Difference in Pupillary Diameter as an Important Factor for Evaluating Amplitude of Accommodation: A Prospective Observational Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Ocular Examinations
2.3. Measurement of AA and Pupillary Diameter by TONOREF III®
2.4. Statistical Analysis
3. Results
3.1. Participant Profiles and Results of Ocular Examinations
3.2. Single Regression Analyses among AA, Age, and DPD in All Participants
3.3. Factors Affecting AA in All Participants
3.4. Factors Affecting AA in the Young and Older Groups
4. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Fricke, T.R.; Tahhan, N.; Resnikoff, S.; Papas, E.; Burnett, A.; Ho, S.M.; Naduvilath, T.; Naidoo, K.S. Global Prevalence of Presbyopia and Vision Impairment from Uncorrected Presbyopia: Systematic Review, Meta-analysis, and Modelling. Ophthalmology 2018, 125, 1492–1499. [Google Scholar] [CrossRef]
- Coles-Brennan, C.; Sulley, A.; Young, G. Management of digital eye strain. Clin. Exp. Optom. 2019, 102, 18–29. [Google Scholar] [CrossRef] [Green Version]
- Rosenfield, M. Computer vision syndrome: A review of ocular causes and potential treatments. Ophthalmic. Physiol. Opt. 2011, 31, 502–515. [Google Scholar] [CrossRef]
- Blehm, C.; Vishnu, S.; Khattak, A.; Mitra, S.; Yee, R.W. Computer vision syndrome: A review. Surv. Ophthalmol. 2005, 50, 253–262. [Google Scholar] [CrossRef]
- Kosehira, M.; Machida, N.; Kitaichi, N. A 12-Week-Long Intake of Bilberry Extract (Vaccinium myrtillus L.) Improved Objective Findings of Ciliary Muscle Contraction of the Eye: A Randomized, Double-Blind, Placebo-Controlled, Parallel-Group Comparison Trial. Nutrients 2020, 12, 600. [Google Scholar] [CrossRef] [Green Version]
- Jaschinski, W.; Konig, M.; Mekontso, T.M.; Ohlendorf, A.; Welscher, M. Computer vision syndrome in presbyopia and beginning presbyopia: Effects of spectacle lens type. Clin. Exp. Optom. 2015, 98, 228–233. [Google Scholar] [CrossRef]
- Ministry of Internal Affairs and Communications of Japan 2019. Available online: https://www.soumu.go.jp/main_sosiki/joho_tsusin/eng/Releases/Telecommunications/2019_07_09_2.html (accessed on 1 July 2020).
- Anderson, H.A.; Glasser, A.; Manny, R.E.; Stuebing, K.K. Age-related changes in accommodative dynamics from preschool to adulthood. Investig. Ophthalmol. Vis. Sci. 2010, 51, 614–622. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Charman, W.N. The eye in focus: Accommodation and presbyopia. Clin. Exp. Optom. 2008, 91, 207–225. [Google Scholar] [CrossRef] [PubMed]
- Duane, A. Studies in Monocular and Binocular Accommodation, with Their Clinical Application. Trans. Am. Ophthalmol. Soc. 1922, 20, 132–157. [Google Scholar] [CrossRef]
- Jackson, E. Amplitude of Accommodation at Different Periods of Life. Cal. State. J. Med. 1907, 5, 163–166. [Google Scholar] [PubMed]
- Lopez-Alcon, D.; Marin-Franch, I.; Fernandez-Sanchez, V.; Lopez-Gil, N. Optical factors influencing the amplitude of accommodation. Vis. Res. 2016, 141, 16–22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nirmalan, P.K.; Krishnaiah, S.; Shamanna, B.R.; Rao, G.N.; Thomas, R. A population-based assessment of presbyopia in the state of Andhra Pradesh, south India: The Andhra Pradesh Eye Disease Study. Investig. Ophthalmol. Vis. Sci. 2006, 47, 2324–2328. [Google Scholar] [CrossRef] [PubMed]
- Jain, I.S.; Ram, J.; Gupta, A. Early onset of presbyopia. Am. J. Optom. Physiol. Opt. 1982, 59, 1002–1004. [Google Scholar] [CrossRef] [PubMed]
- Weale, R.A. Epidemiology of refractive errors and presbyopia. Surv. Ophthalmol. 2003, 48, 515–543. [Google Scholar] [CrossRef]
- Pointer, J.S. The presbyopic add. II. Age-related trend and a gender difference. Ophthalmic. Physiol. Opt. 1995, 15, 241–248. [Google Scholar] [CrossRef]
- Hickenbotham, A.; Roorda, A.; Steinmaus, C.; Glasser, A. Meta-analysis of sex differences in presbyopia. Investig. Ophthalmol. Vis. Sci. 2012, 53, 3215–3220. [Google Scholar] [CrossRef] [Green Version]
- Andualem, H.B.; Assefa, N.L.; Weldemichael, D.Z.; Tefera, T.K. Prevalence and associated factors of presbyopia among school teachers in Gondar city, Northwest Ethiopia, 2016. Clin. Optom. 2017, 9, 85–90. [Google Scholar] [CrossRef] [Green Version]
- Tsuneyoshi, Y.; Higuchi, A.; Negishi, K.; Tsubota, K. Suppression of presbyopia progression with pirenoxine eye drops: Experiments on rats and non-blinded, randomized clinical trial of efficacy. Sci. Rep. 2017, 7, 6819. [Google Scholar] [CrossRef]
- Tsuneyoshi, Y.; Negishi, K.; Saiki, M.; Toda, I.; Tsubota, K. Apparent progression of presbyopia after laser in situ keratomileusis in patients with early presbyopia. Am. J. Ophthalmol. 2014, 158, 286–292. [Google Scholar] [CrossRef]
- Kono, K.; Shimizu, Y.; Takahashi, S.; Matsuoka, S.; Yui, K. Effect of Multiple Dietary Supplement Containing Lutein, Astaxanthin, Cyanidin-3-glucoside, and DHA on Accommodative Ability. Immunol. Endocr. Metab. Agent Med. Chem. 2014, 14, 114–125. [Google Scholar] [CrossRef]
- Uchino, Y.; Uchino, M.; Dogru, M.; Fukagawa, K.; Tsubota, K. Improvement of accommodation with anti-oxidant supplementation in visual display terminal users. J. Nutr. Health Aging 2012, 16, 478–481. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, Y.; Igaki, M.; Suzuki, A.; Takahashi, G.; Dogru, M.; Tsubota, K. The effect of periocular warming on accommodation. Ophthalmology 2005, 112, 1113–1118. [Google Scholar] [CrossRef] [PubMed]
- Neely, J.G.; Hartman, J.M.; Forsen, J.W., Jr.; Wallace, M.S. Tutorials in clinical research: VII. Understanding comparative statistics (contrast)--part B: Application of T-test, Mann-Whitney U, and chi-square. Laryngoscope 2003, 113, 1719–1725. [Google Scholar] [CrossRef] [PubMed]
- De Muth, J.E. Overview of biostatistics used in clinical research. Am. J. Health Syst. Pharm. 2009, 66, 70–81. [Google Scholar] [CrossRef] [PubMed]
- Negishi, K.; Hayashi, K.; Kamiya, K.; Sato, M.; Bissen-Miyajima, H. Survey Working Group of the Japanese Society of, C.; Refractive, S., Nationwide Prospective Cohort Study on Cataract Surgery With Multifocal Intraocular Lens Implantation in Japan. Am. J. Ophthalmol. 2019, 208, 133–144. [Google Scholar] [CrossRef] [Green Version]
- Lobato-Rincon, L.L.; Cabanillas-Campos Mdel, C.; Bonnin-Arias, C.; Chamorro-Gutierrez, E.; Murciano-Cespedosa, A.; Sanchez-Ramos Roda, C. Pupillary behavior in relation to wavelength and age. Front. Hum. Neurosci. 2014, 8, 221. [Google Scholar]
- Kasthurirangan, S.; Glasser, A. Age related changes in the characteristics of the near pupil response. Vis. Res. 2006, 46, 1393–1403. [Google Scholar] [CrossRef] [Green Version]
- Heron, G.; Charman, W.N.; Schor, C. Dynamics of the accommodation response to abrupt changes in target vergence as a function of age. Vis. Res. 2001, 41, 507–519. [Google Scholar] [CrossRef] [Green Version]
- Tabernero, J.; Chirre, E.; Hervella, L.; Prieto, P.; Artal, P. The accommodative ciliary muscle function is preserved in older humans. Sci. Rep. 2016, 6, 25551. [Google Scholar] [CrossRef] [Green Version]
- Fisher, R.F. The force of contraction of the human ciliary muscle during accommodation. J. Physiol. 1977, 270, 51–74. [Google Scholar] [CrossRef]
- Gislen, A.; Dacke, M.; Kroger, R.H.; Abrahamsson, M.; Nilsson, D.E.; Warrant, E.J. Superior underwater vision in a human population of sea gypsies. Curr. Biol. 2003, 13, 833–836. [Google Scholar] [CrossRef] [Green Version]
- Gislen, A.; Warrant, E.J.; Dacke, M.; Kroger, R.H. Visual training improves underwater vision in children. Vis. Res. 2006, 46, 3443–3450. [Google Scholar] [CrossRef] [PubMed]
- Weng, C.C.; Hwang, D.K.; Liu, C.J. Repeatability of the amplitude of accommodation measured by a new generation autorefractor. PLoS ONE 2020, 15, e0224733. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jaiswal, S.; Asper, L.; Long, J.; Lee, A.; Harrison, K.; Golebiowski, B. Ocular and visual discomfort associated with smartphones, tablets and computers: What we do and do not know. Clin. Exp. Optom. 2019, 102, 463–477. [Google Scholar] [CrossRef] [Green Version]
- Yeow, P.T.; Taylor, S.P. Effects of long-term visual display terminal usage on visual functions. Optom. Vis. Sci. 1991, 68, 930–941. [Google Scholar] [CrossRef]
All | Young Group (<45 Years Old) | Older Group (≥45 Years Old) | p-Value (Young vs. Old) | |
---|---|---|---|---|
Number of eyes | 95 | 70 | 25 | - |
Age (range) | 22−62 | 22−44 | 45–62 | <0.01 * |
Sex (male/female) | 33/62 | 30/40 | 3/22 | <0.01 *** |
Subjective refraction (D) | −2.85 ± 2.53 | −2.88 ± 2.33 | −2.77 ± 3.10 | 0.333 ** |
AA (D) | 3.19 ± 2.27 | 4.04 ± 2.00 | 0.74 ± 0.50 | <0.01 ** |
CDVA | −0.10 ± 0.05 | −0.11 ± 0.06 | −0.10 ± 0.04 | 0.359 * |
Axial length (mm) | 24.53 ± 2.65 | 24.74 ± 1.23 | 23.94 ± 4.64 | 0.745 ** |
Crystalline lens thickness (mm) | 3.93 ± 0.37 | 3.81 ± 0.31 | 4.27 ± 0.29 | <0.01 * |
Maximum pupillary diameter (mm) | 5.65 ± 0.91 | 5.94 ± 0.74 | 4.93 ± 0.81 | <0.01 * |
Minimum pupillary diameter (mm) | 4.58 ± 1.02 | 4.76 ± 1.01 | 4.06 ± 0.92 | <0.01 * |
DPD (mm) | 1.07 ± 0.55 | 1.17 ± 0.58 | 0.87 ± 0.59 | <0.01 ** |
Unstandardized | Standardized | 95% CI | |||||
---|---|---|---|---|---|---|---|
B | SE | Beta | t | p | Lower | Upper | |
(Constant) | 7.345 | 2.113 | 3.476 | 0.001 | 3.145 | 11.546 | |
Age | −0.126 | 0.021 | −0.543 | −6.046 | <0.01 ** | −0.168 | −0.085 |
Sex | 0.277 | 0.291 | 0.058 | 0.951 | 0.344 | −0.302 | 0.856 |
Axial length | −0.058 | 0.052 | −0.065 | −1.116 | 0.268 | −0.163 | 0.046 |
Crystalline lens thickness | 0.049 | 0.049 | 0.056 | 0.990 | 0.325 | −0.049 | 0.147 |
Subjective refraction | −0.672 | 0.536 | −0.109 | −1.255 | 0.213 | −1.738 | 0.393 |
DPD | 1.513 | 0.257 | 0.365 | 5.885 | <0.01 ** | 1.002 | 2.024 |
Source | Type III Sum of Squares | df | Mean Square | F | p |
---|---|---|---|---|---|
Corrected model | 344.983 | 3 | 114.994 | 75.098 | 0.000 |
Intercept | 43.455 | 1 | 43.455 | 28.379 | 0.000 |
Age | 26.344 | 1 | 26.344 | 17.204 | 0.000 |
DPD | 7.691 | 1 | 7.691 | 5.023 | 0.027 |
Age × DPD | 0.682 | 1 | 0.682 | 0.446 | 0.506 |
Error | 139.344 | 86 | 1.531 | ||
Total | 1440.115 | 94 |
Unstandardized | Standardized | 95% CI | |||||
---|---|---|---|---|---|---|---|
B | SE | Beta | t | p | Lower | Upper | |
(Constant) | 5.581 | 3.833 | 1.456 | 0.150 | −2.080 | 13.242 | |
Age | −0.120 | 0.032 | −0.395 | −3.729 | <0.01 ** | −0.185 | −0.056 |
Sex | 0.596 | 0.349 | 0.148 | 1.709 | 0.092 | −0.101 | 1.293 |
Axial length | −0.090 | 0.072 | −0.104 | −1.246 | 0.217 | −0.233 | 0.054 |
Crystalline lens thickness | 0.174 | 0.137 | 0.106 | 1.271 | 0.209 | −0.100 | 0.448 |
Subjective refraction | −1.129 | 0.659 | −0.176 | −1.714 | 0.091 | −2.446 | 0.187 |
DPD | 1.513 | 0.288 | 0.438 | 5.246 | <0.01 ** | 0.937 | 2.090 |
Source | Type III Sum of Squares | df | Mean Square | F | p |
---|---|---|---|---|---|
Corrected model | 150.366a | 3 | 50.122 | 26.212 | 0.000 |
Intercept | 23.866 | 1 | 23.866 | 12.481 | 0.001 |
Age | 12.427 | 1 | 12.427 | 6.499 | 0.013 |
DPD | 1.676 | 1 | 1.676 | 0.876 | 0.353 |
Age × DPD | 0.054 | 1 | 0.054 | 0.028 | 0.867 |
Error | 126.203 | 66 | 1.912 | ||
Total | 1420.617 | 70 | |||
Corrected total | 276.570 | 69 |
Unstandardized | Standardized | 95% CI | |||||
---|---|---|---|---|---|---|---|
B | SE | Beta | t | p | Lower | Upper | |
(Constant) | 3.027 | 1.628 | 1.859 | 0.079 | −0.394 | 6.447 | |
Age | −0.001 | 0.021 | −0.013 | −0.069 | 0.946 | −0.046 | 0.043 |
Sex | −0.483 | 0.265 | −0.319 | −1.823 | 0.085 | −1.040 | 0.074 |
Axial length | −0.025 | 0.029 | −0.155 | −0.873 | 0.394 | −0.087 | 0.036 |
Crystalline lens thickness | −0.008 | 0.017 | −0.073 | −0.461 | 0.650 | −0.044 | 0.028 |
Subjective refraction | −0.581 | 0.380 | −0.330 | −1.526 | 0.144 | −1.380 | 0.219 |
DPD | 1.043 | 0.317 | 0.589 | 3.285 | < 0.01 ** | 0.376 | 1.710 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kubota, M.; Kubota, S.; Kobashi, H.; Ayaki, M.; Negishi, K.; Tsubota, K. Difference in Pupillary Diameter as an Important Factor for Evaluating Amplitude of Accommodation: A Prospective Observational Study. J. Clin. Med. 2020, 9, 2678. https://doi.org/10.3390/jcm9082678
Kubota M, Kubota S, Kobashi H, Ayaki M, Negishi K, Tsubota K. Difference in Pupillary Diameter as an Important Factor for Evaluating Amplitude of Accommodation: A Prospective Observational Study. Journal of Clinical Medicine. 2020; 9(8):2678. https://doi.org/10.3390/jcm9082678
Chicago/Turabian StyleKubota, Miyuki, Shunsuke Kubota, Hidenaga Kobashi, Masahiko Ayaki, Kazuno Negishi, and Kazuo Tsubota. 2020. "Difference in Pupillary Diameter as an Important Factor for Evaluating Amplitude of Accommodation: A Prospective Observational Study" Journal of Clinical Medicine 9, no. 8: 2678. https://doi.org/10.3390/jcm9082678
APA StyleKubota, M., Kubota, S., Kobashi, H., Ayaki, M., Negishi, K., & Tsubota, K. (2020). Difference in Pupillary Diameter as an Important Factor for Evaluating Amplitude of Accommodation: A Prospective Observational Study. Journal of Clinical Medicine, 9(8), 2678. https://doi.org/10.3390/jcm9082678