Physicochemical Quality Changes in Tomatoes during Delayed Cooling and Storage in a Controlled Chamber
Abstract
:1. Introduction
2. Materials and Methods
2.1. Tomato Samples and Delayed Cooling Treatments
2.2. Storage Conditions
2.3. Experimental Design and Statistical Analysis
2.4. Quality Parameters
2.4.1. Weight Loss
2.4.2. Firmness
2.4.3. Total Soluble Solids (TSS)
2.4.4. Hue Angle (h°)
3. Results and Discussion
3.1. Properties of the Tomato Cultivars at Harvest
3.2. Weight Loss
3.3. Firmness
3.4. Total Soluble Solids (TSS)
3.5. Hue Angle (h°)
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Pék, Z.; Szuvandzsiev, P.; Nemenyi, A.; Helyes, L.; Lugasi, A. The effect of natural light on changes in antioxidant content and color parameters of vine-ripened tomato (Solanum lycopersicum L.) fruits. HortScience 2011, 46, 583–585. [Google Scholar] [CrossRef]
- Dorais, M.; Ehret, D.L.; Papadopoulos, A.P. Tomato (Solanum lycopersicum) health components: From the seed to the consumer. Phytochem. Rev. 2008, 7, 231–250. [Google Scholar] [CrossRef]
- Pék, Z.; Helyes, L.; Lugasi, A. Color changes and antioxidant content of vine and post-harvest ripened tomato fruits. HortScience 2010, 45, 466–468. [Google Scholar] [CrossRef]
- Martí, R.; Roselló, S.; Cebolla-Cornejo, J. Tomato as a source of carotenoids and polyphenols targeted to cancer prevention. Cancers 2016, 8, 58. [Google Scholar] [CrossRef] [PubMed]
- Perveen, R.; Suleria, H.A.R.; Anjum, F.M.; Butt, M.S.; Pasha, I.; Ahmad, S. Tomato (Solanum lycopersicum) carotenoids and lycopenes chemistry; metabolism, absorption, nutrition, and allied health claims-A comprehensive review. Crit. Rev. Food Sci. Nutr. 2015, 55, 919–929. [Google Scholar] [CrossRef]
- Helyes, L.; Pék, Z.; Lugasi, A. Tomato fruit quality and content depend on stage of maturity. HortScience 2006, 41, 1400–1401. [Google Scholar] [CrossRef] [Green Version]
- Anza, M.; Riga, P.; Garbisu, C. Effects of variety and growth season on the organoleptic and nutritional quality of hydroponically grown tomato. J. Food Qual. 2006, 29, 16–37. [Google Scholar] [CrossRef]
- Tilahun, S.; Park, D.S.; Taye, A.M.; Jeong, C.S. Effect of ripening conditions on the physicochemical and antioxidant properties of tomato (Lycopersicon esculentum Mill.). Food Sci. Biotechnol. 2017, 26, 473–479. [Google Scholar] [CrossRef]
- Raheem, D.; Shishaev, M.; Dikovitsky, V. Food system digitalization as a means to promote food and nutrition security in the Barents region. Agriculture 2019, 9, 168. [Google Scholar] [CrossRef] [Green Version]
- Ben-Arie, R.; Lurie, S. Prolongation of fruit life after harvest. In Hand Book of Fruit Set and Development; Monselise, S.P., Ed.; CRC Press: Boca Raton, FL, USA, 1986; pp. 493–520. [Google Scholar]
- Tolesa, G.N.; Workneh, T.S. Influence of storage environment, maturity stage and pre-storage disinfection treatments on tomato fruit quality during winter in KwaZulu-Natal, South Africa. J. Food Sci. Technol. 2017, 54, 3230–3242. [Google Scholar] [CrossRef]
- Yahia, E.M. Postharvest physiology and biochemistry of fruits and vegetables. In Postharvest Physiology and Biochemistry of Fruits and Vegetables, 1st ed.; Yahia, E.M., Carrillo-López, A., Eds.; Woodhead Publishing: Duxford, UK, 2019; pp. 1–17. [Google Scholar]
- Raison, J.K.; Lyons, J.M. Chilling injury: A plea for uniform terminology. Plant. Cell Environ. 1986, 9, 685–686. [Google Scholar] [CrossRef]
- Cantwell, M. Properties and Recommended Conditions for the Long-term Storage of Fresh Fruits and Vegetables. University of California: Davis, CA, USA, 2001. [Google Scholar]
- Kitinoja, L.; Kader, A.A. Small-Scale Postharvest Handling Practices: A Manual for Horticultural Crops, 5th ed.; Postharvest Horticulture Series No. 8E; University of California, Postharvest Technology Research and Information Center: Davis, CA, USA, 2015. [Google Scholar]
- Kabir, M.S.N.; Chowdhury, M.; Lee, W.H.; Hwang, Y.S.; Cho, S.I.; Chung, S.O. Influence of delayed cooling on quality of bell pepper (Capsicum annuum L.) stored in a controlled chamber. Emir. J. Food Agric. 2019, 31, 271–280. [Google Scholar]
- Arah, I.K.; Amaglo, H.; Kumah, E.K.; Ofori, H. Preharvest and postharvest factors affecting the quality and shelf life of harvested tomatoes: A mini review. Int. J. Agron. 2015, 2015, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Qin, J.; Kim, M.S.; Chao, K.; Cho, B.K. Raman chemical imaging technology for food and agricultural applications. J. Biosyst. Eng. 2017, 42, 170–189. [Google Scholar]
- Seo, Y.; Park, J.R.; Park, H.M. Evaluation of nonthermal plasma treatment by measurement of stored citrus properties. J. Biosyst. Eng. 2018, 43, 401–409. [Google Scholar]
- El-Ramady, H.R.; Domokos-Szabolcsy, É.; Abdalla, N.A.; Taha, H.S.; Fári, M. Postharvest management of fruits and vegetables storage. In Sustainable Agriculture Reviews 15; Lichtfouse, E., Ed.; Springer: Cham, Switzerland, 2015; pp. 121–152. [Google Scholar]
- Kader, A.A.; Barrett, D.M. Classification, composition of fruits, and postharvest maintenance of quality. In Processing Fruits, 2nd ed.; Barrett, D.M., Somogyi, L., Ramaswamy, H., Eds.; CRC Press: London, UK, 2005; pp. 3–22. [Google Scholar]
- Nunes, M.C.N.; Nicometo, M.; Emond, J.P.; Melis, R.B.; Uysal, I. Improvement in fresh fruit and vegetable logistics quality: Berry logistics field studies. Phil. Trans. R. Soc. A. 2014, 372, 20130307. [Google Scholar] [CrossRef] [Green Version]
- Thompson, J.; Cantwell, M.; Arpaia, M.L.; Kader, A.; Crisosto, C.; Smilanick, J. Effect of cooling delays on fruits and vegetable quality. Perish. Handl. Q. 2001, 105, 2–5. [Google Scholar]
- Barrett, D.M.; Beaulieu, J.C.; Shewfelt, R. Color, flavor, texture, and nutritional quality of fresh-cut fruits and vegetables: Desirable levels, instrumental and sensory measurement, and the effects of processing. Crit. Rev. Food Sci. Nutr. 2010, 50, 369–389. [Google Scholar] [CrossRef]
- Rahman, A.; Park, E.; Bae, H.; Cho, B.K. Hyperspectral imaging technique to evaluate the firmness and the sweetness index of tomatoes. Korean J. Agric. Sci. 2018, 45, 823–837. [Google Scholar]
- Tomala, K.; Grzęda, M.; Guzek, D.; Głąbska, D.; Gutkowska, K. The effects of preharvest 1-Methylcyclopropene (1-MCP) treatment on the fruit quality parameters of cold-stored ‘Szampion’ cultivar apples. Agriculture 2020, 10, 80. [Google Scholar] [CrossRef] [Green Version]
- Park, H.J. Development of advanced edible coatings for fruits. Trends Food Sci. Technol. 1999, 10, 254–260. [Google Scholar] [CrossRef]
- Kim, J.H.; Gu, J.R.; Kim, G.; Choi, S.; Yang, J.Y. Effect of storage temperature on the quality of tomato. Korean J. Food Nutr. 2010, 23, 428–433. [Google Scholar]
- Tilahun, S.; Park, D.S.; Taye, A.M.; Jeong, C.S. Effects of storage duration on physicochemical and antioxidant properties of tomato (Lycopersicon esculentum Mill.). Hortic. Sci. Technol. 2017, 35, 88–97. [Google Scholar]
- Taye, A.M.; Tilahun, S.; Park, D.S.; Seo, M.H.; Jeong, C.S. Effects of continuous application of CO2 on fruit quality attributes and shelf life during cold storage in cherry tomato. Hortic. Sci. Technol. 2017, 35, 300–313. [Google Scholar]
- Pila, N.; Gol, N.B.; Rao, T.V.R. Effect of postharvest treatments on physicochemical characteristics and storage life of tomato (Lycopersicon esculentum Mill.) fruits during storage. Am. Eurasian J. Agric. Environ. Sci. 2010, 9, 470–479. [Google Scholar]
- Choi, G.W.; Kim, B.; Ju, H.; Cho, S.; Seo, E.; Kim, J.; Park, J.; Hammond, J.; Lim, H.S. Dual infections of Tomato mosaic virus (ToMV) and Tomato yellow leaf curl virus (TYLCV), or Tomato mosaic virus (ToMV) and Tomato chlorosis virus (ToCV), detected in tomato fields located in Chungcheongnam-do in 2017. Korean J. Agric. Sci. 2018, 45, 38–42. [Google Scholar]
- Topuz, A.; Feng, H.; Kushad, M. The effect of drying method and storage on color characteristics of paprika. LWT- Food Sci Technol. 2009, 42, 1667–1673. [Google Scholar] [CrossRef]
- Madani, B.; Mirshekari, A.; Imahori, Y. Physiological responses to stress. In Postharvest Physiology and Biochemistry of Fruits and Vegetables; Yahia, E.M., Carrillo-López, A., Eds.; Woodhead Publishing: Cambridge, MA, USA, 2019; pp. 405–423. [Google Scholar]
- Rodov, V.; Ben-Yehoshua, S.; Fierman, T.; Fang, D. Modified-humidity packaging reduces decay of harvested red bell pepper fruit. HortScience 1995, 30, 299–302. [Google Scholar] [CrossRef] [Green Version]
- Toivonen, P.M.A. Postharvest physiology of vegetables. In Handbook of Vegetables and Vegetable Processing; Sinha, N., Hui, Y.H., Evranuz, E.Ö., Siddiq, M., Ahmed, J., Eds.; Wiley-Blackwell Publishing: Ames, IA, USA, 2010; pp. 199–220. [Google Scholar]
- Toivonen, P.M.A.; Hodges, D.M. Abiotic stress in harvested fruits and vegetables. In Abiotic Stress in Plants-Mechanisms and Adaptations; Shanker, A.K., Venkateswarlu, B., Eds.; InTech: Rijeka, Croatia, 2011; pp. 39–58. [Google Scholar]
- Crisosto, C.H.; Smilanick, J.L.; Dokoozlian, N.K. Table grapes suffer water loss, stem browning during cooling delays. Calif. Agric. 2001, 55, 39–42. [Google Scholar] [CrossRef] [Green Version]
- Pelletier, W.; Brecht, J.K.; Nunes, M.C.N.; Emond, J.P. Quality of strawberries shipped by truck from California to Florida as influenced by postharvest temperature management practices. HortTechnology 2011, 21, 482–493. [Google Scholar] [CrossRef] [Green Version]
- Tolesa, G.N.; Workneh, T.S.; Melesse, S.F. Modelling effects of pre-storage treatments, maturity stage, low-cost storage technology environment and storage period on the quality of tomato fruit. CyTA-J. Food 2018, 16, 271–280. [Google Scholar] [CrossRef] [Green Version]
- Majidi, H.; Minaei, S.; Almassi, M.; Mostofi, Y. Tomato quality in controlled atmosphere storage, modified atmosphere packaging and cold storage. J. Food Sci. Technol. 2014, 51, 2155–2161. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ali, A.; Muhammad, M.T.M.; Sijam, K.; Siddiqui, Y. Effect of chitosan coating on the physicochemical characteristics of Eksotika II papaya (Carica papaya L.) fruit during cold storage. Food Chem. 2011, 124, 620–625. [Google Scholar] [CrossRef]
- Mahmood, A.; Hu, Y.; Tanny, J.; Asante, E.A. Effects of shading and insect-proof screens on crop microclimate and production: A review of recent advances. Sci. Hortic. 2018, 241, 241–251. [Google Scholar] [CrossRef]
- Guillén, F.; Castillo, S.; Zapata, P.J.; Martínez-Romero, D.; Valero, D.; Serrano, M. Efficacy of 1-MCP treatment in tomato fruit: 2–Effect of cultivar and ripening stage at harvest. Postharvest Biol. Technol. 2006, 42, 235–242. [Google Scholar] [CrossRef]
- Zapata, P.J.; Guillén, F.; Martínez-Romero, D.; Castillo, S.; Valero, D.; Serrano, M. Use of alginate or zein as edible coatings to delay postharvest ripening process and to maintain tomato (Solanum lycopersicon Mill.) quality. J. Sci. Food Agric. 2008, 88, 1287–1293. [Google Scholar] [CrossRef]
- Majidi, H.; Minaei, S.; Almasi, M.; Mostofi, Y. Total soluble solids, titratable acidity and repining index of tomato in various storage conditions. Aust. J. Basic Appl. Sci. 2011, 5, 1723–1726. [Google Scholar]
- Gharezi, M.; Joshi, N.; Sadeghian, E. Effect of post harvest treatment on stored cherry tomatoes. J. Nutr. Food Sci. 2012, 2, 157. [Google Scholar] [CrossRef]
- Srinivasa, P.C.; Prashanth, K.V.H.; Susheelamma, N.S.; Ravi, R.; Tharanathan, R.N. Storage studies of tomato and bell pepper using eco-friendly films. J. Sci. Food Agric. 2006, 86, 1216–1224. [Google Scholar] [CrossRef]
- Pinheiro, J.; Alegria, C.; Abreu, M.; Gonçalves, E.M.; Silva, C.L.M. Kinetics of changes in the physical quality parameters of fresh tomato fruits (Solanum lycopersicum, cv. ‘Zinac’) during storage. J. Food Eng. 2013, 114, 338–345. [Google Scholar] [CrossRef]
Item | Description | |
---|---|---|
Tomato cultivar | Dabol (large), Dabol (medium), Cherry (Sense Q), and Cherry (7160) | |
Treatment | IS, DS, and DSC | 3 replications |
Storage period | IS: 15 days in controlled chamber | |
DS and DSC: 1 day (delayed cooling) in GH and 14 days in CC | ||
Main factors and their interactions | Treatments | 3 |
Storage period (intervals) | 4 | |
Cultivars | 4 | |
Environmental factors | Greenhouse (variable): 18–39 °C, 40–85% | |
Controlled chamber (constant): 10 ± 1 °C and 90% ± 3% |
Property | Treatment | Tomato Variety | |||
---|---|---|---|---|---|
Dabol (Large) | Dabol (Medium) | Cherry (Sense Q) | Cherry (7160) | ||
Diameter (cm) | IS | 7.07 ± 0.05 Ba | 4.82 ± 0.05 Cb | 2.61 ± 0.03 Ac | 2.14 ± 0.03 Bd |
DS | 7.59 ± 0.07 Aa | 5.85 ± 0.01 Ab | 2.45 ± 0.01 Cc | 2.25 ± 0.01 Ad | |
DSC | 6.82 ± 0.03 Ca | 5.68 ± 0.08 Bb | 2.55 ± 0.03 Bc | 2.08 ± 0.06 Bd | |
Weight (g) | IS | 170.04 ± 3.53 Aa | 140.10 ± 3.85 Bb | 13.73 ± 0.47 Ac | 10.13 ± 0.32 Ac |
DS | 175.81 ± 5.79 Aa | 153.13 ± 2.83 Ab | 11.94 ± 0.71 Bc | 10.51 ± 0.42 Ac | |
DSC | 167.71 ± 8.95 Aa | 151.08 ± 6.05 Ab | 12.28 ± 0.27 Bc | 10.08 ± 0.30 Ac | |
Firmness (N) | IS | 28.84 ± 2.95 Aa | 25.28 ± 1.38 Aa | 31.99 ± 4.02 Aa | 26.95 ± 1.66 Aa |
DS | 15.78 ± 1.48 Bd | 23.91 ± 0.79 Ac | 34.24 ± 2.96 Aa | 29.02 ± 3.02 Ab | |
DSC | 20.85 ± 4.54 ABb | 24.69 ± 0.49 Aab | 29.33 ± 4.75 Aa | 27.29 ± 2.39 Aab | |
Total soluble solids (°Brix) | IS | 3.98 ± 0.05 Bc | 4.59 ± 0.23 Ab | 8.53 ± 0.31 Aa | 8.69 ± 0.43 Aa |
DS | 4.79 ± 0.55 Ab | 4.26 ± 0.15 Bb | 7.97 ± 0.42 Aa | 8.57 ± 0.61 Aa | |
DSC | 4.19 ± 0.11 ABb | 3.98 ± 0.05 Bb | 8.41 ± 0.59 Aa | 8.81 ± 0.28 Aa | |
Hue angle (h°) | IS | 68.6 ± 3.51 Aa | 43.78 ± 0.74 Ab | 41.59 ± 2.28 Ab | 40.31 ± 0.68 Ab |
DS | 69.76 ± 5.16 Aa | 46.18 ± 4.71 Ab | 43.08 ± 2.03 Ab | 39.79 ± 1.45 Ab | |
DSC | 54.34 ± 2.73 Ba | 46.81 ± 4.98 Ab | 41.84 ± 1.82 Abc | 39.20 ± 0.65 Ac |
Item | d.f. | Weight Loss | Firmness | TSS | Hue Angle | ||||
---|---|---|---|---|---|---|---|---|---|
F | p | F | p | F | p | F | p | ||
Tr | 2 | 136.93 | <0.001 | 5.90 | 0.004 | 0.11 | 0.892 | 17.01 | <0.001 |
SP | 3 | 4522.07 | <0.001 | 85.07 | <0.001 | 11.91 | <0.001 | 88.12 | <0.001 |
C | 3 | 4382.66 | <0.001 | 822.93 | <0.001 | 2225.21 | <0.001 | 279.39 | <0.001 |
Tr × C | 6 | 71.93 | <0.001 | 3.77 | 0.002 | 4.11 | 0.001 | 16.51 | <0.001 |
Tr × SP | 6 | 34.28 | <0.001 | 0.59 | 0.741 | 2.03 | 0.068 | 3.65 | 0.003 |
SP × C | 9 | 840.09 | <0.001 | 8.26 | <0.001 | 10.28 | <0.001 | 11.94 | <0.001 |
Tr × SP × C | 18 | 14.72 | <0.001 | 0.26 | 0.998 | 2.63 | 0.001 | 1.56 | 0.085 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kabir, M.S.N.; Ali, M.; Lee, W.-H.; Cho, S.-I.; Chung, S.-O. Physicochemical Quality Changes in Tomatoes during Delayed Cooling and Storage in a Controlled Chamber. Agriculture 2020, 10, 196. https://doi.org/10.3390/agriculture10060196
Kabir MSN, Ali M, Lee W-H, Cho S-I, Chung S-O. Physicochemical Quality Changes in Tomatoes during Delayed Cooling and Storage in a Controlled Chamber. Agriculture. 2020; 10(6):196. https://doi.org/10.3390/agriculture10060196
Chicago/Turabian StyleKabir, Md. Shaha Nur, Mohammod Ali, Wang-Hee Lee, Seong-In Cho, and Sun-Ok Chung. 2020. "Physicochemical Quality Changes in Tomatoes during Delayed Cooling and Storage in a Controlled Chamber" Agriculture 10, no. 6: 196. https://doi.org/10.3390/agriculture10060196
APA StyleKabir, M. S. N., Ali, M., Lee, W. -H., Cho, S. -I., & Chung, S. -O. (2020). Physicochemical Quality Changes in Tomatoes during Delayed Cooling and Storage in a Controlled Chamber. Agriculture, 10(6), 196. https://doi.org/10.3390/agriculture10060196