Implication of Urochloa spp. Intercropping and Conservation Agriculture on Soil Microbiological Quality and Yield of Tahiti Acid Lime in Long Term Orchard Experiment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Conditions
2.2. Evaluations
2.2.1. Biomass of Urochloa Species
2.2.2. Soil Microbiological Analyses
2.2.3. Mycorrhizal Colonization (AMF)
2.2.4. Tahiti Acid Lime Yield (Yield)
2.3. Statistical Analyses
3. Results
3.1. Biomass Yield and Deposition
3.2. Soil Microbial Activity and Abundance
3.3. Mycorrhizal Colonization (AMF)
3.4. Tahiti Acid Lime Fruit Yield (Yield)
3.5. Correlation between the Microbial Community and Environmental Variables
4. Discussion
4.1. Biomass Yield and Deposition
4.2. Soil Microbial Activity
4.3. Mycorrhizal Colonization (AMF)
4.4. Correlation between the Microbial Community and Environmental Variables
4.5. Soil Microbiological Quality
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Vezzani, F.M.; Mielniczuk, J. Uma visão sobre qualidade do solo. Rev. Bras. Cienc. do Solo 2009, 33, 743–755. [Google Scholar] [CrossRef] [Green Version]
- Silva, E.E.d.; Azevedo, P.H.S.; De-Polli, H. Determinação do Carbono da Biomassa Microbiana do Solo (BMS-C); Ambrapa Abrobiologia, Comunicado Técnico, 98: Seropédica, Brazil, 2007; p. 6. [Google Scholar]
- Melo, V.F.; Evald, A.; Silva, D.T.d.; Roberto, P.R.R. Qualidade química e biológica do solo em diferentes sistemas de uso em ambiente de savana. Agro@mbiente On-Line 2017, 11, 101–110. [Google Scholar] [CrossRef]
- Baretta, D.; Santos, J.C.P.; Segat, J.C.; Geremia, E.V.; Oliveira Filho, L.C.I.d.; Alves, M.V. Fauna Edáfica e Qualidade do Solo. In Tópicos em Ciência do Solo, 7th ed.; Klauberg-Flho, O., Mafra, Á.L., Gatiboni, L.C., Eds.; Sociedade Brasileira de Ciência do Solo: Viçosa, Brazil, 2011; pp. 119–170. [Google Scholar]
- Heuer, H.; Krsek, M.; Baker, P.; Smalla, K.; Wellington, E.M.H. Analysis of actinomycete communities by specific amplification of genes encoding 16S rRNA and gel electrophoretic separation in denaturing gels. Appl. Environ. Microbiol. 1997, 8, 3233–3241. [Google Scholar] [CrossRef] [Green Version]
- Cotta, S.R.; Franco Dias, A.C.; Marriel, I.E.; Andreote, F.D.; Seldin, L.; van Elsas, J.D. Different effects of transgenic maize and nontransgenic maize on nitrogen-transforming archaea and bacteria in tropical soils. Appl. Environ. Microbiol. 2014, 80, 6437–6445. [Google Scholar] [CrossRef] [Green Version]
- Smith, J.L.; Paul, E.A. The significance of soil microbial biomass estimations. In Soil Biochemistry; Bollag, J., Stotzky, D.G., Eds.; Taylor & Francis Inc.: Oxfordshire, UK, 1990; volume 6, pp. 357–396. [Google Scholar]
- van Leeuwen, J.P.; Djukic, I.; Bloem, J.; Lehtinen, T.; Hemerik, L.; de Ruiter, P.C.; Lair, G.J. Effects of land use on soil microbial biomass, activity and community structure at different soil depths in the Danube floodplain. Eur. J. Soil Biol. 2017, 79, 14–20. [Google Scholar] [CrossRef]
- Mendes, I.C.; Fernandes, M.F.; Chaer, G.M.; Reis Junior, F.B.d. Biological functioning of Brazilian Cerrado soils under different vegetation types. Plant Soil 2012, 359, 183–195. [Google Scholar] [CrossRef]
- Silva, J.M.d.; Cristo, C.C.N.d.; Montaldo, Y.C.; Silva, C.d.S.; Sena, E.d.O.A.; Vigoderis, R.B.; Barroso, G.; Brito Neto, J.S.; Oliveira, J.U.L.d.; Santos, T.M.C.d. Microbial activity and population of a red-yellow podzolic soil under organic and conventional cultivation systems of Citrus sinensis (L.) Osbeck. Rev. Ciências Agrárias 2019, 42, 41–50. [Google Scholar] [CrossRef]
- Ferreira, E.P.d.B.; Stone, L.F.; Martin-Didonet, C.C.G. Population and microbial activity of the soil under an agro-ecological production system. Rev. Cienc. Agron. 2017, 48, 22–31. [Google Scholar] [CrossRef] [Green Version]
- Morugán-Coronado, A.; García-Orenes, F.; McMillan, M.; Pereg, L. The effect of moisture on soil microbial properties and nitrogen cyclers in Mediterranean sweet orange orchards under organic and inorganic fertilization. Sci. Total Environ. 2019, 655, 158–167. [Google Scholar] [CrossRef]
- Martinelli, R.; Monquero, P.A.; Fontanetti, A.; Conceição, P.M.; Azevedo, F.A. Ecological mowing: An option for sustainable weed management in young citrus orchards. Weed Technol. 2017, 31, 260–268. [Google Scholar] [CrossRef]
- Azevedo, F.A.d.; Almeida, R.F.d.; Martinelli, R.; Próspero, A.G.; Licerre, R.; Conceição, P.M.d.; Arantes, A.C.C.; Dovis, V.L.; Boaretto, R.M.; Mattos, D. No-Tillage and High-Density Planting for Tahiti Acid Lime Grafted Onto Flying Dragon Trifoliate Orange. Front. Sustain. Food Syst. 2020, 4, 1–14. [Google Scholar] [CrossRef]
- Pochron, S.; Simon, L.; Mirza, A.; Littleton, A.; Sahebzada, F.; Yudell, M. Glyphosate but not Roundup® harms earthworms (Eisenia fetida). Chemosphere 2020, 241, 1–9. [Google Scholar] [CrossRef]
- Avanzi, M.; Matsumoto, L.; Albino, U.; Rampazo, L.; Barazetti, A.; Santos, I.; Liuti, G.; Mattos, J.; Dealis, M.; Niekawa, E.; et al. Glyphosate impact on C and N microbial functional groups in soybean rhizosphere. Agron. Sci. Biotechnol. 2019, 5, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Hoffmann, R.B.; Eunice, É.; Moreira, A.; Simoneti, G.; Hoffmann, S.; Ferreira De Araújo, N.S. Efeito do manejo do solo no carbono da biomassa microbiana Effect of soil management on microbial biomass carbon. Braz. J. Anim. Environ. Res. 2018, 1, 168–178. [Google Scholar]
- Oliveira, F.É.d.R.; Oliveira, J.d.M.; Xavier, F.A.d.S. Changes in soil organic carbon fractions in response to cover crops in an orange orchard. Rev. Bras. Cienc. do Solo 2016, 40, 1–12. [Google Scholar] [CrossRef] [Green Version]
- FAO Conservation agriculture. Indian J. Agric. Econ. 2016, 66, 67–69. [CrossRef]
- FAOSTAT-Statitical Food and Agriculture Organization: Statical Database. Available online: http://www.fao.org/faostat/en/#data/QC (accessed on 10 January 2020).
- INCRA-Instituto Nacional de Colonização e Reforma Agrária. Tabela com Modulo Fiscal dos Municípios. Available online: http://www.incra.gov.br/pt/modulo-fiscal.html?id=235 (accessed on 26 May 2019).
- Azevedo, F.A.d.; Rossetto, M.P.; Schinor, E.H.; Martelli, I.B.; Pacheco, C.d.A. Influência do manejo da entrelinha do pomar na produtividade da laranjeira-‘pera’. Rev. Bras. Frutic. 2012, 34, 134–142. [Google Scholar] [CrossRef] [Green Version]
- Moura, J.A.; Gonzaga, M.I.S.; Dos Anjos, J.L.; Rodrigues, A.C.P.; Da Silva Leão, T.D.; Santos, L.C.O. Respiração basal e relação de estratificação em solo cultivado com citros e tratado com resíduos orgânicos no estado de Sergipe. Semin. Agrar. 2015, 36, 731–746. [Google Scholar] [CrossRef] [Green Version]
- Alvares, C.A.; Stape, J.L.; Sentelhas, P.C.; Gonçalves, J.L.d.M.; Sparovek, G. Köppen’s climate classification map for Brazil. Meteorol. Z. 2013, 22, 711–728. [Google Scholar] [CrossRef]
- Empresa Brasileira De Pesquisa Agropecuária-Embrapa. Sistema Brasileiro de Classificação de Solos, 3rd ed.; Centro Nacional de Pesquisa de Solos: Brasília, Brazil, 2013; p. 353. [Google Scholar]
- Food and Agriculture Organization of the United States-FAO. World Reference Base For Soil Resources: International Soil Classification System for Naming Soils and Creating Legends for Soil Maps; IUSS/ISRIC/FAO: Rome, Italy, 2014; p. 203.
- Grisi, B.M. Método químico de medição da respiração edáfica: Alguns aspectos técnicos. Ciênc. Cult. 1978, 30, 82–88. [Google Scholar]
- Jenkinson, D.S.; Powlson, D.S. The effects of biocidal treatments on metabolism in soil-V: A method for measuring soil biomass. Soil Biol. Biochem. 1976, 8, 209–213. [Google Scholar] [CrossRef]
- Alef, K. Soil respiration. In Methods in Applied Soil Mcrobiology and Biochemistry; Alef, K., Nannipieri, P., Eds.; Academic Press: London, UK, 1995; pp. 214–219. [Google Scholar]
- Vance, E.D.; Brookes, P.C.; Jenkinson, D.S. An extraction method for measuring soil microbial biomass C. Soil Biol. Biochem. 1987, 19, 703–707. [Google Scholar] [CrossRef]
- Schütte, U.M.E.; Abdo, Z.; Bent, S.J.; Williams, C.J.; Schneider, G.M.; Solheim, B.; Forney, L.J. Bacterial succession in a glacier foreland of the High Arctic. ISME J. 2009, 3, 1258–1268. [Google Scholar] [CrossRef] [Green Version]
- Gardes, M.; Bruns, T.D. ITS primers with enhanced specificity for basidiomycetes–application to the identification of mycprrhizae and rusts. Mol. Ecol. 1993, 2, 113–118. [Google Scholar] [CrossRef]
- White, T.J.; Bruns, T.; Lee, S.; Taylor, J.W. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In PCR Protocols: A Guide to Methods and Applications; Innis, M.A., Gelfand, D.H., Sninsky, J.J., Whi, T.J., Eds.; Academic Press: Orlando, FL, USA, 1990; pp. 315–322. [Google Scholar]
- Gumiere, T.; Durrer, A.; Bohannan, B.J.M.; Andreote, F.D. Biogeographical patterns in fungal communities from soils cultivated with sugarcane. J. Biogeogr. 2016, 43, 2016–2026. [Google Scholar] [CrossRef]
- Ter Braak, C.J.F.; Smilauer, P. CANOCO Reference manual and CanoDraw for Windows User’s Guide: Software for Canonical Community Ordination (version 4.5); Microcomputer Power; Cambridge University Press: Cambridge, UK, 2002. [Google Scholar]
- Muyzer, G.; De Waal, E.C.; Uitterlinden, A.G. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl. Environ. Microbiol. 1993, 59, 695–700. [Google Scholar] [CrossRef] [Green Version]
- Poly, F.; Monrozier, L.J.; Bally, R. Improvement in the RFLP procedure for studying the diversity of nifH genes in communities of nitrogen fixers in soil. Res. Microbiol. 2001, 152, 95–103. [Google Scholar] [CrossRef]
- Sakurai, M.; Wasaki, J.; Tomizawa, Y.; Shinano, T.; Osaki, M. Analysis of bacterial communities on alkaline phosphatase genes in soil supplied with organic matter. Soil Sci. Plant Nutr. 2008, 54, 62–71. [Google Scholar] [CrossRef] [Green Version]
- Giovannetti, M.; Mosse, B. An evaluation of techniques for measuring vesicular arbuscular mycorrhizal infection in roots. New Phytol. 1980, 84, 489–500. [Google Scholar] [CrossRef]
- Silva, F.A.S.; Azevedo, C.A.V. The Assistat Software Version 7.7 and its use in the analysis 681 of experimental data. Afr. J. Agric. 2016, 39, 3733–3740. [Google Scholar] [CrossRef] [Green Version]
- Damasceno, L.A.; Carvalho, J.E.B.; Xavier, F.A.; Santos, A.F.d.; Gonçalves, G.S.; Lima, A.F.L.d.; Brito, W.B.M.; Azevedo, C.L.L.; Silva, J.F.d. Weed Suppression by Cover Plants in the Amazonian. J. Agric. Sci. 2019, 11, 148. [Google Scholar] [CrossRef] [Green Version]
- Balota, E.L.; Auler, P.A.M. Soil microbial biomass under different management and tillage systems of permanent intercropped cover species in an orange orchard. Rev. Bras. Ciência do Solo 2011, 35, 1873–1883. [Google Scholar] [CrossRef] [Green Version]
- Nunes, U.R.; Andrade Júnior, V.C.; Silva, E.d.B.; Santos, N.F.; Costa, H.A.O.; Ferreira, C.A. Produção de palhada de plantas de cobertura e rendimento do feijão em plantio direto. Pesq. Agrop. Bras. 2006, 41, 943–948. [Google Scholar] [CrossRef]
- Bieluczyk, W.; Piccolo, M.d.C.; Pereira, M.G.; Moraes, M.T.d.; Soltangheisi, A.; Bernardi, A.C.d.C.; Pezzopane, J.R.M.; Oliveira, P.P.A.; Moreira, M.Z.; Camargo, P.B.d.; et al. Integrated farming systems influence soil organic matter dynamics in southeastern Brazil. Geoderma 2020, 371, 1–14. [Google Scholar] [CrossRef]
- Lal, R. Challenges and opportunities in soil organic matter research. Eur. J. Soil Sci. 2009, 60, 158–169. [Google Scholar] [CrossRef]
- Guimarães, N.d.F.; Gallo, A.d.S.; Fontanetti, A.; Meneghin, S.P.; de Souza, M.D.B.; Morinigo, K.P.G.; da Silva, R.F. Biomassa e atividade microbiana do solo em diferentes sistemas de cultivo do cafeeiro. Rev. Ciências Agrárias 2017, 40, 34–44. [Google Scholar] [CrossRef]
- Montaldo, J.C.; Santos, G.d.B.L.; Montaldo, A.C.; Santos, T.M.C.d.; Barroso, G.S.P.; Oliveira, J.U.L.d.; Silva, J.M.d. Basal respiration and microbial population of a red-yellow latosol under different harvesting systems of sugarcane. Glob. Sci. Technol. 2018, 11, 9–16. [Google Scholar]
- Kepler, R.M.; Epp Schmidt, D.J.; Yarwood, S.A.; Cavigelli, M.A.; Reddy, K.N.; Duke, S.O.; Bradley, C.A.; Williams, M.M.; Buyer, J.S.; Maul, J.E. Soil Microbial Communities in Diverse Agroecosystems Exposed to the Herbicide Glyphosate. Appl. Environ. Microbiol. 2020, 86, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Ascari, J.P.; Araújo, D.V.d.; Mendes, I.R.N.; Foschiera, M.V.; Prieto, R.S.; Barboza, W.H.M.; Krause, W.; Matsumoto, L.S. Quality of Soil in the function of biological fertilization and plant covering. Afr. J. Agric. Res. 2018, 13, 733–741. [Google Scholar] [CrossRef] [Green Version]
- Muñoz, K.; Buchmann, C.; Meyer, M.; Schmidt-Heydt, M.; Steinmetz, Z.; Diehl, D.; Thiele-Bruhn, S.; Schaumann, G.E. Physicochemical and microbial soil quality indicators as affected by the agricultural management system in strawberry cultivation using straw or black polyethylene mulching. Appl. Soil Ecol. 2017, 113, 36–44. [Google Scholar] [CrossRef]
- Tan, H.; Barret, M.; Mooij, M.J.; Rice, O.; Morrissey, J.P.; Dobson, A.; Griffiths, B.; O’Gara, F. Long-term phosphorus fertilisation increased the diversity of the total bacterial community and the phoD phosphorus mineraliser group in pasture soils. Biol. Fertil. Soils 2013, 49, 661–672. [Google Scholar] [CrossRef] [Green Version]
- Pérez-Piqueres, A.; Albiach, R.; Domínguez, A.; Canet, R. Effect of soil preparation techniques on the biochemical properties and microbial communities of a citrus orchard after replanting and conversion into organic management. Appl. Soil Ecol. 2017, 119, 8–17. [Google Scholar] [CrossRef]
- Vollú, R.E.; Cotta, S.R.; Jurelevicius, D.; Leite, D.C.d.A.; Parente, C.E.T.; Malm, O.; Martins, D.C.; Resende, Á.V.; Marriel, I.E.; Seldin, L. Response of the bacterial communities associated with maize rhizosphere to poultry litter as an organomineral fertilizer. Front. Environ. Sci. 2018, 6, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Hartmann, M.; Frey, B.; Mayer, J.; Mader, P.; Widmer, F. Distinct soil microbial diversity under long-term organic and conventional farming. ISME J. 2015, 9, 1177–1194. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nannipieri, P.; Ascher, J.; Ceccherini, M.T.; Landi, L.; Pietramellara, G.; Renella, G. Microbial diversity and soil functions. Eur. J. Soil Sci. 2003, 54, 655–670. [Google Scholar] [CrossRef]
- Khan, K.S.; Mack, R.; Castillo, X.; Kaiser, M.; Joergensen, R.G. Microbial biomass, fungal and bacterial residues, and their relationships to the soil organic matter C/N/P/S ratios. Geoderma 2016, 271, 115–123. [Google Scholar] [CrossRef]
- Cui, H.; Zhou, Y.; Gu, Z.; Zhu, H.; Fu, S.; Yao, Q. The combined effects of cover crops and symbiotic microbes on phosphatase gene and organic phosphorus hydrolysis in subtropical orchard soils. Soil Biol. Biochem. 2015, 82, 119–126. [Google Scholar] [CrossRef]
- Wang, P.; Zhang, J.J.; Shu, B.; Xia, R.X. Arbuscular mycorrhizal fungi associated with citrus orchards under different types of soil management, Southern China. Plant Soil Environ. 2012, 58, 302–308. [Google Scholar] [CrossRef] [Green Version]
- Pereg, L.; Morugán-Coronado, A.; McMillan, M.; García-Orenes, F. Restoration of nitrogen cycling community in grapevine soil under a decade of organic fertilization revealed by N-cycling gene abundance. Soil Tillage Res. 2018, 179, 11–19. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arantes, A.C.C.; Cotta, S.R.; Conceição, P.M.d.; Meneghin, S.P.; Martinelli, R.; Próspero, A.G.; Boaretto, R.M.; Andreote, F.D.; Mattos-Jr., D.; Azevedo, F.A.d. Implication of Urochloa spp. Intercropping and Conservation Agriculture on Soil Microbiological Quality and Yield of Tahiti Acid Lime in Long Term Orchard Experiment. Agriculture 2020, 10, 491. https://doi.org/10.3390/agriculture10110491
Arantes ACC, Cotta SR, Conceição PMd, Meneghin SP, Martinelli R, Próspero AG, Boaretto RM, Andreote FD, Mattos-Jr. D, Azevedo FAd. Implication of Urochloa spp. Intercropping and Conservation Agriculture on Soil Microbiological Quality and Yield of Tahiti Acid Lime in Long Term Orchard Experiment. Agriculture. 2020; 10(11):491. https://doi.org/10.3390/agriculture10110491
Chicago/Turabian StyleArantes, Ana Carolina Costa, Simone Raposo Cotta, Patrícia Marluci da Conceição, Silvana Perissatto Meneghin, Rodrigo Martinelli, Alexandre Gonçalves Próspero, Rodrigo Marcelli Boaretto, Fernando Dini Andreote, Dirceu Mattos-Jr., and Fernando Alves de Azevedo. 2020. "Implication of Urochloa spp. Intercropping and Conservation Agriculture on Soil Microbiological Quality and Yield of Tahiti Acid Lime in Long Term Orchard Experiment" Agriculture 10, no. 11: 491. https://doi.org/10.3390/agriculture10110491
APA StyleArantes, A. C. C., Cotta, S. R., Conceição, P. M. d., Meneghin, S. P., Martinelli, R., Próspero, A. G., Boaretto, R. M., Andreote, F. D., Mattos-Jr., D., & Azevedo, F. A. d. (2020). Implication of Urochloa spp. Intercropping and Conservation Agriculture on Soil Microbiological Quality and Yield of Tahiti Acid Lime in Long Term Orchard Experiment. Agriculture, 10(11), 491. https://doi.org/10.3390/agriculture10110491