Benefits of Insect Pollination in Brassicaceae: A Meta-Analysis of Self-Compatible and Self-Incompatible Crop Species
Abstract
:1. Introduction
2. Methods
Plant | Most Common Names | Most Common Use | Main Breeding System | References on Breeding System |
---|---|---|---|---|
Brassica carinata A. Braun | Ethiopian mustard | Leaves, seeds for oil | Outcrossing and selfing | [35,40] |
Brassica juncea (L.) Czern. | Brown mustard, Indian mustard | Leaves, seeds for oil | Outcrossing and selfing | [35,41] |
Brassica napus L. | Rapeseed, canola | Seeds for oil | Outcrossing and selfing | [35,39] |
Brassica oleracea L. | Cabbage, broccoli, cauliflower | Leaves, inflorescences | Outcrossing, self-incompatible | [40] |
Brassica rapa L. | Turnip, field mustard | Leaves, root, seeds for oil | Outcrossing, self-incompatible | [35,41] |
Camelina sativa L. (Crantz) | Camelina, German sesame | Seeds for oil, leaves | Outcrossing and selfing | [35,38] |
Eruca sativa Mill. | Arugula, rucola | Leaves | Outcrossing, self-incompatible | [31] |
Raphanus sativus (L.) Domin | Radish | Roots, seeds oil | Outcrossing, self-incompatible | [40] |
Sinapis alba L. | White mustard | Seeds for table mustard, oil | Outcrossing and selfing | [35,41] |
Meta-Analysis
3. Insect Pollination Effect on Yield Parameters in Cultivated Brassicaceae
Plant Species | Yield Parameter | References | Note | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Y | WS | SQS | NSQ | NSSQ | SQL | NSP | G | O | |||
B. carinata | [31] | ** | |||||||||
[50] | |||||||||||
B. juncea | [31] | ** | |||||||||
[42] | ** | ||||||||||
[51] | |||||||||||
[52] | |||||||||||
[53] | ** | ||||||||||
[54] | |||||||||||
[55] | ** | ||||||||||
[56] | |||||||||||
[57] | |||||||||||
[58] | |||||||||||
[59] | |||||||||||
B. napus | [31] | ** | |||||||||
[60] | |||||||||||
[61] | Male-fertile line | ||||||||||
[61] | Male-sterile line | ||||||||||
[62] | |||||||||||
[63] | |||||||||||
[64] | |||||||||||
[65] | ** | ||||||||||
[66] | ** | ||||||||||
[67] | ** | ||||||||||
[68] | |||||||||||
[33] | |||||||||||
[20] | |||||||||||
[69] | ** | ||||||||||
[70] | ** | ||||||||||
[71] | Hybrid | ||||||||||
[71] | Non-hybrid | ||||||||||
[72] | ** | ||||||||||
* | * | [73] | ** | ||||||||
* | [74] | ||||||||||
[75] | |||||||||||
* | [76] | ** | |||||||||
[77] | Hybrid | ||||||||||
[77] | Non-hybrid | ||||||||||
[78] | |||||||||||
[79] | |||||||||||
[80] | |||||||||||
[81] | Hybrid | ||||||||||
[81] | Non-hybrid | ||||||||||
[82] | |||||||||||
[83] | |||||||||||
[84] | ** | ||||||||||
[85] | |||||||||||
[86] | |||||||||||
[87] | |||||||||||
[88] | |||||||||||
B. oleracea | [89] | ||||||||||
[90] | |||||||||||
[31] | ** | ||||||||||
[91] | |||||||||||
[92] | Cabbage ** | ||||||||||
[92] | Cauliflower ** | ||||||||||
[93] | |||||||||||
B. rapa | [31] | ** | |||||||||
[94] | ** | ||||||||||
[95] | ** | ||||||||||
[96] | |||||||||||
[97] | |||||||||||
[98] | |||||||||||
[99] | |||||||||||
[100] | |||||||||||
[101] | |||||||||||
[102] | ** | ||||||||||
[103] | ** | ||||||||||
[104] | |||||||||||
C. sativa | [38] | ** | |||||||||
E. sativa | [31] | ** | |||||||||
R. sativus | [31] | ** | |||||||||
[105] | ** | ||||||||||
[106] | |||||||||||
[107] | ** | ||||||||||
[108] | ** | ||||||||||
[109] | |||||||||||
[110] | |||||||||||
S. alba | [31] | ||||||||||
[111] |
3.1. Effect of Insect Pollination on Yield Parameters in Self-Compatible and Self-Incompatible Species
3.1.1. Effect of Insect Pollination on Y
3.1.2. Effect of Insect Pollination on WS
3.1.3. Effect of Insect Pollination on SQS
3.1.4. Effect of Insect Pollination on NSQ
3.1.5. Effect of Insect Pollination on NSSQ
4. Insect Pollinators of Crops of the Family Brassicaceae
5. Discussion and Main Conclusions
Supplementary Materials
Funding
Acknowledgments
Conflicts of Interest
References
- Klein, A.M.; Vaissière, B.E.; Cane, J.H.; Steffan-Dewenter, I.; Cunningham, S.A.; Kremen, C.; Tscharntke, T. Importance of Pollinators in Changing Landscapes for World Crops. Proc. R. Soc. B Biol. Sci. 2007, 274, 303–313. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aizen, M.A.; Garibaldi, L.A.; Cunningham, S.A.; Klein, A.M. Long-Term Global Trends in Crop Yield and Production Reveal No Current Pollination Shortage but Increasing Pollinator Dependency. Curr. Biol. 2008, 18, 1572–1575. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Senapathi, D.; Biesmeijer, J.C.; Breeze, T.D.; Kleijn, D.; Potts, S.G.; Carvalheiro, L.G. Pollinator Conservation—the Difference between Managing for Pollination Services and Preserving Pollinator Diversity. Curr. Opin. Insect Sci. 2015, 12, 93–101. [Google Scholar] [CrossRef] [Green Version]
- Ollerton, J.; Winfree, R.; Tarrant, S. How Many Flowering Plants Are Pollinated by Animals? Oikos 2011, 120, 321–326. [Google Scholar] [CrossRef]
- Crepet, W.L. Advanced (Constant) Insect Pollination Mechanisms: Pattern of Evolution and Implications Vis-a-Vis Angiosperm Diversity. Ann. Mo. Bot. Gard. 1984, 71, 607–630. [Google Scholar] [CrossRef]
- Preston, R.E. Pollen-Ovule Ratios in the Cruciferae. Am. J. Bot. 1986, 73, 1732–1740. [Google Scholar] [CrossRef]
- Goodwillie, C.; Kalisz, S.; Eckert, C.G. The Evolutionary Enigma of Mixed Mating Systems in Plants: Occurrence, Theoretical Explanations, and Empirical Evidence. Annu. Rev. Ecol. Evol. Syst. 2005, 36, 47–79. [Google Scholar] [CrossRef] [Green Version]
- Abrol, D.P. Pollination Biology: Biodiversity Conservation and Agricultural Production; Springer: Dordrecht, The Netherlands, 2012; ISBN 978-94-007-1941-5. [Google Scholar]
- Hall, J.C.; Sytsma, K.J.; Iltis, H.H. Phylogeny of Capparaceae and Brassicaceae Based on Chloroplast Sequence Data. Am. J. Bot. 2002, 89, 1826–1842. [Google Scholar] [CrossRef]
- Méndez, M.; Gómez, J.M. Phenotypic Gender in Hormathophylla Spinosa (Brassicaceae), a Perfect Hermaphrodite with Tetradynamous Flowers, Is Variable. Plant Syst. Evol. 2006, 262, 225–237. [Google Scholar] [CrossRef] [Green Version]
- Matsuhashi, S.; Sakai, S.; Kudoh, H. Temperature-Dependent Fluctuation of Stamen Number in Cardamine Hirsuta (Brassicaceae). Int. J. Plant Sci. 2012, 173, 391–398. [Google Scholar] [CrossRef]
- Soza, V.L.; Le Huynh, V.; Di Stilio, V.S. Pattern and Process in the Evolution of the Sole Dioecious Member of Brassicaceae. Evodevo 2014, 5, 42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rea, A.C.; Nasrallah, J.B. Self-Incompatibility Systems: Barriers to Self-Fertilization in Flowering Plants. Int. J. Dev. Biol. 2008, 52, 627–636. [Google Scholar] [CrossRef] [PubMed]
- Badenes-Pérez, F.R.; Bhardwaj, T.; Thakur, R.K. Integrated Pest Management and Pollination Services in Brassica Oilseed Crops. In Integrated Management of Insect Pests on Canola and Other Brassica Oilseed Crops; Reddy, G.V.P., Ed.; CABI: Wallingford, UK, 2017; pp. 341–349. ISBN 978-1-78064-820-0. [Google Scholar]
- Rader, R.; Howlett, B.G.; Cunningham, S.A.; Westcott, D.A.; Newstrom-Lloyd, L.E.; Walker, M.K.; Teulon, D.A.J.; Edwards, W. Alternative Pollinator Taxa Are Equally Efficient but Not as Effective as the Honeybee in a Mass Flowering Crop. J. Appl. Ecol. 2009, 46, 1080–1087. [Google Scholar] [CrossRef]
- Al-Shehbaz, I.A. Brassicaceae (Mustard Family). In eLS; Wiley: Hoboken, NJ, USA, 2011; pp. 482–486. [Google Scholar]
- Warwick, S.I. Brassicaceae in Agriculture. In Genetics and Genomics of the Brassicaceae; Schmidt, R., Bancroft, I., Eds.; Springer: New York, NY, USA, 2011; pp. 33–65. ISBN 978-1-4419-7118-0. [Google Scholar]
- Wilson, C.; Golden, D.; Hubbs, T. Oil Crops Outlook: March 2021. 2021. Available online: https://downloads.usda.library.cornell.edu/usda-esmis/files/j098zb08p/t722j539s/g445d881s/OCS21e.pdf (accessed on 1 March 2022).
- Catarino, R.; Bretagnolle, V.; Perrot, T.; Vialloux, F.; Gaba, S. Bee Pollination Outperforms Pesticides for Oilseed Crop Production and Profitability. Proc. R. Soc. B Biol. Sci. 2019, 286, 20191550. [Google Scholar] [CrossRef]
- Stanley, D.; Gunning, D.; Stout, J. Pollinators and Pollination of Oilseed Rape Crops (Brassica Napus L.) in Ireland: Ecological and Economic Incentives for Pollinator Conservation. J. Insect. Conserv. 2013, 17, 1181–1189. [Google Scholar] [CrossRef]
- Chambó, E.D.; Camargo, S.C.; Garcia, R.C.; Carvalho, C.A.L.; Ruvolo-Takasusuki, M.C.C.; Ronqui, L.; Júnior, C.S.; Santos, P.R.; de Alencar Arnaut de Toledo, V. Benefits of Entomophile Pollination in Crops of Brassica Napus and Aspects of Plant Floral Biology. Brassica Germplasm-Charact. Breed. Util. 2018, 95–106. [Google Scholar] [CrossRef] [Green Version]
- Wittkop, B.; Snowdon, R.J.; Friedt, W. Status and Perspectives of Breeding for Enhanced Yield and Quality of Oilseed Crops for Europe. Euphytica 2009, 170, 131. [Google Scholar] [CrossRef]
- Moser, B.R.; Winkler-Moser, J.K.; Shah, S.N.; Vaughn, S.F. Composition and Physical Properties of Arugula, Shepherd’s Purse, and Upland Cress Oils. Eur. J. Lipid Sci. Technol. 2010, 112, 734–740. [Google Scholar] [CrossRef]
- Shonnard, D.R.; Williams, L.; Kalnes, T.N. Camelina-Derived Jet Fuel and Diesel: Sustainable Advanced Biofuels. Environ. Prog. Sustain. Energy 2010, 29, 382–392. [Google Scholar] [CrossRef]
- Chammoun, N.; Geller, D.P.; Das, K.C. Fuel Properties, Performance Testing and Economic Feasibility of Raphanus Sativus (Oilseed Radish) Biodiesel. Ind. Crops Prod. 2013, 45, 155–159. [Google Scholar] [CrossRef]
- Del Gatto, A.; Melilli, M.G.; Raccuia, S.A.; Pieri, S.; Mangoni, L.; Pacifico, D.; Signor, M.; Duca, D.; Pedretti, E.F.; Mengarelli, C. A Comparative Study of Oilseed Crops (Brassica Napus L. Subsp. Oleifera and Brassica Carinata A. Braun) in the Biodiesel Production Chain and Their Adaptability to Different Italian Areas. Ind. Crops Prod. 2015, 75, 98–107. [Google Scholar] [CrossRef]
- McVetty, P.B.E.; Duncan, R.W. Canola, Rapeseed, and Mustard: For Biofuels and Bioproducts. In Industrial Crops: Breeding for BioEnergy and Bioproducts; Cruz, V.M.V., Dierig, D.A., Eds.; Springer: New York, NY, USA, 2015; pp. 133–156. ISBN 978-1-4939-1447-0. [Google Scholar]
- Hossain, Z.; Johnson, E.N.; Wang, L.; Blackshaw, R.E.; Gan, Y. Comparative Analysis of Oil and Protein Content and Seed Yield of Five Brassicaceae Oilseeds on the Canadian Prairie. Ind. Crops Prod. 2019, 136, 77–86. [Google Scholar] [CrossRef]
- Gesch, R.W.; Long, D.S.; Palmquist, D.; Allen, B.L.; Archer, D.W.; Brown, J.; Davis, J.B.; Hatfield, J.L.; Jabro, J.D.; Kiniry, J.R.; et al. Agronomic Performance of Brassicaceae Oilseeds in Multiple Environments across the Western USA. Bioenerg. Res. 2019, 12, 509–523. [Google Scholar] [CrossRef]
- Mitrović, P.M.; Stamenković, O.S.; Banković-Ilić, I.; Djalović, I.G.; Nježić, Z.B.; Farooq, M.; Siddique, K.H.M.; Veljković, V.B. White Mustard (Sinapis Alba L.) Oil in Biodiesel Production: A Review. Front. Plant Sci. 2020, 11, 299. [Google Scholar] [CrossRef] [PubMed]
- Sihag, R.C. Insect Pollination Increases Seed Production in Cruciferous and Umbelliferous Crops. J. Apic. Res. 1986, 25, 121–126. [Google Scholar] [CrossRef]
- Abrol, D.P. Honeybees and Rapeseed: A Pollinator–Plant Interaction. In Advances in Botanical Research; Academic Press: Cambridge, MA, USA, 2007; Volume 45, pp. 337–367. ISBN 0065-2296. [Google Scholar]
- Bommarco, R.; Marini, L.; Vaissière, B.E. Insect Pollination Enhances Seed Yield, Quality, and Market Value in Oilseed Rape. Oecologia 2012, 169, 1025–1032. [Google Scholar] [CrossRef]
- Woodcock, B.A.; Garratt, M.P.D.; Powney, G.D.; Shaw, R.F.; Osborne, J.L.; Soroka, J.; Lindström, S.A.M.; Stanley, D.; Ouvrard, P.; Edwards, M.E.; et al. Meta-Analysis Reveals That Pollinator Functional Diversity and Abundance Enhance Crop Pollination and Yield. Nat. Commun. 2019, 10, 1481. [Google Scholar] [CrossRef] [Green Version]
- Salisbury, P.A.; Fripp, Y.J.; Gurung, A.M.; Williams, W.M. Is Floral Structure a Reliable Indicator of Breeding System in the Brassicaceae? PLoS ONE 2017, 12, e0174176. [Google Scholar] [CrossRef]
- Bateman, A.J. Self-Incompatibility Systems in Angiosperms. 3. Cruciferae. Heredity 1955, 9, 53–68. [Google Scholar] [CrossRef] [Green Version]
- Holsinger, K.E.; Steinbachs, J.E. Mating Systems and Evolution in Flowering Plants. In Evolution and Diversification of Land Plants; Iwatsuki, K., Raven, P.H., Eds.; Springer: Tokyo, Japan, 1997; pp. 223–248. ISBN 978-4-431-65918-1. [Google Scholar]
- Groeneveld, J.H.; Klein, A.-M. Pollination of Two Oil-Producing Plant Species: Camelina (Camelina Sativa L. Crantz) and Pennycress (Thlaspi Arvense L.) Double-Cropping in Germany. GCB Bioenergy 2014, 6, 242–251. [Google Scholar] [CrossRef] [Green Version]
- Williams, I.H.; Martin, A.P.; White, R.P. The Pollination Requirements of Oil-Seed Rape (Brassica Napus L.). J. Agric. Sci. 1986, 106, 27–30. [Google Scholar] [CrossRef]
- Sihag, R.C. Characterization of the Pollinators of Cultivated Cruciferous and Leguminous Crops of Sub-Tropical Hissar, India. Bee World 1988, 69, 153–158. [Google Scholar] [CrossRef]
- Snell, R.; Aarssen, L.W. Life History Traits in Selfing versus Outcrossing Annuals: Exploring the “time-Limitation” Hypothesis for the Fitness Benefit of Self-Pollination. BMC Ecol. 2005, 5, 2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prasad, D.; Hameed, S.F.; Singh, R.; Yazdani, S.S.; Singh, B. Effect of Bee Pollination on the Quantity and Quality of Rai Crop (Brassica Juncea Coss). Indian Bee J. 1989, 51, 45–47. [Google Scholar]
- The Jamovi Project Jamovi, Version 1.6; Jamovi: Sydney, Australia, 2021.
- Viechtbauer, W. Conducting Meta-Analyses in R with the Metafor Package. J. Stat. Softw. 2010, 36, 1–48. [Google Scholar] [CrossRef] [Green Version]
- Hedges, L.V. Distribution Theory for Glass’s Estimator of Effect Size and Related Estimators. J. Educ. Stat. 1981, 6, 107–128. [Google Scholar] [CrossRef]
- Higgins, J.P.T.; Thompson, S.G.; Deeks, J.J.; Altman, D.G. Measuring Inconsistency in Meta-Analyses. BMJ 2003, 327, 557–560. [Google Scholar] [CrossRef] [Green Version]
- Sterne, J.A.C.; Egger, M.; Smith, G.D. Investigating and Dealing with Publication and Other Biases in Meta-Analysis. BMJ 2001, 323, 101–105. [Google Scholar] [CrossRef]
- Begg, C.B.; Mazumdar, M. Operating Characteristics of a Rank Correlation Test for Publication Bias. Biometrics 1994, 50, 1088–1101. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Stiles, S.; Lundgren, J.G.; Fenster, C.B.; Nottebrock, H. Maximizing Ecosystem Services to the Oil Crop Brassica Carinata through Landscape Heterogeneity and Arthropod Diversity. Ecosphere 2021, 12, e03624. [Google Scholar] [CrossRef]
- Chand, H.; Singh, B. Effect of Pollination by Apis Cerana Fabr. on Yield of Mustard, Brassica Juncea. Indian Bee J. 1995, 57, 173–174. [Google Scholar]
- Mahindru, N.; Singh, G.; Grewal, G.S. Comparative Abundance and Foraging Behaviour of Insect Pollinators of Raya, Brassica Juncea L. and Role of Apis Mellifera L. in Crop Pollination. J. Insect Sci. 1998, 11, 34–37. [Google Scholar]
- Goswami, V.; Khan, M.S. Impacto of Honey Bee Pollination on Pod Set of Mustard (Brassica Juncea L.: Cruciferae) at Pantnagar. Bioscan 2014, 9, 75–78. [Google Scholar]
- Maity, A.; Chakrabarty, S.K.; Yadav, J.B. Foraging Behaviour of Honeybees (Apis Spp.) (Hymenoptera: Apidae) in Hybrid Seed Production of Indian Mustard (Brassica Juncea). Indian J. Agric. Sci. 2014, 84, 1389–1394. [Google Scholar]
- Nagpal, K.; Yadav, S.; Kumar, Y.; Singh, R. Effect of Pollination Modes on Yield Components in Indian Mustard (Brassica Juncea L.). J. Oilseed Brassica 2017, 8, 187–194. [Google Scholar]
- Devi, M.; Sharma, H.; Thakur, R.K.; Bhardwaj, S.; Rana, K.; Thakur, M.; Ram, B. Diversity of Insect Pollinators in Reference to Seed Set of Mustard (Brassica Juncea L.). Int. J. Curr. Microbiol. Appl. Sci. 2017, 6, 2131–2144. [Google Scholar] [CrossRef]
- Devi, M.; Sharma, H.K. Effect of Different Modes of Pollination on Seed Set of Mustard (Brassica Juncea L.) Sown on Different Sowing Dates. J. Entomol. Zool. Stud. 2018, 6, 1889–1893. [Google Scholar]
- Mandal, E.; Amin, M.R.; Rahman, H.; Akanda, A.M. Abundance and Foraging Behavior of Native Insect Pollinators and Their Effect on Mustard (Brassica Juncea L.). Bangladesh J. Zool. 2018, 46, 117–123. [Google Scholar] [CrossRef] [Green Version]
- Mahadik, P.B.; Kulkarni, S.R.; Manchare, R.R. Impact of Honey Bees as a Pollinators on Seed Production of Mustard (Brassica Juncea L.). J. Entomol. Zool. Stud. 2019, 7, 1380–1383. [Google Scholar]
- Mussury, R.M.; Fernandes, W.D. Studies of the Floral Biology and Reproductive System of Brassica Napus L. (Cruciferae). Braz. Arch. Biol. Technol. 2000, 43, 111–117. [Google Scholar] [CrossRef] [Green Version]
- Steffan-Dewenter, I. Seed Set of Male-Sterile and Male-Fertile Oilseed Rape (Brassica Napus) in Relation to Pollinator Density. Apidologie 2003, 34, 227–235. [Google Scholar] [CrossRef] [Green Version]
- Manning, R.; Wallis, I.R. Seed Yields in Canola (Brassica Napus Cv. Karoo) Depend on the Distance of Plants from Honeybee Apiaries. Aust. J. Exp. Agric. 2005, 45, 1307–1313. [Google Scholar] [CrossRef]
- Sabbahi, R.; De Oliveira, D.; Marceau, J. Influence of Honey Bee (Hymenoptera: Apidae) Density on the Production of Canola (Crucifera: Brassicacae). J. Econ. Entomol. 2005, 98, 367–372. [Google Scholar] [CrossRef]
- Jauker, F.; Wolters, V. Hover Flies Are Efficient Pollinators of Oilseed Rape. Oecologia 2008, 156, 819–823. [Google Scholar] [CrossRef]
- Araneda Durán, X.; Breve Ulloa, R.; Aguilera Carrillo, J.; Lavín Contreras, J.; Toneatti Bastidas, M. Evaluation of Yield Component Traits of Honeybee-Pollinated (Apis Mellifera L.) Rapeseed Canola (Brassica Napus L.). Chil. J. Agric. Res. 2010, 70, 309–314. [Google Scholar] [CrossRef]
- Ali, M.; Saeed, S.; Sajjad, A.; Whittington, A. In Search of the Best Pollinators for Canola (Brassica Napus L.) Production in Pakistan. Appl. Entomol. Zool. 2011, 46, 353–361. [Google Scholar] [CrossRef]
- De Souza Rosa, A.; Blochtein, B.; Lima, D.K. Honey Bee Contribution to Canola Pollination in Southern Brazil. Sci. Agric. 2011, 68, 255–259. [Google Scholar] [CrossRef] [Green Version]
- Jauker, F.; Bondarenko, B.; Becker, H.C.; Steffan-Dewenter, I. Pollination Efficiency of Wild Bees and Hoverflies Provided to Oilseed Rape. Agric. For. Entomol. 2012, 14, 81–87. [Google Scholar] [CrossRef]
- Shakeel, M.; Inayatullah, M. Impact of Insect Pollinators on the Yield of Canola (Brassica Napus) in Peshawar, Pakistan. J. Agric. Urban Entomol. 2013, 29, 1–5. [Google Scholar] [CrossRef]
- Nedić, N.; Mačukanović-Jocić, M.; Rančić, D.; Rørslett, B.; Šoštarić, I.; Stevanović, Z.D.; Mladenović, M. Melliferous Potential of Brassica Napus L. Subsp. Napus (Cruciferae). Arthropod-Plant Interact. 2013, 7, 323–333. [Google Scholar] [CrossRef]
- Hudewenz, A.; Pufal, G.; Bogeholz, A.L.; Klein, A.M. Cross-Pollination Benefits Differ among Oilseed Rape Varieties. J. Agric. Sci. 2014, 152, 770–778. [Google Scholar] [CrossRef]
- Garratt, M.P.D.; Coston, D.J.; Truslove, C.L.; Lappage, M.G.; Polce, C.; Dean, R.; Biesmeijer, J.C.; Potts, S.G. The Identity of Crop Pollinators Helps Target Conservation for Improved Ecosystem Services. Biol. Conserv. 2014, 169, 128–135. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chambó, E.D.; De Oliveira, N.T.E.; Garcia, R.C.; Duarte-Júnior, J.B.; Ruvolo-Takasusuki, M.C.C.; Toledo, V.A. Pollination of Rapeseed (Brassica Napus) by Africanized Honeybees (Hymenoptera: Apidae) on Two Sowing Dates. An. Da Acad. Bras. De Cienc. 2014, 86, 2087–2100. [Google Scholar] [CrossRef] [PubMed]
- Blochtein, B.; Nunes-Silva, P.; Halinski, R.; Lopes, L.; Witter, S. Comparative Study of the Floral Biology and of the Response of Productivity to Insect Visitation in Two Rapeseed Cultivars (Brassica Napus L.) in Rio Grande Do Sul. Braz. J. Biol. 2014, 74, 787–794. [Google Scholar] [CrossRef] [Green Version]
- Bartomeus, I.; Gagic, V.; Bommarco, R. Pollinators, Pests and Soil Properties Interactively Shape Oilseed Rape Yield. Basic Appl. Ecol. 2015, 16, 737–745. [Google Scholar] [CrossRef] [Green Version]
- Witter, S.; Nunes-Silva, P.; Lisboa, B.B.; Tirelli, F.P.; Sattler, A.; Hilgert-Moreira, S.B.; Blochtein, B. Stingless Bees as Alternative Pollinators of Canola. J. Econ. Entomol. 2015, 108, 880–886. [Google Scholar] [CrossRef]
- Marini, L.; Tamburini, G.; Petrucco-Toffolo, E.; Lindström, S.A.M.; Zanetti, F.; Mosca, G.; Bommarco, R. Crop Management Modifies the Benefits of Insect Pollination in Oilseed Rape. Agric. Ecosyst. Environ. 2015, 207, 61–66. [Google Scholar] [CrossRef]
- Kamel, S.M.; Mahfouz, H.M.; Blal, A.E.-F.H.; Said, M.; Mahmoud, M.F. Diversity of Insect Pollinators with Reference to Their Impact on Yield Production of Canola (Brassica Napus L.) in Ismailia, Egypt. Pestic. I Fitomedicina 2015, 30, 161–168. [Google Scholar] [CrossRef]
- Sutter, L.; Albrecht, M. Synergistic Interactions of Ecosystem Services: Florivorous Pest Control Boosts Crop Yield Increase through Insect Pollination. Proc. R. Soc. B Biol. Sci. 2016, 283, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Samnegård, U.; Hambäck, P.A.; Lemessa, D.; Nemomissa, S.; Hylander, K. A Heterogeneous Landscape Does Not Guarantee High Crop Pollination. Proc. R. Soc. B Biol. Sci. 2016, 283, 20161472. [Google Scholar] [CrossRef] [PubMed]
- Lindström, S.A.M.; Herbertsson, L.; Rundlöf, M.; Smith, H.G.; Bommarco, R. Large-Scale Pollination Experiment Demonstrates the Importance of Insect Pollination in Winter Oilseed Rape. Oecologia 2016, 180, 759–769. [Google Scholar] [CrossRef] [PubMed]
- van Gils, S.; van der Putten, W.H.; Kleijn, D. Can Above-Ground Ecosystem Services Compensate for Reduced Fertilizer Input and Soil Organic Matter in Annual Crops? J. Appl. Ecol. 2016, 53, 1186–1194. [Google Scholar] [CrossRef] [Green Version]
- Zou, Y.; Xiao, H.; Bianchi, F.J.J.A.; Jauker, F.; Luo, S.; van der Werf, W. Wild Pollinators Enhance Oilseed Rape Yield in Small-Holder Farming Systems in China. BMC Ecol. 2017, 17, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fuzaro, L.; Xavier, N.L.; Carvalho, F.J.; Silva, F.A.N.; Carvalho, S.M.; Andaló, V. Influence of Pollination on Canola Seed Production in the Cerrado of Uberlândia, Minas Gerais State, Brazil. Acta Scientiarum. Agron. 2018, 40, e39315. [Google Scholar] [CrossRef] [Green Version]
- Garratt, M.P.D.; Bishop, J.; Degani, E.; Potts, S.G.; Shaw, R.F.; Shi, A.; Roy, S. Insect Pollination as an Agronomic Input: Strategies for Oilseed Rape Production. J. Appl. Ecol. 2018, 55, 2834–2842. [Google Scholar] [CrossRef] [Green Version]
- Perrot, T.; Gaba, S.; Roncoroni, M.; Gautier, J.-L.; Bretagnolle, V. Bees Increase Oilseed Rape Yield under Real Field Conditions. Agric. Ecosyst. Environ. 2018, 266, 39–48. [Google Scholar] [CrossRef]
- Adamidis, G.C.; Cartar, R.V.; Melathopoulos, A.P.; Pernal, S.F.; Hoover, S.E. Pollinators Enhance Crop Yield and Shorten the Growing Season by Modulating Plant Functional Characteristics: A Comparison of 23 Canola Varieties. Sci. Rep. 2019, 9, 14208. [Google Scholar] [CrossRef]
- Mazzilli, S.R.; Abbate, S.; Silva, H.; Mendoza, Y. Apis Mellifera Visitation Enhances Productivity in Rapeseed. J. Apic. Res. 2020, 1–9. [Google Scholar] [CrossRef]
- Varma, S.K.; Joshi, N.K. Studies on the Role of Honey Bees in the Pollination of Cauliflower (Brassica Oleracea Var. Botrytis). Indian Bee J. 1983, 45, 52–53. [Google Scholar]
- Tewari, G.N.; Singh, K. Studies on Insect Pollinators in Relation to Seed Production in Cauliflower (Brassica Oleracea Var. Botrytis L.). Indian Bee J. 1983, 54–55. [Google Scholar]
- Kumar, J.; Gupta, J.K.; Mishra, R.C.; Dogra, G.S. Pollination Studies in Some Cultivars of Cauliflower (Brassica Oleracea Var. Botrytis L.). Indian Bee J. 1988, 50, 93–95. [Google Scholar]
- Verma, L.R.; Partap, U. Foraging Behaviour of Apis Cerana on Cauliflower and Cabbage and Its Impact on Seed Production. J. Apic. Res. 1994, 33, 231–236. [Google Scholar] [CrossRef]
- Sharma, D.; Abrol, D.P.; Kumar, M.; Singh, S.K.; Singh, P.K. Pollinator Diversity and Its Impact on Cauliflower (Brassica Campestris Var. Botrytis) Pollination. Ann. Agri Bio Res. 2013, 18, 383–385. [Google Scholar]
- Mishra, R.C.; Kumar, J.; Gupta, J.K. The Effect of Mode of Pollination on Yield and Oil Potential of Brassica Campestris L. Var. Sarson with Observations on Insect Pollinators. J. Apic. Res. 1988, 27, 186–189. [Google Scholar] [CrossRef]
- Singh, R.P.; Singh, P.N. Impact of Bee Pollination on Seed Yield, Carbohydrate Composition and Lipid Composition of Mustard Seed. J. Apic. Res. 1992, 31, 128–133. [Google Scholar] [CrossRef]
- Khan, B.M.; Chaudhry, M.I. Comparative Assessment of Honeybees and Other Insects with Self-Pollination of Sarson (Brassica Campestris) in Peshawar. In The Asiatic Hive Bee: Apiculture, Biology and Role in Sustainable Development in Tropical and Subtropical Asia; Kevan, P.G., Ed.; Enviroquest Ltd.: Dresden, ON, Canada, 1995; pp. 147–150. [Google Scholar]
- Atmowidi, T.; Buchori, D.; Manuwoto, S.; Suryobroto, B.; Hidayat, P. Diversity of Pollinator Insects in Relation to Seed Set of Mustard (Brassica Rapa L.: Cruciferae). HAYATI J. Biosci. 2007, 14, 155–161. [Google Scholar] [CrossRef] [Green Version]
- Tara, J.S.; Sharma, P. Role of Honeybees and Other Insects in Enhancing the Yield of Brassica Campestris Var. Sarson. Halteres 2010, 1, 35–37. [Google Scholar]
- Pudasaini, R.; Thapa, R.; Poudel, P. Effect of Pollination on Qualitative Characteristics of Rapeseed (Brassica Campestris L. Var. Toria) Seed in Chitwan, Nepal. Int. J. Biol. Food Vet. Agric. Eng. 2014, 8, 1278–1281. [Google Scholar]
- Pudasaini, R.; Thapa, R.B. Effect of Pollination on Rapeseed (Brassica Campestris L. Var. Toria) Production in Chitwan, Nepal. J. Agric. Environ. 2014, 15, 41–45. [Google Scholar] [CrossRef] [Green Version]
- Sharma, D.; Abrol, D.P. Effect of Insecticides on Foraging Behaviour and Pollination Role of Apis Mellifera L. (Hymenoptera: Apidae) on Toria (Brassica Campestris Var. Toria) Crop. Egypt. J. Biol. 2014, 16, 79–86. [Google Scholar] [CrossRef]
- Toivonen, M.; Herzon, I.; Rajanen, H.; Toikkanen, J.; Kuussaari, M. Late Flowering Time Enhances Insect Pollination of Turnip Rape. J. Appl. Ecol. 2019, 56, 1164–1175. [Google Scholar] [CrossRef] [Green Version]
- Subedi, N.; Subedi, I.P. Pollinator Insects and Their Impact on Crop Yield of Mustard in Kusma, Parbat, Nepal. J. Inst. Sci. Technol. 2019, 24, 68–75. [Google Scholar] [CrossRef] [Green Version]
- Devkota, K.; dos Santos, C.F.; Blochtein, B. Higher Richness and Abundance of Flower-Visiting Insects Close to Natural Vegetation Provide Contrasting Effects on Mustard Yields. J. Insect. Conserv. 2021, 25, 1–11. [Google Scholar] [CrossRef]
- Partap, U.; Verma, L.R. Pollination of Radish by Apis Cerana. J. Apic. Res. 1994, 33, 237–241. [Google Scholar] [CrossRef]
- Verma, S.K.; Phogat, K.P.S. Impact of Pollination by Honeybee (Apis Cerana Indica) on the Yield Gain of Radish under Valley Conditions of Himalayan Hills of U. P. (India). Indian Bee J. 1994, 56, 183–186. [Google Scholar]
- Priti; Mishra, R.C.; Sihag, R.C. Role of Insect Pollination in Seed Production of Radish (Raphanus Sativus L.). Seed Res. 2001, 29, 231–234. [Google Scholar]
- Kapila, R.K.; Singh, H.B.; Sharma, J.K.; Lata, S.; Thakur, S.P. Effect of Insect Pollinators on Seed Yield and Its Quality in Radish (Raphanus Sativus L.). Seed Res. 2002, 30, 142–145. [Google Scholar]
- Chandrashekhar, G.S.; Sattigi, H.N. Influence of Bee Attractants on Bee Pollination on Seed Quality and Yield in Radish. Karnataka J. Agric. Sci. 2009, 22, 777–780. [Google Scholar]
- Jakhar, P.; Kumar, Y.; Ombir; Janu, A.; Kaushik, P. Effect of Different Modes of Pollination on Quantitative and Qualitative Parameters of Radish Seed Crop. Trends Biosci. 2014, 7, 4041–4044. [Google Scholar]
- Gibson-Forty, E.V.J.; Tielbörger, K.; Seifan, M. Equivocal Evidence for a Change in Balance between Selfing and Pollinator-Mediated Reproduction in Annual Brassicaceae Growing along a Rainfall Gradient. J. Syst. Evol. 2022, 60, 196–207. [Google Scholar] [CrossRef]
- Phillips, B.B.; Williams, A.; Osborne, J.L.; Shaw, R.F. Shared Traits Make Flies and Bees Effective Pollinators of Oilseed Rape (Brassica Napus L.). Basic Appl. Ecol. 2018, 32, 66–76. [Google Scholar] [CrossRef]
- Kazda, J.; Bokšová, A.; Stejskalová, M.; Šubrt, T.; Bartoška, J.; Vlažný, P. The Factors Influencing the Pollinators Visitation of the Oilseed Rape Cultivars. Plant Soil Environ. 2019, 65, 574–580. [Google Scholar] [CrossRef]
- Morandin, L.A.; Winston, M.L. Wild Bee Abundance and Seed Production in Conventional, Organic, and Genetically Modified Canola. Ecol. Appl. 2005, 15, 871–881. [Google Scholar] [CrossRef] [Green Version]
- Chatterjee, A.; Chatterjee, S.; Smith, B.; Cresswell, J.E.; Basu, P. Predicted Thresholds for Natural Vegetation Cover to Safeguard Pollinator Services in Agricultural Landscapes. Agric. Ecosyst. Environ. 2020, 290, 106785. [Google Scholar] [CrossRef]
- Stanley, J.; Sah, K.; Subbanna, A.R.N.S. How Efficient Is the Asian Honey Bee, Apis Cerana in Pollinating Mustard, Brassica Campestris Var. Toria? Pollination Behavior, Pollinator Efficiency, Pollinator Requirements and Impact of Pollination. J. Apic. Res. 2017, 56, 439–451. [Google Scholar] [CrossRef]
- Sihag, R.C. Some Unresolved Issues of Measuring the Efficiency of Pollinators: Experimental Testing and Assessing the Predictive Power of Different Methods. Int. J. Ecol. 2018, 2018, 3904973. [Google Scholar] [CrossRef]
- Prasad, D.; Hameed, S.P.; Singh, R.; Singh, B. Foraging Behaviour of Insect Pollinators on Brown Mustard, Brassica Juncea in Bihar, India. Indian Bee J. 1989, 51, 131–133. [Google Scholar]
- Chand, H.; Singh, R.; Hameed, S.F. Population Dynamics of Honeybees and Insect Pollinators on Indian Mustard, Brassica Juncea L. J. Entomol. Res. 1994, 18, 233–239. [Google Scholar]
- Chaudhary, O.P. Abundance of Wild Pollinators on Rapeseed and Mustard. Insect Environ. 2001, 7, 141–142. [Google Scholar]
- Bhowmik, K.B.; Mitra, B.; Bhadra, K. Diversity of Insect Pollinators and Their Effect on the Crop Yield of Brassica Juncea L., NPJ-93, from Southern West Bengal. Int. J. Recent Sci. Res. 2014, 5, 1207–1213. [Google Scholar]
- Goswami, V.; Khan, M.S.; Srivastava, P. Association of Different Insect Pollinators and Their Relative Abundance on Blossoms of Mustard (Brassica Juncea L.). Environ. Ecol. 2014, 32, 368–371. [Google Scholar]
- Kunjwal, N.; Kumar, Y.; Khan, M.S. Flower-Visiting Insect Pollinators of Brown Mustard, Brassica Juncea (L.) Czern and Coss and Their Foraging Behaviour under Caged and Open Pollination. Afr. J. Agric. Res. 2014, 9, 1278–1286. [Google Scholar]
- Kumari, S.; Chhuneja, P.K.; Singh, J.; Choudhary, A. Relative Abundance and Diversity of Insects on Brassica Juncea L. Czern under North-Western Plains of India. J. Exp. Zool. India 2015, 18, 165–171. [Google Scholar]
- Das, R.; Jha, S. Record of Insect Pollinators and Their Abundance on Indian Mustard (Brassica Juncea L.) in New Alluvial Zone of West Bengal. Int. J. Pure Appl. Biosci. 2018, 6, 848–853. [Google Scholar] [CrossRef]
- Giri, S.; Chandra, U.; Jaiswal, R.; Singh, G.; Gautam, M.P. Study the Abundance of Insect Pollinators/Visitors in Rapeseed-Mustard (Brassica Juncea L.). J. Entomol. Zool. Stud. 2018, 6, 2563–2567. [Google Scholar]
- Woodcock, B.A.; Edwards, M.; Redhead, J.; Meek, W.R.; Nuttall, P.; Falk, S.; Nowakowski, M.; Pywell, R.F. Crop Flower Visitation by Honeybees, Bumblebees and Solitary Bees: Behavioural Differences and Diversity Responses to Landscape. Agric. Ecosyst. Environ. 2013, 171, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Bailey, S.; Requier, F.; Nusillard, B.; Roberts, S.P.M.; Potts, S.G.; Bouget, C. Distance from Forest Edge Affects Bee Pollinators in Oilseed Rape Fields. Ecol. Evol. 2014, 4, 370–380. [Google Scholar] [CrossRef]
- Riedinger, V.; Mitesser, O.; Hovestadt, T.; Steffan-Dewenter, I.; Holzschuh, A. Annual Dynamics of Wild Bee Densities: Attractiveness and Productivity Effects of Oilseed Rape. Ecology 2015, 96, 1351–1360. [Google Scholar] [CrossRef]
- Ouvrard, P.; Quinet, M.; Jacquemart, A.-L. Breeding System and Pollination Biology of Belgian Oilseed Rape Cultivars (Brassica Napus). Crop Sci. 2017, 57, 1455–1463. [Google Scholar] [CrossRef]
- Zou, Y.; Bianchi, F.; Jauker, F.; Xiao, H.J.; Chen, J.H.; Cresswell, J.; Luo, S.D.; Huang, J.K.; Deng, X.Z.; Hou, L.L.; et al. Landscape Effects on Pollinator Communities and Pollination Services in Small-Holder Agroecosystems. Agric. Ecosyst. Environ. 2017, 246, 109–116. [Google Scholar] [CrossRef]
- Akhtar, T.; Aziz, M.A.; Naeem, M.; Ahmed, M.S.; Bodlah, I. Diversity and Relative Abundance of Pollinator Fauna of Canola (Brassica Napus L. Var Chakwal Sarsoon) with Managed Apis Mellifera L. in Pothwar Region, Gujar Khan, Pakistan. Pak. J. Zool. 2018, 50, 567–573. [Google Scholar] [CrossRef]
- Fuzaro, L.; Andaló, V.; Carvalho, S.M.; Silva, F.A.N.; Carvalho, F.J.; Rabelo, L.S. Floral Visitors of Canola (Brassica Napus L.) Hybrids in Cerrado Mineiro Region, Brazil. Arq. Do Inst. Biológico 2019, 86, e1312018. [Google Scholar]
- Sinha, S.N.; Chakrabarty, A.K. Studies on Pollination by Honeybees on Early Cauliflower and Its Effects on Seed Yield and Quality. Seed Res. 1985, 13, 115–119. [Google Scholar]
- Priti; Sihag, R.C. Diversity, Visitation Frequency, Foraging Behaviour and Pollinating Efficiency of Insect Pollinators Visiting Cauliflower (Brassica Oleracea L. Var. Botrytis Cv. Hazipur Local) Blossoms. Indian Bee J. 1997, 59, 230–237. [Google Scholar]
- Rana, V.K.; Kapoor, K.S.; Raj, D. Comparative Pollinating Activities of Apis Cerana Indica F. and Apis Mellifera L. on Cauliflower (Brassica Oleracea Var. Botrytis). J. Entomol. Res. 1999, 23, 141–148. [Google Scholar]
- Selvakumar, P.; Sinha, S.N.; Pandita, V.K. Abundance and Diurnal Rhythm of Honeybees Visiting Hybrid Seed Production Plots of Cauliflower (Brassica Oleracea Var. Botrytis L.). J. Apic. Res. 2006, 45, 7–15. [Google Scholar] [CrossRef]
- Srivastava, K.; Sharma, D.; Singh, S.; Ahmad, H. Foraging Behaviour of Honeybees in Seed Production of Brassica Oleracea Var. Italica Plenck. Bangladesh J. Bot. 2017, 46, 675–681. [Google Scholar]
- Rader, R.; Howlett, B.G.; Cunningham, S.A.; Westcott, D.A.; Edwards, W. Spatial and Temporal Variation in Pollinator Effectiveness: Do Unmanaged Insects Provide Consistent Pollination Services to Mass Flowering Crops? J. Appl. Ecol. 2012, 49, 126–134. [Google Scholar] [CrossRef]
- Mesa, L.A.; Howlett, B.G.; Grant, J.E.; Didham, R.K. Changes in the Relative Abundance and Movement of Insect Pollinators during the Flowering Cycle of Brassica Rapa Crops: Implications for Gene Flow. J. Insect Sci. 2013, 13, 13. [Google Scholar] [CrossRef] [Green Version]
- Shakeel, M.; Ali, H.; Ahmad, S.; Said, F.; Khan, K.A.; Bashir, M.A.; Anjum, S.I.; Islam, W.; Ghramh, H.A.; Ansari, M.J.; et al. Insect Pollinators Diversity and Abundance in Eruca Sativa Mill. (Arugula) and Brassica Rapa L. (Field Mustard) Crops. Saudi J. Biol. Sci. 2019, 26, 1704–1709. [Google Scholar] [CrossRef] [PubMed]
- Tasker, P.; Reid, C.; Young, A.D.; Threlfall, C.G.; Latty, T. If You Plant It, They Will Come: Quantifying Attractiveness of Exotic Plants for Winter-Active Flower Visitors in Community Gardens. Urban Ecosyst. 2020, 23, 345–354. [Google Scholar] [CrossRef]
- Eberle, C.A.; Thom, M.D.; Nemec, K.T.; Forcella, F.; Lundgren, J.G.; Gesch, R.W.; Riedell, W.E.; Papiernik, S.K.; Wagner, A.; Peterson, D.H.; et al. Using Pennycress, Camelina, and Canola Cash Cover Crops to Provision Pollinators. Ind. Crops Prod. 2015, 75, 20–25. [Google Scholar] [CrossRef]
- Thom, M.D.; Eberle, C.A.; Forcella, F.; Gesch, R.; Weyers, S.; Lundgren, J.G. Nectar Production in Oilseeds: Food for Pollinators in an Agricultural Landscape. Crop Sci. 2016, 56, 727–739. [Google Scholar] [CrossRef]
- Thom, M.D.; Eberle, C.A.; Forcella, F.; Gesch, R.; Weyers, S. Specialty Oilseed Crops Provide an Abundant Source of Pollen for Pollinators and Beneficial Insects. J. Appl. Entomol. 2018, 142, 211–222. [Google Scholar] [CrossRef]
- Amy, C.; Noël, G.; Hatt, S.; Uyttenbroeck, R.; Van De Meutter, F.; Genoud, D.; Francis, F. Flower Strips in Wheat Intercropping System: Effect on Pollinator Abundance and Diversity in Belgium. Insects 2018, 9, 114. [Google Scholar] [CrossRef] [Green Version]
- Gallai, N.; Salles, J.-M.; Settele, J.; Vaissière, B.E. Economic Valuation of the Vulnerability of World Agriculture Confronted with Pollinator Decline. Ecol. Econ. 2009, 68, 810–821. [Google Scholar] [CrossRef]
- Junqueira, C.N.; Pereira, R.A.S.; da Silva, R.C.; Alves Cardoso Kobal, R.O.; Araújo, T.N.; Prato, A.; Pedrosa, J.; Martínez-Martínez, C.A.; Castrillon, K.P.; Felício, D.T.; et al. Do Apis and Non-Apis Bees Provide a Similar Contribution to Crop Production with Different Levels of Pollination Dependency? A Review Using Meta-Analysis. Ecol. Entomol. 2021, 47, 76–83. [Google Scholar] [CrossRef]
- Rollin, O.; Garibaldi, L.A. Impacts of Honeybee Density on Crop Yield: A Meta-Analysis. J. Appl. Ecol. 2019, 56, 1152–1163. [Google Scholar] [CrossRef]
- Page, M.L.; Nicholson, C.C.; Brennan, R.M.; Britzman, A.T.; Greer, J.; Hemberger, J.; Kahl, H.; Müller, U.; Peng, Y.; Rosenberger, N.M.; et al. A Meta-Analysis of Single Visit Pollination Effectiveness Comparing Honeybees and Other Floral Visitors. Am. J. Bot. 2021, 108, 2196–2207. [Google Scholar] [CrossRef]
- Wolowski, M.; Ashman, T.-L.; Freitas, L. Meta-Analysis of Pollen Limitation Reveals the Relevance of Pollination Generalization in the Atlantic Forest of Brazil. PLoS ONE 2014, 9, e89498. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bishop, J.; Nakagawa, S. Quantifying Crop Pollinator Dependence and Its Heterogeneity Using Multi-Level Meta-Analysis. J. Appl. Ecol. 2021, 58, 1030–1042. [Google Scholar] [CrossRef]
- Cooley, H.; Vallejo-Marín, M. Buzz-Pollinated Crops: A Global Review and Meta-Analysis of the Effects of Supplemental Bee Pollination in Tomato. J. Econ. Entomol. 2021, 114, 505–519. [Google Scholar] [CrossRef] [PubMed]
- Westcott, L.; Nelson, D. Canola Pollination: An Update. Bee World 2001, 82, 115–129. [Google Scholar] [CrossRef]
- Adegas, J.E.B.; Nogueira Couto, R.H. Entomophilous Pollination in Rape (Brassica Napus L Var Oleifera) in Brazil. Apidologie 1992, 23, 203–209. [Google Scholar] [CrossRef] [Green Version]
- Sabbahi, R.; de Oliveira, D.; Marceau, J. Does the Honeybee (Hymenoptera: Apidae) Reduce the Blooming Period of Canola? J. Agron. Crop Sci. 2006, 192, 233–237. [Google Scholar] [CrossRef]
- Mesquida, J.; Renard, M.; Pierre, J.-S. Rapeseed (Brassica Napus) Productivity: The Effect of Honeybees (Apis Mellifera L.) and Different Polination Conditions in Cage and Field Tests. Apidologie 1988, 19, 51–72. [Google Scholar] [CrossRef] [Green Version]
- Habekotté, B. Options for Increasing Seed Yield of Winter Oilseed Rape (Brassica Napus L.): A Simulation Study. Field Crops Res. 1997, 54, 109–126. [Google Scholar] [CrossRef]
- Kitashiba, H.; Nasrallah, J.B. Self-Incompatibility in Brassicaceae Crops: Lessons for Interspecific Incompatibility. Breed Sci. 2014, 64, 23–37. [Google Scholar] [CrossRef] [Green Version]
- Gómez, J.M. Effectiveness of Ants as Pollinators of Lobularia Maritima: Effects on Main Sequential Fitness Components of the Host Plant. Oecologia 2000, 122, 90–97. [Google Scholar] [CrossRef]
- Picó, F.X.; Retana, J. The Flowering Pattern of the Perennial Herb Lobularia Maritima: An Unusual Case in the Mediterranean Basin. Acta Oecologica 2001, 22, 209–217. [Google Scholar] [CrossRef]
- Garibaldi, L.A.; Steffan-Dewenter, I.; Winfree, R.; Aizen, M.A.; Bommarco, R.; Cunningham, S.A.; Kremen, C.; Carvalheiro, L.G.; Harder, L.D.; Afik, O.; et al. Wild Pollinators Enhance Fruit Set of Crops Regardless of Honey Bee Abundance. Science 2013, 339, 1608–1611. [Google Scholar] [CrossRef] [PubMed]
- Rader, R.; Bartomeus, I.; Garibaldi, L.A.; Garratt, M.P.D.; Howlett, B.G.; Winfree, R.; Cunningham, S.A.; Mayfield, M.M.; Arthur, A.D.; Andersson, G.K.S.; et al. Non-Bee Insects Are Important Contributors to Global Crop Pollination. Proc. Natl. Acad. Sci. USA 2016, 113, 146–151. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Földesi, R.; Howlett, B.G.; Grass, I.; Batáry, P. Larger Pollinators Deposit More Pollen on Stigmas across Multiple Plant Species—A Meta-Analysis. J. Appl. Ecol. 2021, 58, 699–707. [Google Scholar] [CrossRef]
- Sutter, L.; Albrecht, M.; Jeanneret, P. Landscape Greening and Local Creation of Wildflower Strips and Hedgerows Promote Multiple Ecosystem Services. J. Appl. Ecol. 2018, 55, 612–620. [Google Scholar] [CrossRef]
- Ouvrard, P.; Jacquemart, A.-L. Review of Methods to Investigate Pollinator Dependency in Oilseed Rape (Brassica Napus). Field Crops Res. 2019, 231, 18–29. [Google Scholar] [CrossRef]
- Mänd, M.; Williams, I.H.; Viik, E.; Karise, R. Oilseed Rape, Bees and Integrated Pest Management. In Biocontrol-Based Integrated Management of Oilseed Rape Pests; Springer: Berlin/Heidelberg, Germany, 2010; pp. 357–379. [Google Scholar]
- Abrol, D.P.; Shankar, U. Pollination in Oil Crops: Recent Advances and Future Strategies. In Technological Innovations in Major World Oil Crops; Springer: Berlin/Heidelberg, Germany, 2012; Volume 2, pp. 221–267. [Google Scholar]
- Badenes-Pérez, F.R.; Shelton, A.M. Pest Management and Other Agricultural Practices among Farmers Growing Cruciferous Crops in the Central and Western Highlands of Kenya and the Western Himalayas of India. Int. J. Pest Manag. 2006, 52, 303–315. [Google Scholar] [CrossRef]
- Pudasaini, R.; Thapa, R.B.; Tiwari, S. Farmers Perception on Effect of Pesticide on Insect Pollinators at Padampur and Jutpani Vdcs, Chitwan, Nepal. Int. J. Appl. Sci. Biotechnol. 2016, 4, 64–66. [Google Scholar] [CrossRef]
- Venturini, E.M.; Drummond, F.A.; Hoshide, A.K.; Dibble, A.C.; Stack, L.B. Pollination Reservoirs for Wild Bee Habitat Enhancement in Cropping Systems: A Review. Agroecol. Sustain. Food Syst. 2017, 41, 101–142. [Google Scholar] [CrossRef]
- Phillips, B.B.; Wallace, C.; Roberts, B.R.; Whitehouse, A.T.; Gaston, K.J.; Bullock, J.M.; Dicks, L.V.; Osborne, J.L. Enhancing Road Verges to Aid Pollinator Conservation: A Review. Biol. Conserv. 2020, 250, 108687. [Google Scholar] [CrossRef]
- Williams, N.M.; Ward, K.L.; Pope, N.; Isaacs, R.; Wilson, J.; May, E.A.; Ellis, J.; Daniels, J.; Pence, A.; Ullmann, K.; et al. Native Wildflower Plantings Support Wild Bee Abundance and Diversity in Agricultural Landscapes across the United States. Ecol. Appl. 2015, 25, 2119–2131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wratten, S.D.; Gillespie, M.; Decourtye, A.; Mader, E.; Desneux, N. Pollinator Habitat Enhancement: Benefits to Other Ecosystem Services. Agric. Ecosyst. Environ. 2012, 159, 112–122. [Google Scholar] [CrossRef]
- Martin, E.A.; Dainese, M.; Clough, Y.; Báldi, A.; Bommarco, R.; Gagic, V.; Garratt, M.P.D.; Holzschuh, A.; Kleijn, D.; Kovács-Hostyánszki, A.; et al. The Interplay of Landscape Composition and Configuration: New Pathways to Manage Functional Biodiversity and Agroecosystem Services across Europe. Ecol. Lett. 2019, 22, 1083–1094. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Badenes-Pérez, F.R. Trap Crops and Insectary Plants in the Order Brassicales. Ann. Entomol. Soc. Am. 2019, 112, 318–329. [Google Scholar] [CrossRef]
Yield Parameter and Breeding System | Heterogeneity Statistics | Begg and Mazumdar Rank Correlation | ||||||
---|---|---|---|---|---|---|---|---|
Tau2 | SE | df | I2 | Q | p-Value | Value | p-Value | |
Y SC | 0.145 | 0.302 | 6 | 27.36% | 7.240 | 0.299 | 0.048 | 1.000 |
Y SI | 31.660 | 14.988 | 10 | 97.75% | 153.147 | <0.001 | 0.418 | 0.087 |
WS SC | 0.661 | 0.476 | 10 | 65.37% | 41.585 | <0.001 | 0.091 | 0.761 |
WS SI | 251.094 | 122.948 | 9 | 99.83% | 288.722 | <0.001 | 0.600 | 0.017 |
SQS SC | 4.586 | 2.140 | 11 | 94.68% | 96.480 | <0.001 | 0.424 | 0.063 |
SQS SI | 9.914 | 5.783 | 7 | 94.98% | 127.520 | <0.001 | 0.714 | 0.014 |
NSQ SC | 6.888 | 3.319 | 11 | 95.21% | 251.043 | <0.001 | 0.485 | 0.031 |
NSQ SI | 111.376 | 56.969 | 8 | 99.59% | 1197.316 | <0.001 | 0.500 | 0.075 |
NSSQ SC | 2.149 | 0.705 | 22 | 98.03% | 778.747 | <0.001 | 0.099 | 0.530 |
NSSQ SI | 7.928 | 3.193 | 15 | 98.53% | 294.886 | <0.001 | 0.467 | 0.011 |
Plant | Number of studies reporting main pollinators in a given family | Countries | References | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
A | OA | An | B | C | Co | Coll | E | F | H | M | Mu | P | S | Se | St | Sy | T | V | |||
B. carinata | 3 | - | 2 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | I, US | [31,40,50] |
B. juncea | 14 | 4 | 4 | - | - | 1 | - | - | 1 | 3 | 1 | 2 | - | - | 1 | - | 3 | - | 1 | B, I | [31,40,52,54,56,58,118,119,120,121,122,123,124,125,126] |
B. napus | 12 | 8 | 4 | - | 1 | - | - | 1 | - | 2 | 1 | 1 | 2 | - | - | - | 4 | - | - | Be, Br, C, F, G, I, Ir, UK, P, S | [20,31,33,40,66,67,127,128,129,130,131,132,133] |
B. oleracea | 8 | 1 | 2 | - | - | - | - | - | - | 2 | - | - | - | - | - | - | 2 | - | - | I | [31,91,93,134,135,136,137,138] |
B. rapa | 11 | 5 | 3 | - | - | 1 | 2 | - | - | 3 | 1 | - | - | 2 | - | 1 | 7 | 1 | - | A, I, N, NZ, P | [15,31,40,97,103,104,115,116,117,120,139,140,141,142] |
C. sativa | 2 | - | 1 | - | - | - | - | - | - | 2 | - | - | - | - | - | - | 2 | - | - | Be, G, US | [38,143,144,145,146] |
E. sativa | 3 | 1 | 2 | - | - | - | - | - | - | - | - | - | - | - | - | - | 1 | - | - | I, P | [31,40,141] |
R. sativus | 4 | - | 2 | - | - | - | - | - | - | 1 | - | - | - | - | - | - | 1 | - | - | I, P | [31,40,107,108] |
S. alba | 2 | - | 2 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | I | [31,40] |
Total | 59 | 19 | 22 | 1 | 1 | 2 | 2 | 1 | 1 | 13 | 3 | 3 | 2 | 2 | 1 | 1 | 20 | 1 | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Badenes-Pérez, F.R. Benefits of Insect Pollination in Brassicaceae: A Meta-Analysis of Self-Compatible and Self-Incompatible Crop Species. Agriculture 2022, 12, 446. https://doi.org/10.3390/agriculture12040446
Badenes-Pérez FR. Benefits of Insect Pollination in Brassicaceae: A Meta-Analysis of Self-Compatible and Self-Incompatible Crop Species. Agriculture. 2022; 12(4):446. https://doi.org/10.3390/agriculture12040446
Chicago/Turabian StyleBadenes-Pérez, Francisco Rubén. 2022. "Benefits of Insect Pollination in Brassicaceae: A Meta-Analysis of Self-Compatible and Self-Incompatible Crop Species" Agriculture 12, no. 4: 446. https://doi.org/10.3390/agriculture12040446
APA StyleBadenes-Pérez, F. R. (2022). Benefits of Insect Pollination in Brassicaceae: A Meta-Analysis of Self-Compatible and Self-Incompatible Crop Species. Agriculture, 12(4), 446. https://doi.org/10.3390/agriculture12040446