Organic but Also Low-Input Conventional Farming Systems Support High Biodiversity of Weed Species in Winter Cereals
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Characteristics and Experimental Design
2.2. Weed Infestation Analyses
2.3. Statistical Analyses
2.4. Weather Conditions
2.5. Organic and Conventional Farms
2.6. Correlation Analysis
3. Results and Discussion
3.1. Number of Species and Their Abundance
3.2. Shannon’s Diversity and Simpson’s Dominance Indices
3.3. Dominant Species
3.4. Endangered Species
3.5. Invasive Weed Species
3.6. Correlation Analysis
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Garbach, K.; Milder, J.C.; Montenegro, M.; Karp, D.S. Biodiversity and Ecosystem Services in Agroecosystems. Encycl. Agric. Food Syst. 2014, 2. [Google Scholar] [CrossRef]
- Loreau, M.; Naeem, S.; Inchausti, P.; Bengtsson, J.; Grime, J.P.; Hector, A.; Hooper, D.U.; Huston, M.A.; Raffaelli, D.; Schmid, B.; et al. Biodiversity and ecosystem functioning: Current knowledge and future challenges. Science 2001, 294, 804–808. [Google Scholar] [CrossRef] [Green Version]
- Hooper, D.U.; Chapin Iii, F.S.; Ewel, J.J.; Hector, A.; Inchausti, P.; Lavorel, S.; Lawton, J.H.; Lodge, D.M.; Loreau, M.; Naeem, S.; et al. Effects of biodiversity on ecosystem functioning: A consensus of current knowledge. Ecol. Monogr. 2005, 75, 3–35. [Google Scholar] [CrossRef]
- Balvanera, P.; Pfisterer, A.B.; Buchmann, N.; He, J.S.; Nakashizuka, T.; Raffaelli, D.; Schmid, B. Quantifying the evidence for biodiversity effects on ecosystem functioning and services. Ecol. Lett. 2006, 9, 1146–1156. [Google Scholar] [CrossRef] [Green Version]
- Cardinale, B.J.; Matulich, K.L.; Hooper, D.U.; Byrnes, J.E.; Duffy, E.; Gamfeldt, L.; Balvanera, P.; O’Connor, M.I.; Gonzalez, A. The functional role of producer diversity in ecosystems. Am. J. Bot. 2011, 98, 572–592. [Google Scholar] [CrossRef] [Green Version]
- European Commission. Communication from the Commission to the European Parliament, the Council, the Economic and Social Committee and the Committee of the Regions Our Life Insurance, Our Natural Capital: An Eu Biodiversity Strategy to 2020. COM/2011/0244 Final. Available online: www.eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A52011DC0244 (accessed on 4 August 2020).
- Wagner, M.; Bullock, J.M.; Hulmes, L.; Hulmes, S.; Pywell, R. Cereal density and N-fertilizer effects on the flora and biodiversity value of arable headlands. Biodivers. Conserv. 2017, 26, 85–102. [Google Scholar] [CrossRef] [Green Version]
- Meyer, S.; Wesche, K.; Krause, B.; Leuschner, C. Dramatic losses of specialist arable plants in Central Germany since the 1950s/60s–A cross-regional analysis. Divers. Distrib. 2013, 19, 1175–1187. [Google Scholar] [CrossRef]
- Hallmann, C.A.; Sorg, M.; Jongejans, E.; Siepel, H.; Hofland, N.; Schwan, H.; Stenmans, W.; Müller, A.; Sumser, H.; Hörren, T.; et al. More than 75 percent decline over 27 years in total flying insect biomass in protected areas. PLoS ONE 2017, 12, e0185809. [Google Scholar] [CrossRef] [Green Version]
- Schumacher, M.; Ohnmacht, S.; Rosenstein, R.; Gerhards, R. How management factors influence weed communities of cereals, their diversity and endangered weed species in Central Europe. Agriculture 2018, 8, 172. [Google Scholar] [CrossRef] [Green Version]
- Scherber, C.; Eisenhauer, N.; Weisser, W.W.; Schmid, B.; Voigt, W.; Fischer, M.; Schulze, E.-D.; Roscher, C.; Weigelt, A.; Allan, E.; et al. Bottom-up effects of plant diversity on multitrophic interactions in a biodiversity experiment. Nature 2010, 468, 553–556. [Google Scholar] [CrossRef]
- Marshall, E.J.P.; Brown, V.K.; Boatman, N.D.; Lutman, P.J.W.; Square, G.R.; Ward, L.K. The role of weeds in supporting biological diversity within crop fields. Weed Res. 2003, 43, 77–89. [Google Scholar] [CrossRef] [Green Version]
- Oerke, E.-C. Crop losses to pests. J. Agric. Sci. 2006, 144, 31–43. [Google Scholar] [CrossRef]
- Gerhards, R.; Dieterich, M.; Schumacher, M. Rückgang von ackerunkräutern in baden-württemberg—Ein vergleich von vegetationskundlichen erhebungen in den jahren 1948/49, 1975–1978 und 2011 im raum mehrstetten—Empfehlungen für landwirtschaft und naturschutz. Gesunde Pflanz. 2013, 65, 151–160. [Google Scholar] [CrossRef]
- Urban, M.; Adamczewski, K.; Dobrzański, A. Ecological niche of weeds in spring cereals cultivars grown after winter oilseed rape. Prog. Plant Prot. 2013, 53, 105–109. (In Polish). Available online: https://pdfs.semanticscholar.org/c950/1dabafdfba2d60e8f1ca16ae81739e92ee67.pdf (accessed on 18 September 2020).
- Feledyn-Szewczyk, B.; Nakielska, M.; Jończyk, K.; Berbeć, A.K.; Kopiński, J. Assessment of the suitability of 10 winter triticale cultivars (x Triticosecale Wittm. ex A. Camus) for organic agriculture: Polish case study. Agronomy 2020, 10, 1144. [Google Scholar] [CrossRef]
- Arslan, Z.F. Decrease in biodiversity in wheat fields due to changing agricultural practices in five decades. Biodivers. Conserv. 2018, 27, 3267–3286. [Google Scholar] [CrossRef]
- Chamorro, L.; Masalles, R.M.; Sans, F.X. Arable weed decline in Northeast Spain: Does organic farming recover functional biodiversity? Agric. Ecosyst. Environ. 2016, 223, 1–9. [Google Scholar] [CrossRef]
- Travlos, I.S.; Chelmona, N.; Roussis, I.; Bilalls, D.J. Weed-species abundance and diversity indicates in relation to tillage systems and fertilization. Front. Environ. Sci. 2018, 6, 11. [Google Scholar] [CrossRef] [Green Version]
- Clergue, B.; Amiaud, B.; Pervanchon, F.; Lasserre-Joulin, F.; Plantureux, S. Biodiversity: Function and assessment in agricultural areas. A review. Agron. Sustain. Dev. 2005, 25, 309–327. [Google Scholar] [CrossRef]
- Kopiński, J.; Matyka, M. Ocena regionalnego zróżnicowania współzależności czynników przyrodniczych i organizacyjno-produkcyjnych w polskim rolnictwie. Zagadnienia Ekon. Rolnej 2016, 1, 57–79. [Google Scholar] [CrossRef] [Green Version]
- Shannon, C.E.A. Mathematical theory of communications. Bell Syst. Tech. 1948, 27, 379–423. [Google Scholar] [CrossRef] [Green Version]
- Simpson, E.H. Measurement of diversity. Nature 1949, 163, 688. [Google Scholar] [CrossRef]
- Central Statistical Office. Statistical Yearbook; Central Statistical Office: Warsaw, Poland, 2019; p. 94. (In Polish) [Google Scholar]
- Kleijn, D.; Rundlöf, M.; Scheper, J.; Smith, H.G.; Tscharntke, T. Does conservation on farmland contribute to halting the biodiversity decline? Trends Ecol. Evol. 2011, 26, 474–481. [Google Scholar] [CrossRef] [PubMed]
- Armengot, L.; Sans, F.X.; Fischer, C.; Flohre, A.; José-Maria, L.; Tscharntke, T.; Thies, C. The β-diversity of arable weed communities on organic and conventional cereal farms in two contrasting regions. Appl. Veg. Sci. 2012, 15, 571–579. [Google Scholar] [CrossRef]
- Berbeć, A.K.; Feledyn-Szewczyk, B. Biodiversity of weeds and soil seed bank in organic and conventional farming systems. Res. Rural Dev. 2018, 2, 12–19. [Google Scholar] [CrossRef]
- Jastrzębska, M.; Jastrzębski, W.P.; Hołdyński, C.; Kostrzewska, M.K. Weed species diversity in organic and integrated farming systems. Acta Agrobot. 2013, 66, 113–124. [Google Scholar] [CrossRef] [Green Version]
- Feledyn-Szewczyk, B.; Duer, I. Weed infestation in spring wheat cultivated in organic crop production system in comparison with other crop production systems. J. Res. Appl. Agric. Eng. 2007, 52, 40–44. (In Polish) [Google Scholar]
- Feledyn-Szewczyk, B.; Matyka, M.; Staniak, M. Comparison of the effect of perennial energy crops and agricultural crops on weed flora diversity. Agronomy 2019, 9, 695. [Google Scholar] [CrossRef] [Green Version]
- Armengot, L.; José-María, L.; Chamorro, L.; Sans, F.X. Weed harrowing in organically grown cereal crops avoids yield losses without reducing weed diversity. Agron. Sustain. Dev. 2013, 33, 405–411. [Google Scholar] [CrossRef] [Green Version]
- Glemnitz, M.; Radics, L.; Hoffmann, J.; Czimber, G. Weed species richness ad species composition of different arable field types—A comparative analysis along a climate gradient from South to North Europe. J. Plant Dis. Protect. 2006, 20, 577–586. [Google Scholar]
- Froud-Williams, R.J.; Chancellor, R.J.; Drennan, D.S.H. Influence of cultivation regime upon buried weed seeds in arable cropping systems. J. Appl. Ecol. 1983, 20, 199–208. [Google Scholar] [CrossRef]
- Kremer, R.J. Management of weed seed banks with microorganisms. Ecol. Appl. 1993, 3, 42–52. [Google Scholar] [CrossRef] [PubMed]
- Graziani, F.; Onofri, A.; Pannacci, E.; Tei, F.; Guiducci, M. Size and composition of weed seedbank in long-term organic and conventional low-input cropping systems. Eur. J. Agron. 2012, 39, 52–61. [Google Scholar] [CrossRef]
- Wesołowski, M. Występowanie wybranych gatunków chwastów w uprawach rolniczych. In Makroregion Południowo-Wschodni; IUNG: Pulawy, Poland, 1988; R220/8; pp. 1–43. (In Polish) [Google Scholar]
- Ziemińska-Smyk, M. Zmiany w zachwaszczeniu upraw zbóż na Zamojszczyźnie gatunkami z rodziny traw (Poaceae). Zesz. Nauk. UP Wrocław Rol. C 2012, 584, 159–163. (In Polish) [Google Scholar]
- Mirek, Z. Red List of Plants and Fungi in Poland; Szafer Institute of Botany, Polish Academy of Sciences: Krakow, Poland, 2006. [Google Scholar]
- Tokarska-Guzik, B.; Bzdęga, K.; Nowak, T.; Lewandowska, A.; Gancarek, M.; Frelich, M. Alien plants in Poland: Research directions and putting the results into practice. Biodiv. Res. Conserv. 2014, 35, 57–74. [Google Scholar] [CrossRef] [Green Version]
- Tokarska-Guzik, B.; Dajdok, Z.; Zając, M.; Zając, A.; Urbisz, A.; Danielewicz, W.; Hołdyński, C. Rośliny Obcego Pochodzenia w Polsce ze Szczególnym Uwzględnieniem Gatunków Inwazyjnych; Generalna Dyrekcja Ochrony Środowiska: Warsaw, Poland, 2012; pp. 35–69. (In Polish) [Google Scholar]
- Jackowiak, B. Modele ekspansji roślin synantropijnych i transgenicznych. Phytocoen. 11 Semin. Geobot. 1999, 6, 4–16. [Google Scholar]
- Kujawa, K.; Bernacki, Z.; Arczyńska-Chudy, A.; Janku, K.; Karg, J.; Kowalska, J.; Oleszczuk, M.; Sienkiewicz, P.; Sobczyk, D.; Weyssenhoff, H. Flower strips as rarely used in Poland tool for enhancement of Integrated Pest Management in cultivated fields, and for enlargement of biodiversity in agricultural areas. Prog. Plant Prot. 2018, 58, 115–128. (In Polish) [Google Scholar] [CrossRef]
- Bomanowska, A.; Ferchmin, M.; Kirpluk, I.; Otręba, A. Inwazyjne gatunki roślin we florze Puszczy Kampinoskiej. In Inwazyjne Gatunki Roślin w Kampinoskim Parku Narodowym i w Jego Sąsiedztwie; Kampinoski Park Narodowy: Izabelin, Poland, 2014; pp. 25–35. (In Polish) [Google Scholar]
- Chmielecki, B.; Kucharski, L. Gatunki inwazyjne w dolinie środkowej Warty. Biul. Uniejowski 2018, 7, 77–95. (In Polish) [Google Scholar] [CrossRef]
- Hyvönen, T.; Salonen, J. Weed species diversity and community composition in cropping practices at two intensity levels—A six-year experiment. Plant Ecol. 2002, 154, 73–81. [Google Scholar] [CrossRef]
- Szeleźniak, E.; Grabiński, J.; Nieróbca, P. Wpływ intensywności technologii produkcji wybranych gatunków zbóż na ich zachwaszczenie. Acta Sci. Pol. Agric. 2007, 6, 83–90. (In Polish) [Google Scholar]
- Koocheki, A.; Nassiri, M.; Alimoradi, L.; Ghorbani, R. Effect of cropping systems and crop rotations on weeds. Agron. Sustain. Dev. 2009, 29, 401–408. [Google Scholar] [CrossRef]
- Berbeć, A.K. Weed Diversity in Spring Cereals and Weed Seed Bank in Conventional and Organic Farms in the Province of Lublin. Ph.D. Thesis, Institute of Soil Science and Plant Cultivation State Research Institute, Puławy, Poland, 2016. [Google Scholar]
- Tang, L.; Cheng, C.; Wan, K.; Li, R.; Wang, D.; Tao, Y.; Pan, J.; Xie, J.; Chen, F. Impact of fertilizing pattern on the biodiversity of a weed community and wheat growth. PLoS ONE 2014, 9, e84370. [Google Scholar] [CrossRef] [PubMed]
- Haliniarz, M.; Gawęda, D.; Kwiatkowski, C.; Frant, M.; Różańska-Boczula, M. Weed biodiversity in field Pea under reduced tillage and different mineral fertilization conditions. Bulg. J. Agric. Sci. 2014, 20, 1340–1348. [Google Scholar]
- Fried, G.; Chauvel, B.; Munoz, F.; Reboud, X. Which traits make weeds more successful in maize crops? Insights from a three-decade monitoring in France. Plants 2020, 9, 40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Majchrzak, L.; Piechota, T. Wpływ technologii uprawy na zachwaszczenie pszenicy jarej. Fragm. Agron. 2013, 31, 94–101. [Google Scholar]
- Wortman, S.E.; Lindquist, J.L.; Haar, M.J.; Francis, C.A. Increased weed diversity, density and above-ground biomass in long-term organic crop rotations. Renew. Agric. Food Syst. 2010, 25, 281–295. [Google Scholar] [CrossRef] [Green Version]
Feature | Median | |
---|---|---|
ORG | CONV | |
Soil class (I—best; VI—worse) | IV and V | IV and V |
Agricultural area of the farm (ha) | 28.3 a | 24.5 a |
Sum of mineral NPK (kg ha−1) | 0 a | 121 b |
Number of mechanical weed control treatments | 1 a | 1 a |
Number of plant protection product treatments | 0 a | 1 b |
Average yields of cereals (Mg ha−1) | 2.0 a | 3.1 b |
Share (%) of fields with: | ||
Single harrowing | 44.7 | 50.0 |
Double harrowing | 36.8 | 26.3 |
More than two harrowings | 10.5 | 5.3 |
No mechanical weed control | 7.9 | 18.4 |
Only mineral fertilization | 5.3 | 57.9 |
Only organic fertilization | 36.8 | 13.2 |
Mineral and organic fertilization | 0.0 | 21.0 |
No fertilization | 57.9 | 7.9 |
Herbicide use | 0 | 74.0 |
Use of PPP other than herbicides | 0 | 21.0 |
Parameters | ORG | CONV |
Total number of species | 149 | |
Total number of species in the farming system | 133 a | 123 a |
Species unique for system | 26 a | 16 b |
Species common for both farming systems | 107 | |
Median of Number of Weed Species per Field | ||
2012 | 13.0 a | 9.0 b |
2013 | 19.0 a | 14.0 b |
2014 | 14.5 a | 9.0 b |
Median of Abundance of Weed Flora (Plants m−2) | ||
2012 | 225 a | 94 b |
2013 | 470 a | 319 b |
2014 | 339 a | 128 b |
Species | Number of Years in Which Species Was Found | Number of Study Squares Where Species Was Found |
---|---|---|
ORG | ||
Trifolium repens L. | 2 | 4 |
Bromus hordeaceus L. | 2 | 2 |
Persicaria amphibia (L.) Delarbre | 2 | 2 |
Rhinanthus serotinus (Schönh.) Obornţ | 2 | 2 |
Scutellaria galericulata L. | 2 | 2 |
Carduus crispus L. | 2 | 1 |
Vicia villosa Roth | 1 | 4 |
Trifolium hybridum L. | 1 | 2 |
Matricaria chamomilla L. | 1 | 2 |
Rumex obtusifolius L. | 1 | 2 |
Phragmites australis (Cav.) Trin. ex Steud | 1 | 1 |
Campanula persicifolia L. | 1 | 1 |
Peucedanum palustre (L.) Moench | 1 | 1 |
Pisum sativum L. | 1 | 1 |
Brassica juncea (L.) Czern. | 1 | 1 |
Lotus corniculatus L | 1 | 1 |
Valeriana officinalis L. | 1 | 1 |
Linaria vulgaris Mill. | 1 | 1 |
Lupinus albus L. | 1 | 1 |
Lupinus angustifolius L. | 1 | 1 |
Gypsophila paniculata L. | 1 | 1 |
Papaver argemone L. | 1 | 1 |
Potentilla anserina L. | 1 | 1 |
Erysimum cheiranthoides L. | 1 | 1 |
Rorippa palustris L. Besser | 1 | 1 |
Lysimachia vulgaris L. | 1 | 1 |
CONV | ||
Lamium purpureum L. | 2 | 4 |
Hypericum perforatum L. | 2 | 2 |
Agrostis gigantea Roth | 1 | 3 |
Cardaminopsis arenosa (L.) Hayek | 1 | 2 |
Festuca rubra L. | 1 | 1 |
Helictotrichon pubescens (Huds.) Besser ex Schult. and Schult. f. | 1 | 1 |
Geranium sanguineum L. | 1 | 1 |
Geranium dissectum L. | 1 | 1 |
Campanula rapunculoides L. | 1 | 1 |
Lathyrus tuberosus L. | 1 | 1 |
Myosurus minimus L. | 1 | 1 |
Matricaria discoidea DC. | 1 | 1 |
Arabidopsis thaliana (L.) Heynh. | 1 | 1 |
Amaranthus retroflexus L. | 1 | 1 |
Thlaspi arvense L. | 1 | 1 |
Bidens frondosa L. | 1 | 1 |
Year | Index | ORG | CONV |
---|---|---|---|
Biodiversity Indices | |||
2012 | Shannon (H’) | 4.152 b | 3.860 a |
Simpson (SI) | 0.031 a | 0.045 b | |
2013 | Shannon (H’) | 4.518 a | 4.777 b |
Simpson (SI) | 0.021 a | 0.071 b | |
2014 | Shannon (H’) | 4.305 b | 4.138 a |
Simpson (SI) | 0.028 a | 0.025 a |
Species | 2012 | 2013 | 2014 | 2012–2014 |
---|---|---|---|---|
Setaria pumila (Poir.) Roem. and Schult | 32.3 | 23.9 | 14.8 | 23.4 |
Elymus repens (L.) Gould | 9.2 | 9.8 | 11.8 | 10.3 |
Apera spica-venti (L.) P. Beauv | 8.5 | 3.0 | 6.2 | 5.4 |
Poa bulbosa L. | 0.0 | 5.1 | 10.2 | 5.3 |
Rumex acetosella L. | 10.0 | 3.4 | 1.8 | 4.7 |
Polygonum lapathifolium L. subsp. lapathifolium | 6.1 | 5.3 | 2.4 | 4.6 |
Scleranthus annuus L. | 4.5 | 3.1 | 5.9 | 4.3 |
Echinochloa crus-galli (L.) P. Beauv. | 0.0 | 7.6 | 1.5 | 3.7 |
Anthemis arvensis L. | 0.0 | 3.0 | 5.2 | 2.9 |
Number of dominant species (>5% of weed community) | 5 | 5 | 6 | 4 |
Species | 2012 | 2013 | 2014 | 2012–2014 |
---|---|---|---|---|
Juncus bufonius L. | 6.0 | 31.9 | 3.4 | 21.3 |
Setaria pumila (Poir.) Roem. and Schult | 25.2 | 12.6 | 4.9 | 13.4 |
Echinochloa crus-galli (L.) P. Beauv. | 16.0 | 4.6 | 7.7 | 7.3 |
Apera spica-venti (L.) P. Beauv | 2.7 | 6.1 | 15.4 | 7.3 |
Poa bulbosa L. | 0.0 | 10.0 | 1.8 | 6.5 |
Viola arvensis Murr. | 4.9 | 3.6 | 12.0 | 5.5 |
Elymus repens (L.) Gould | 6.0 | 2.7 | 8.0 | 4.4 |
Centaurea cyanus L. | 0.6 | 0.6 | 8.3 | 2.2 |
Spergula arvensis L. | 6.8 | 0.3 | 0.1 | 1.4 |
Anthemis arvensis L. | 0.0 | 0.2 | 5.8 | 1.3 |
Scleranthus annuus L. | 0.0 | 0.0 | 5.5 | 1.2 |
Rumex acetosella L. | 5.8 | 0.1 | 0.1 | 1.1 |
Number of dominant species (>5% of weed community) | 6 | 4 | 7 | 6 |
Species and Endangerment Category | Average Abundance (Plants m2) | |
---|---|---|
ORG | CONV | |
Bromus secalinus L. v | 0.1 | 0.5 |
Ranunculus arvensis L. v | 0.3 | 0.1 |
Anagallis foemina Mill. v | 0.3 | 0.2 |
Myosurus minimus L. v | – | <0.1 |
Helichrysum arenarium (L.) Moench p | 0.8 | 0.3 |
Species | Invasiveness Class * | Average Abundance (Plants m−2) | |
---|---|---|---|
ORG | CONV | ||
Setaria pumila (Poir.) Roem. and Schult. | I | 88.7 | 37.0 |
Echinochloa crus-galli L. | I | 14.2 | 20.3 |
Setaria viridis (L.) P. Beauv. | I | 5.1 | 1.2 |
Avena fatua L. | I | <0.1 | 0.7 |
Conyza Canadensis (L.) Cronquist | I | 2.3 | 0.7 |
Veronica persica Poir. | I | 0.7 | 1.3 |
Galinsoga parviflora Cav. | I | 0.1 | <0.1 |
Oxalis stricta L. | I | 0.5 | 0.9 |
Amaranthus retroflexus L. | I | 0 | 0.3 |
Erigeron annuus (L.) Pers | II | 0.3 | 1.1 |
NS | Ab | H’ | SI | NC | SGF | FA | Min NPK | Org NPK | NH | PPP | Yield | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
NS | 0.186 | 0.707 * | −0.608 * | 0.117 | 0.200 | −0.150 | 0.143 | 0.145 | 0.173 | 0 | 0.130 | |
Ab | 0.678 * | 0.008 | −0.013 | 0.171 | 0.154 | −0.124 | 0.142 | 0.055 | 0.037 | 0 | 0.024 | |
H’ | 0.529 * | 0.283 | −0.971 * | −0.104 | −0.059 | 0.048 | 0.037 | 0.097 | 0.264 | 0 | 0.114 | |
SI | −0.388 * | −0.202 | −0.943 * | 0.062 | 0.092 | −0.100 | −0.067 | −0.054 | −0.207 | 0 | −0.151 | |
NC | −0.184 | −0.260 | −0.113 | 0.129 | 0.029 | −0.210 | 0.279 | 0.124 | −0.013 | 0 | 0.077 | |
SGF | 0.221 | 0.161 | 0.322 * | −0.194 | −0.108 | −0.372 * | 0.254 | 0.223 | 0.215 | 0 | 0.031 | |
FA | −0.517 * | −0.400 * | −0.390 * | 0.351 * | 0.029 | −0.158 | 0.008 | −0.537 * | −0.031 | 0 | −0.169 | |
Min NPK | −0.145 | −0.095 | −0.378 * | 0.286 | 0.143 | −0.465 * | 0.301 | −0.121 | −0.121 | 0 | 0.069 | |
Org NPK | 0.165 | 0.076 | 0.238 | −0.248 | −0.395 * | 0.095 | −0.251 | −0.265 | 0.306 | 0 | 0.260 | |
NH | 0.027 | 0.107 | 0.203 | −0.216 | 0.044 | 0.043 | −0.217 | −0.176 | −0.152 | 0 | −0.079 | |
PPP | −0.430 * | −0.430 * | −0.548 * | 0.448 * | −0.059 | −0.137 | 0.402 * | 0.356 * | 0.044 | −0.481 * | 0.000 | |
Yield | −0.232 | −0.395 * | −0.147 | −0.003 | −0.324 * | −0.091 | 0.138 | 0.309 | −0.027 | −0.212 | 0.503 * |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Berbeć, A.K.; Staniak, M.; Feledyn-Szewczyk, B.; Kocira, A.; Stalenga, J. Organic but Also Low-Input Conventional Farming Systems Support High Biodiversity of Weed Species in Winter Cereals. Agriculture 2020, 10, 413. https://doi.org/10.3390/agriculture10090413
Berbeć AK, Staniak M, Feledyn-Szewczyk B, Kocira A, Stalenga J. Organic but Also Low-Input Conventional Farming Systems Support High Biodiversity of Weed Species in Winter Cereals. Agriculture. 2020; 10(9):413. https://doi.org/10.3390/agriculture10090413
Chicago/Turabian StyleBerbeć, Adam Kleofas, Mariola Staniak, Beata Feledyn-Szewczyk, Anna Kocira, and Jarosław Stalenga. 2020. "Organic but Also Low-Input Conventional Farming Systems Support High Biodiversity of Weed Species in Winter Cereals" Agriculture 10, no. 9: 413. https://doi.org/10.3390/agriculture10090413