassezia-specific IgE: A multicentre, prospective cohort study. Br. J. Dermatol. 2022, 186, 1050–1052. [Google Scholar] [CrossRef]
- Can Bostan, O.; Damadoglu, E.; Sarac, B.E.; Kilic, B.; Sahiner, U.M.; Karaaslan, C.; Karakaya, G.; Kalyoncu, A.F. Cytokine profiles of chronic urticaria patients and the effect of omalizumab treatment. Dermatol. Pract. Concept. 2023, 13, e2023272. [Google Scholar] [CrossRef]
- Scheinman, P.L.; Vocanson, M.; Thyssen, J.P.; Johansen, J.D.; Nixon, R.L.; Dear, K.; Botto, N.C.; Morot, J.; Goldminz, A.M. Contact dermatitis. Nat. Rev. Dis. Primers 2021, 7, 38. [Google Scholar] [CrossRef]
- Brar, K.K. A review of contact dermatitis. Ann. Allergy Asthma Immunol. 2021, 126, 32–39. [Google Scholar] [CrossRef] [PubMed]
- Woo, T.E.; Sibley, C.D. The emerging utility of the cutaneous microbiome in the treatment of acne and atopic dermatitis. J. Am. Acad. Dermatol. 2020, 82, 222–228. [Google Scholar] [CrossRef] [PubMed]
- Francuzik, W.; Franke, K.; Schumann, R.R.; Heine, G.; Worm, M. Propionibacterium acnes abundance correlates inversely with Staphylococcus aureus: Data from atopic dermatitis skin microbiome. Acta Derm. Venereol. 2018, 98, 490–495. [Google Scholar] [CrossRef]
- Tsoi, L.C.; Hacini-Rachinel, F.; Fogel, P.; Rousseau, F.; Xing, X.; Patrick, M.T.; Billi, A.C.; Berthier, C.C.; Kahlenberg, J.M.; Lazzari, A.; et al. Transcriptomic characterization of prurigo nodularis and the therapeutic response to nemolizumab. J. Allergy Clin. Immunol. 2022, 149, 1329–1339. [Google Scholar] [CrossRef]
- Sardana, K.; Mathachan, S.R.; Muddebihal, A.; Agrawal, D.; Ahuja, A. Translating tissue expression of STAT 1, 3 and 6 in prurigo nodularis to clinical efficacy of oral tofacitinib—A prospective single-arm investigational study. Indian. J. Dermatol. Venereol. Leprol. 2025, 1, 6. [Google Scholar] [CrossRef]
- Drago, F.; Cogorno, L.; Agnoletti, A.F.; Ciccarese, G.; Parodi, A. A retrospective study of cutaneous drug reactions in an outpatient population. Int. J. Clin. Pharm. 2015, 37, 739–743. [Google Scholar] [CrossRef] [PubMed]
- Ophaug, S.; Schwarzenberger, K. Pitfalls in patch testing: Minimizing the risk of avoidable false-negative reactions. Dermatol. Clin. 2020, 38, 293–300. [Google Scholar] [CrossRef]
- Saito, D.; Hayashida, M.; Sato, T.; Minowa, S.; Ikezaki, O.; Mitsui, T.; Miura, M.; Sakuraba, A.; Hisamatsu, T. Evaluation of the drug-induced lymphocyte stimulation test for diagnosing mesalazine allergy. Intest. Res. 2018, 16, 273–281. [Google Scholar] [CrossRef]
Article | Disease | Amount | Duration | Number | Any AEs | Eczema or AD Exacerbation | Erythema | Neurodermatitis | Acne | Urticaria | Contact Dermatitis |
---|---|---|---|---|---|---|---|---|---|---|---|
Kabashima K et al. [57] | AD | 60 mg | 68 W | 298 | 281 (94.3%) | 75 (25.2%) | N/A | N/A | 22 (7.4%) | 24 (8.1%) | 26 (8.7%) |
Silverberg JI et al. [63] | AD | 30 mg | 24 W | 57 | 47 (82.5%) | 17 (29.9%) | N/A | N/A | N/A | N/A | N/A |
Igarashi A et al. [64] | Pediatric AD | 30 mg | 16 W | 45 | 34 (73.9%) | 5 (10.9%) | 3 (6.5%) | N/A | 1 (2.2%) | N/A | N/A |
Igarashi A et al. [65] | Pediatric AD | 30 mg | 68 W | 89 | 83 (93%) | 15 (17%) | 7 (8%) | N/A | 15 (17%) | 11 (12%) | 5 (6%) |
Ständer S et al. [54] | PN | 30 mg | 12 W | 34 | 23 (68%) | 7 (21%) | N/A | N/A | N/A | 1 (2.9%) | 2 (6%) |
Kwatra SG et al. [53] | PN | 30 mg 60 mg | 16 W | 183 | 112 (61.2%) | 21 (11.5%) | N/A | 7 (3.8%) | 1 (0.5%) | 1 (0.5%) | 3 (1.6%) |
Yokozeki H et al. [55] | PN | 30 mg | 68 W | 112 | 103 (92%) | 35 (31.2%) | 8 (7.1%) | 7 (6.3%) | 6 (5.4%) | 9 (8.0%) | 7 (6.3%) |
PN | 60 mg | 68 W | 113 | 103 (91.2%) | 25 (22.1%) | 10 (8.8%) | 8 (7.1%) | 8 (7.1%) | 9 (8.0%) | 7 (6.2%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mima, Y.; Yamamoto, M.; Iozumi, K. Cutaneous Adverse Events Following Nemolizumab Administration: A Review. J. Clin. Med. 2025, 14, 3026. https://doi.org/10.3390/jcm14093026
Mima Y, Yamamoto M, Iozumi K. Cutaneous Adverse Events Following Nemolizumab Administration: A Review. Journal of Clinical Medicine. 2025; 14(9):3026. https://doi.org/10.3390/jcm14093026
Chicago/Turabian StyleMima, Yoshihito, Masako Yamamoto, and Ken Iozumi. 2025. "Cutaneous Adverse Events Following Nemolizumab Administration: A Review" Journal of Clinical Medicine 14, no. 9: 3026. https://doi.org/10.3390/jcm14093026
APA StyleMima, Y., Yamamoto, M., & Iozumi, K. (2025). Cutaneous Adverse Events Following Nemolizumab Administration: A Review. Journal of Clinical Medicine, 14(9), 3026. https://doi.org/10.3390/jcm14093026