GIS-Based Evaluation of Soil Suitability for Optimized Production on U.S. Tribal Lands
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Continuous Soil Map Development on Tribal Lands
2.3. Crop Suitability Modeling
2.3.1. Dideriksen Model
2.3.2. Storie Model
2.4. Crop Suitability Model Assessment
2.5. Observed Yield Data
2.6. Land Use and Crop Suitability
3. Results
3.1. Dideriksen Model Results
3.2. Storie Model Results
3.3. Model Correlation with Observed Yield
4. Discussion
4.1. Multi-Criteria Evaluation—Trends across Indices
4.2. Observed Yield and Suitability Indices
4.3. Land-Use Patterns and Crop Suitability
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAO. The Future of Food and Agriculture–Trends and Challenges; FAO: Rome, Italy, 2017; pp. 1–180. [Google Scholar]
- Karthikeyan, K.; Vasu, D.; Tiwary, P.; Cunliffe, A.M.; Chandran, P.; Mariappan, S.; Singh, S.K. Comparison of Methods for Evaluating the Suitability of Vertisols for Gossypium Hirsutum (Bt Cotton) in Two Contrasting Agro-Ecological Regions. Arch. Agron. Soil Sci. 2019, 65, 968–979. [Google Scholar] [CrossRef]
- Vázquez-Quintero, G.; Prieto-Amparán, J.A.; Pinedo-Alvarez, A.; Valles-Aragón, M.C.; Morales-Nieto, C.R.; Villarreal-Guerrero, F. GIS-Based Multicriteria Evaluation of Land Suitability for Grasslands Conservation in Chihuahua, Mexico. Sustainability 2020, 12, 185. [Google Scholar] [CrossRef]
- Fuentes, B.; Ashworth, A.J.; Ngunjiri, M.; Owens, P. Mapping Soil Properties to Advance the State of Spatial Soil Information for Greater Food Security on US Tribal Lands. Front. Soil Sci. 2021, 1, 695386. [Google Scholar] [CrossRef]
- Walker, C.F. A Model to Estimate Corn Yields for Indiana Soils. Master’s Thesis, Purdue University, Lafayette, IN, USA, 1976. [Google Scholar]
- Storie, R.E. Storie Index Soil Rating (Revised); Division of Agricultural Sciences, University of California: Berkeley, CA, USA, 1978. [Google Scholar]
- Logan, A.E. Soil Productivity Ranking Factors of Indiana; Purdue University Department of Agronomy: Lafayette, IN, USA, 2013. [Google Scholar]
- El Baroudy, A.A. Mapping and Evaluating Land Suitability Using a GIS-Based Model. CATENA 2016, 140, 96–104. [Google Scholar] [CrossRef]
- Seyedmohammadi, J.; Sarmadian, F.; Jafarzadeh, A.A.; McDowell, R.W. Development of a Model Using Matter Element, AHP and GIS Techniques to Assess the Suitability of Land for Agriculture. Geoderma 2019, 352, 80–95. [Google Scholar] [CrossRef]
- Vasu, D.; Srivastava, R.; Patil, N.G.; Tiwary, P.; Chandran, P.; Kumar Singh, S. A Comparative Assessment of Land Suitability Evaluation Methods for Agricultural Land Use Planning at Village Level. Land Use Policy 2018, 79, 146–163. [Google Scholar] [CrossRef]
- Jain, R.; Chand, P.; Rao, S.; Agarwal, P. Crop and Soil Suitability Analysis Using Multi-Criteria Decision Making in Drought-Prone Semi-Arid Tropics in India. J. Soil Water Conserv. 2020, 19, 271–283. [Google Scholar] [CrossRef]
- He, L.; Wang, S.; Peng, C.; Tan, Q. Optimization of Water Consumption Distribution Based on Crop Suitability in the Middle Reaches of Heihe River. Sustainability 2018, 10, 2119. [Google Scholar] [CrossRef]
- USDA-NASS Cropland Data Layer. Available online: https://nassgeodata.gmu.edu/CropScape/ (accessed on 20 February 2021).
- Soil Survey Staff Web Soil Survey. Available online: http://websoilsurvey.sc.egov.usda.gov/ (accessed on 9 December 2020).
- Owens, P.R.; Dorantes, M.J.; Fuentes, B.A.; Libohova, Z.; Schmidt, A. Taking Digital Soil Mapping to the Field: Lessons Learned from the Water Smart Agriculture Soil Mapping Project in Central America. Geoderma Reg. 2020, 22, e00285. [Google Scholar] [CrossRef]
- USDA-NASS Statistics by State. Available online: https://www.nass.usda.gov/Statistics_by_State/Oklahoma/index.php (accessed on 8 March 2021).
- Estes, L.D.; Bradley, B.A.; Beukes, H.; Hole, D.G.; Lau, M.; Oppenheimer, M.G.; Schulze, R.; Tadross, M.A.; Turner, W.R. Comparing Mechanistic and Empirical Model Projections of Crop Suitability and Productivity: Implications for Ecological Forecasting. Glob. Ecol. Biogeogr. 2013, 22, 1007–1018. [Google Scholar] [CrossRef]
- Kim, S. Ppcor: An R Package for a Fast Calculation to Semi-Partial Correlation Coefficients. Commun. Stat. Appl. Methods 2015, 22, 665–674. [Google Scholar] [CrossRef] [PubMed]
- Dobermann, A.; Ping, J.L. Geostatistical Integration of Yield Monitor Data and Remote Sensing Improves Yield Maps. Agron. J. 2004, 96, 285–297. [Google Scholar] [CrossRef]
- Kravchenko, A.N.; Bullock, D.G. Correlation of Corn and Soybean Grain Yield with Topography and Soil Properties. Agron. J. 2000, 92, 75–83. [Google Scholar] [CrossRef]
- Rhoton, F.E.; Lindbo, D.L. A Soil Depth Approach to Soil Quality Assessment. J. Soil Water Conserv. 1997, 52, 66–72. [Google Scholar]
- Jafarzadeh, A.A.; Alamdari, P.; Neyshabouri, M.R.; Saedi, S. Land Suitability Evaluation of Bilverdy Research Station for Wheat, Barley, Alfalfa, Maize and Safflower. Soil Water Res. 2008, 3, S81–S88. [Google Scholar] [CrossRef]
- Sharififar, A.; Ghorbani, H.; Sarmadian, F. Soil Suitability Evaluation for Crop Selection Using Fuzzy Sets Methodology. Acta. Agric. Slov. 2016, 107, 159. [Google Scholar] [CrossRef]
- Baird, W.D. The Quapaw Indians: A History of the Downstream People, 1st ed.; University of Oklahoma Press: Norman, OK, USA, 1980. [Google Scholar]
- Van Wart, J.; van Bussel, L.G.J.; Wolf, J.; Licker, R.; Grassini, P.; Nelson, A.; Boogaard, H.; Gerber, J.; Mueller, N.D.; Claessens, L.; et al. Use of Agro-climatic Zones to Upscale Simulated Crop Yield Potential. Field Crops Res. 2013, 143, 44–55. [Google Scholar] [CrossRef]
- Akpoti, K.; Kabo-bah, A.T.; and Zwart, S.J. Agricultural Land Suitability Analysis: State-of-the-art and Outlooks for Integration of Climate Change Analysis. Agric. Syst. 2019, 173, 172–208. [Google Scholar] [CrossRef]
Factor | Semi-Partial Correlation | Semi-Partial Correlation2 | p-Value | |
---|---|---|---|---|
1 | Soil material | 0.162 | 0.026 | <0.001 * |
2 | Base saturation | 0.112 | 0.012 | <0.001 * |
3 | Surface thickness and organic matter | 0.176 | 0.031 | <0.001 * |
4 | Calcareous soils | - | - | - |
5 | Clay-iron bands | - | - | - |
6 | Fragipans | 0.062 | 0.004 | <0.001 * |
7 | Depth and texture of two-layered soils | 0.014 | <0.001 | 0.173 |
8 | Solum thickness | 0.458 | 0.210 | <0.001 * |
9 | Bottomland soils, family, and drainage | 0.157 | 0.025 | <0.001 * |
10 | Surface horizon texture | 0.047 | 0.002 | <0.001 * |
11 | Soil drainage | 0.187 | 0.035 | <0.001 * |
12 | Slope | 0.194 | 0.038 | <0.001 * |
13 | Erosion | 0.017 | <0.001 | 0.092 |
14 | Organic soils | - | - | - |
Factor | Semi-Partial Correlation | Semi-Partial Correlation2 | p-Value | |
---|---|---|---|---|
1 | Factor A—Physical Profile | 0.472 | 0.223 | <0.001 * |
2 | Factor B—Surface texture | 0.177 | 0.031 | <0.001 * |
3 | Factor C—Slope | 0.110 | 0.012 | <0.001 * |
4 | Factor X—Drainage | 0.529 | 0.280 | <0.001 * |
5 | Factor X—Erosion | 0.040 | 0.002 | <0.001 * |
6 | Factor X—Alkalinity | - | - | - |
7 | Factor X—Nutrient level | - | - | - |
8 | Factor X—Acidity | - | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Smith, H.W.; Ashworth, A.J.; Owens, P.R. GIS-Based Evaluation of Soil Suitability for Optimized Production on U.S. Tribal Lands. Agriculture 2022, 12, 1307. https://doi.org/10.3390/agriculture12091307
Smith HW, Ashworth AJ, Owens PR. GIS-Based Evaluation of Soil Suitability for Optimized Production on U.S. Tribal Lands. Agriculture. 2022; 12(9):1307. https://doi.org/10.3390/agriculture12091307
Chicago/Turabian StyleSmith, Harrison W., Amanda J. Ashworth, and Phillip R. Owens. 2022. "GIS-Based Evaluation of Soil Suitability for Optimized Production on U.S. Tribal Lands" Agriculture 12, no. 9: 1307. https://doi.org/10.3390/agriculture12091307
APA StyleSmith, H. W., Ashworth, A. J., & Owens, P. R. (2022). GIS-Based Evaluation of Soil Suitability for Optimized Production on U.S. Tribal Lands. Agriculture, 12(9), 1307. https://doi.org/10.3390/agriculture12091307