Phenolic Acid Composition and Antioxidant Activity of Whole and Defatted Seeds of Italian Hemp Cultivars: A Two-Year Case Study
Abstract
:1. Introduction
2. Material and Methods
2.1. Plant Materials and Agronomic Management
2.2. Chemical Analysis
2.3. Proximate Composition
2.4. Extraction of Phenolic Compounds
2.5. Determination of Total Phenolic Content
2.6. Determination of Condensed Tannins
2.7. Extraction and Determination of Carotenoids
2.8. Antioxidant Activity Measured by ABTS Assay
2.9. Extraction and Determination of Free and Bound Phenolic Acids and Simple Flavonoids
2.10. Statistical Analysis
3. Results
3.1. Phytochemical Composition and Antioxidant Activity of Whole and Defatted Seeds: Effects of Genotype and Year
3.2. Phenolic Composition in Whole and Defatted Seeds: Effects of Genotype and Year
3.3. Correlations
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Callaway, J.C. Hemp seed as a nutritional resource: An overview. Euphytica 2004, 140, 65–72. [Google Scholar] [CrossRef]
- Crescente, G.; Piccolella, S.; Esposito, A.; Scognamiglio, M.; Fiorentino, A.; Pacifico, S. Chemical composition and nutraceutical properties of hempseed: An ancient food with actual functional value. Phytochem. Rev. 2018, 17, 733–749. [Google Scholar] [CrossRef]
- Galasso, I.; Russo, R.; Mapelli, S.; Ponzoni, E.; Brambilla, I.M.; Battelli, G.; Reggiani, R. Variability in seed traits in a collection of Cannabis sativa L. genotypes. Front. Plant Sci. 2016, 7, 688–697. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frassinetti, S.; Moccia, E.; Caltavuturo, L.; Gabriele, M.; Longo, V.; Bellani, L.; Giorgi, G.; Giorgetti, L. Nutraceutical potential of hemp (Cannabis sativa L.) seeds and sprouts. Food Chem. 2018, 262, 56–66. [Google Scholar] [CrossRef]
- Walker, C.G.; Jebb, S.A.; Calder, P.C. Stearidonic acid as a supplemental source of omega-3 polyunsaturated fatty acids to enhance status for improved human health. Nutrition 2013, 29, 363–369. [Google Scholar] [CrossRef]
- Chen, T.; He, J.; Zhang, J.; Zhang, H.; Qian, P.; Hao, J.; Li, L. Analytical Characterization of Hempseed (Seed of Cannabis sativa L.) Oil from Eight Regions in China. J. Diet. Supll. 2010, 7, 117–129. [Google Scholar] [CrossRef]
- Monserrat de la Paz, S.; Marin-Anguilar, F.; Garcia-gimenez, M.D.; Fernandez-Arche, M.A. Hemp (Cannabis sativa L.) seed oil: Analytical and phytochemical characterization of the unsaponifiable fraction. J. Agric. Food Chem. 2014, 62, 1105–1110. [Google Scholar] [CrossRef]
- Tang, C.H.; Ten, Z.; Wang, X.S.; Yang, X.Q. Physicochemical and functional properties of hemp (Cannabis sativa L.) protein isolate. J. Agric. Food Chem. 2006, 54, 8945–8950. [Google Scholar] [CrossRef]
- Kim, J.-J.; Lee, M.-Y. Isolation and characterization of edestin from Cheungsam hempseed. J. Appl. Biol. Chem. 2011, 54, 84–88. [Google Scholar] [CrossRef] [Green Version]
- Martinez, J.R.; Monserrat-de la Paz, S.; De la Puerta, R.; Garcia-Gimenez, M.D.; Fernandez-Arche, M.A. Characterization of bioactive compounds in defatted hempseed (Cannabis sativa L.) by UHPLC-HRMS/MS and antiflammatory activity in primary human monocytes. Food Func. 2020, 11, 4057–4066. [Google Scholar] [CrossRef]
- Chen, T.; He, J.; Zhang, J.; Li, X.; Zhang, H.; Hao, J.; Li, L. The isolation and identification of two compounds with predominant radical scavenging activity in hempseed (seed of Cannabis sativa L.). Food Chem. 2012, 134, 1030–1037. [Google Scholar] [CrossRef]
- Pojić, M.; Mišan, A.; Sakač, M.; Hadnađev, T.D.; Šarić, B.; Milovanović, I.; Hadnađev, M. Characterization of Byproducts Originating from Hemp Oil Processing. J. Agric. Food Chem. 2014, 62, 12436–12442. [Google Scholar] [CrossRef]
- Lourenço, S.C.; Moldão-Martins, M.; Alves, V.D. Antioxidants of Natural Plant Origins: From Sources to Food Industry Applications. Molecules 2019, 24, 4132. [Google Scholar] [CrossRef] [Green Version]
- Irakli, M.; Tsaliki, E.; Kalivas, A.; Kleisiaris, F.; Sarrou, E.; Cook, C. Effect of genotype and growing year on the nutritional, phytochemical and antioxidant properties of industrial hemp. Antioxidants 2019, 8, 491. [Google Scholar] [CrossRef] [Green Version]
- American Association of Cereal Chemists (AACC). Approved Method of AACC, 11th ed.; Methods 46-30.01 (protein); American Association of Cereal Chemists (AACC): St Paul, MN, USA, 2012. [Google Scholar]
- Beta, T.; Nam, S.; Dexter, J.E.; Sapirstein, H.D. Phenolic content and antioxidant activity of pearled wheat and roller-milled fractions. Cereal. Chem. 2005, 82, 390–393. [Google Scholar] [CrossRef]
- Fares, C.; Menga, V. Effects of toasting on the carbohydrate profile and antioxidant properties of chickpea (Cicer arietinum L.) flour added to durum wheat pasta. Food Chem. 2012, 131, 1140–1148. [Google Scholar] [CrossRef]
- Sun, B.S.; Ricardo Da Silva, J.M.; Spranger, I. Critical factors of vanillin assay for catechins and proanthocyanidins. J. Agric. Food Chem. 1998, 46, 4267–4274. [Google Scholar] [CrossRef]
- Hussain, A.; Larsson, H.; Kuktaite, R.; Olsson, M.E.; Johansson, E. Carotenoid Content in Organically Produced Wheat: Relevance for Human Nutritional Health on Consumption. Int. J. Environ. 2015, 12, 14068–14083. [Google Scholar] [CrossRef] [Green Version]
- Menga, V.; Fares, C.; Troccoli, A.; Cattivelli Land Baiano, A. Effects of Genotype, Location and Baking on the Phenolic Content and Some Antioxidant Properties of Cereal Species. Int. J. Food Sci. 2010, 45, 7–16. [Google Scholar] [CrossRef]
- Fares, C.; Platani, C.; Baiano, A.; Menga, V. Effect of processing and cooking on phenolic acid profile and antioxidant capacity of durum wheat pasta enriched with debranning fractions of wheat. Food Chem. 2010, 119, 1023–1029. [Google Scholar] [CrossRef]
- Koleckar, V.; Kubikova, K.; Rehakova, Z.; Kuca, K.; Jun, D.; Jahodar, L.; Opletal, L. Condensed and hydrolysable tannins as antioxidants influencing the health. Mini Rev. Med. Chem. 2008, 8, 436–447. [Google Scholar] [CrossRef]
- Russo, R.; Reggiani, R. Variability in antinutritional compounds in hempseed meal of Italian and French varieties. Plant 2013, 1, 25–29. [Google Scholar] [CrossRef] [Green Version]
- Glynn, C.; Ronnberg-Wastljung, A.C.; Julkunen-Tiitto, R.; Weih, M. Willow genotype, but not drought treatment, affects foliar phenolic concentrations and leaf-beetle resistance. Entomol. Exp. Appl. 2004, 113, 1–14. [Google Scholar] [CrossRef]
- Cohen, S.D.; Kennedy, J.A. Plant Metabolism and the Environment: Implications for managing phenolics. Crit. Rev. Food Sci. Nutr. 2010, 50, 620–643. [Google Scholar] [CrossRef]
Rainfall (mm) | Min. Temperature (°C) | Max. Temperature (°C) | ||||
---|---|---|---|---|---|---|
2018 | 2019 | 2018 | 2019 | 2018 | 2019 | |
April | 18.0 | 86.4 | 10.3 | 11.7 | 22.5 | 12.1 |
May | 48.2 | 151.2 | 14.8 | 11.3 | 25.6 | 20.0 |
June | 19.6 | 5.6 | 17.2 | 18.8 | 28.9 | 31.7 |
July | 80.2 | 66.0 | 19.3 | 19.7 | 31.5 | 31.7 |
August | 55.0 | 46.6 | 19.7 | 19.9 | 31.5 | 30.7 |
September | 88.4 | 71.8 | 16.0 | 15.1 | 27.0 | 25.7 |
Mean | 16.2 | 16.1 | 27.8 | 25.3 | ||
Total | 309.4 | 427.6 |
PC | β car | Lutein | TPC | CT | AA | ||
---|---|---|---|---|---|---|---|
Experimental Factors | (%) | (µg g−1) | (µg g−1) | (mgFAg−1) | (mgCEg−1) | (µmolTEg−1) | |
Carmaleonte | 19.3 c | 0.4 | 17.0 b | 4.5 | 9.9 | 4.6 | |
Whole seed | Codimono | 20.3 b | 0.5 | 23.3 ab | 3.9 | 8.8 | 6.0 |
CS | 21.9 a | 0.5 | 33.9 a | 4.4 | 8.8 | 5.3 | |
P | 0.0001 | 0.47 ns | 0.023 | 0.19 ns | 0.51 ns | 0.13 ns | |
2018 | 18.0 B | 0.6 A | 22.9 | 4.8 A | 9.9 | 6.4 A | |
2019 | 23.0 A | 0.4 AB | 26.6 | 3.8 B | 8.4 | 4.2 B | |
P | 0.0001 | 0.009 | 0.34 ns | 0.004 | 0.13 ns | 0.003 | |
Carmaleonte | 26.7 b | 0.2 | 17.4 c | 5.0 a | 13.8 a | 8.4 b | |
Defatted seed | Codimono | 25.9 b | 0.4 | 32.5 b | 3.8 b | 8.6 c | 11.3 a |
CS | 29.4 a | 0.3 | 40.4 a | 4.4 ab | 11.4 b | 11.4 a | |
P | 0.029 | 0.3 ns | 0.000 | 0.02 | 0.001 | 0.000 | |
2018 | 21.9 B | 0.3 | 27.3 B | 4.2 | 12.0 | 10.7 | |
2019 | 32.7 A | 0.3 | 33.0 A | 4.6 | 10.6 | 10.0 | |
P | 0.0001 | 0.58 ns | 0.010 | 0.19 ns | 0.06 ns | 0.11 ns |
Whole Seed | Defatted Seed | |||||||
---|---|---|---|---|---|---|---|---|
G (%) | Y (%) | GXY (%) | E (%) | G (%) | Y (%) | GXY (%) | E (%) | |
PC | 15.0 ** | 81.8 *** | 2.1 * | 1.2 | 6.5 ** | 85.0 *** | 7.4 ** | 1.1 |
β carotene | 6.7 | 56.0 ** | 13.9 | 23.4 | 24.6 | 3.0 | 20.1 | 52.3 |
Lutein | 64.0 * | 4.6 | 6.0 | 25.4 | 81.1 *** | 7.3 ** | 8.3 * | 3.3 |
TC | 63.5 * | 5.1 | 6.0 | 25.4 | 81.6 *** | 7.1 * | 7.8 * | 3.5 |
TPC | 11.0 | 48.3 ** | 25.7 * | 15.0 | 63.9 * | 8.8 | 2.3 | 25.0 |
CT | 8.6 | 17.3 | 39.6 | 34.5 | 68.9 ** | 7.5 | 14.5 | 9.1 |
AA | 11.6 | 43.3 ** | 32.8 * | 12.3 | 73.3 *** | 4.0 | 15.3 * | 7.3 |
Vanillic acid F | 43.0 | 4.5 | 17.2 | 35.3 | 43.2 | 9.9 | 9.2 | 37.8 |
Epicatechin F | 17.0 | 0.1 | 9.8 | 73.1 | 32.4 * | 41.1 ** | 16.0 | 10.5 |
N-trans-caffeoyltyramine F | 25.7 * | 18.7 ** | 47.6 ** | 8.0 | 48.2 * | 27.4 * | 9.4 | 15.0 |
Naringenin F | 13.7 | 19.6 * | 47.7 * | 19.0 | 61.1 * | 18.1 * | 3.1 | 17.8 |
SPF | 19.9 | 12.9 * | 55.3 ** | 11.9 | 41.7 ** | 35.2 *** | 17.5 * | 5.6 |
Protocatechuic acid B | 43.1 | 4.5 | 17.2 | 35.3 | 43.2 | 9.9 | 9.2 | 37.8 |
p-Hydroxybenzoic acid B | 3.1 | 50.7 * | 9.8 | 36.4 | 30.0 * | 39.4 ** | 20.7 * | 9.9 |
Vanillic acid B | 6.7 | 39.7 * | 29.2 | 24.3 | 16.0 ** | 35.7 *** | 45. 3 *** | 3.0 |
Caffeic acid B | 19.6 | 1.4 | 1.0 | 78.1 | 20.8 | 55.1 ** | 7.5 | 16.5 |
Ferulic acid B | 65.1 * | 3.6 | 7.9 | 23.4 | 14.9 | 0.1 | 21.4 | 63.6 |
Syringic acid B | 20.9 | 48.0 ** | 15.4 | 15.7 | 39.0 * | 24.1 * | 20.6 | 16.3 |
p-Coumaric acid B | 48.2 ** | 27.4 ** | 17.1 * | 7.3 | 29.0 ** | 32.4 ** | 37.9 ** | 0.7 |
Naringenin B | 43.6 | 10.9 | 16.4 | 29.0 | 37.9 | 6.3 | 25.7 | 30.1 |
N-trans-caffeoyltyramine B | 42.0 *** | 40.9 *** | 12.8 * | 4.3 | 43.6 *** | 19.7 *** | 34.5 *** | 2.2 |
SPB | 34.6 ** | 36.4 ** | 20.8 * | 8.2 | 36.6 *** | 13.2 ** | 47.3 *** | 3.0 |
Phenolics | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
(Free Fraction μg g−1 dm) | (Bound Fraction, μg g−1 dm) | |||||||||||||
Whole Seed | Experimental factors | Vanillic acid | Epicatechin acid | Naringenin | N-trans-caffeoyltyramine | Protocatechuic acid | p-Hydroxybenzoic acid | Vanillic acid | Caffeic acid | Ferulic acid | Syringic acid | p-Coumaric acid | Naringenin | N-trans-caffeoyltyramine |
Carmaleonte | 34.9 | 65.1 | 8.0 | 67.7 b | 8.7 | 16.3 | 6.2 | 2.2 | 2.9 a | 3.0 | 140.9 a | 1.1 | 226.2 b | |
Codimono | 38.3 | 47.2 | 8.2 | 71.4 b | 9.6 | 16.2 | 5.7 | 2.1 | 0.7 b | 2.8 | 116.2 b | 0.8 | 242.8 b | |
CS | 28.8 | 62.1 | 10.7 | 108.9 a | 7.2 | 15.5 | 6.1 | 2.0 | 2.4 ab | 2.3 | 96.6 b | 1.7 | 426.7 a | |
P | 0.09 ns | 0.53 ns | 0.2 ns | 0.01 | 0.09 ns | 0.78 ns | 0.5 ns | 0.51 ns | 0.02 | 0.07 ns | 0.002 | 0.06 ns | 0.000 | |
2018 | 35.3 | 58.6 | 7.5 B | 66.8 B | 8.8 | 14.7 B | 6.7 A | 2.1 | 2.2 | 2.3 B | 131.5 A | 1.0 | 208.8 B | |
2019 | 32.7 | 57.7 | 10.5 A | 98.6 A | 8.2 | 17.3 A | 5.2 B | 2.1 | 1.8 | 3.2 A | 104 4 B | 1.4 | 388.3 A | |
P | 0.42 ns | 0.94 ns | 0.05 | 0.01 | 0.42 ns | 0.03 | 0.02 | 0.75 ns | 0.37 ns | 0.005 | 0.003 | 0.18 ns | 0.000 | |
Defatted Seed | Carmaleonte | 28.6 | 73.8 b | 8.7 b | 63.6 b | 7.1 | 19.0 b | 11.3 a | 2.5 | 4.6 | 3.1 ab | 207.2 a | 1.6 | 358.6 b |
Codimono | 33.3 | 82.1 ab | 12.2 a | 80.6 ab | 8.3 | 20.5 ab | 8.3 b | 3.0 | 4.2 | 3.8 a | 181.5 ab | 1.8 | 377.2 b | |
CS | 26.8 | 95.5 a | 8.5 b | 91.4 a | 6.7 | 23.9 a | 10.7 a | 3.0 | 4.1 | 2.4 b | 156.1 b | 4.7 | 723.4 a | |
P | 0.101 | 0.014 | 0.011 | 0.013 | 0.10ns | 0.015 | 0.04 | 0.08 ns | 0.53 ns | 0.025 | 0.007 | 0.09 ns | 0.0001 | |
2018 | 30.9 | 73.8 B | 8.9 B | 69.9 B | 7.7 | 18.8 B | 12.1 A | 2.5 B | 4.5 | 3.5 A | 203.6 A | 2.1 | 373.7 B | |
2019 | 28.2 | 93.9 A | 10.7 A | 87.2 A | 7.1 | 23.5 A | 8.2 B | 3.2 A | 4.5 | 2.7 B | 159.5 B | 3.3 | 599.1 A | |
P | 0.25 ns | 0.02 | 0.048 | 0.016 | 0.25 ns | 0.002 | 0.0001 | 0.004 | 0.93 ns | 0.024 | 0.001 | 0.30 ns | 0.0003 |
Whole Seeds | Defatted Seeds | |
---|---|---|
PC | 0.90 *** | 0.92 *** |
β-carotene | −0.75 ** | - |
p-Hydroxybenzoic acid B | 0.71 ** | 0.63 * |
TPC | −0.70 ** | - |
Syringic acid B | 0.69 * | - |
AA | −0.66 * | - |
N-trans-caffeoyltyramine B | 0.64 * | - |
Vanillic acid B | −0.63 * | −0.60 * |
SPB | 0.60 * | - |
Epicatechin F | - | 0.64 * |
Caffeic acid B | - | 0.74 ** |
SPF | - | 0.60 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Menga, V.; Garofalo, C.; Suriano, S.; Beleggia, R.; Colecchia, S.A.; Perrone, D.; Montanari, M.; Pecchioni, N.; Fares, C. Phenolic Acid Composition and Antioxidant Activity of Whole and Defatted Seeds of Italian Hemp Cultivars: A Two-Year Case Study. Agriculture 2022, 12, 759. https://doi.org/10.3390/agriculture12060759
Menga V, Garofalo C, Suriano S, Beleggia R, Colecchia SA, Perrone D, Montanari M, Pecchioni N, Fares C. Phenolic Acid Composition and Antioxidant Activity of Whole and Defatted Seeds of Italian Hemp Cultivars: A Two-Year Case Study. Agriculture. 2022; 12(6):759. https://doi.org/10.3390/agriculture12060759
Chicago/Turabian StyleMenga, Valeria, Carmela Garofalo, Serafino Suriano, Romina Beleggia, Salvatore Antonio Colecchia, Domenico Perrone, Massimo Montanari, Nicola Pecchioni, and Clara Fares. 2022. "Phenolic Acid Composition and Antioxidant Activity of Whole and Defatted Seeds of Italian Hemp Cultivars: A Two-Year Case Study" Agriculture 12, no. 6: 759. https://doi.org/10.3390/agriculture12060759
APA StyleMenga, V., Garofalo, C., Suriano, S., Beleggia, R., Colecchia, S. A., Perrone, D., Montanari, M., Pecchioni, N., & Fares, C. (2022). Phenolic Acid Composition and Antioxidant Activity of Whole and Defatted Seeds of Italian Hemp Cultivars: A Two-Year Case Study. Agriculture, 12(6), 759. https://doi.org/10.3390/agriculture12060759