Impact of Organic and Chemical Nitrogen Fertilizers on the Crop Yield and Fertilizer Use Efficiency of Soybean–Maize Intercropping Systems
Abstract
:1. Introduction
2. Materials and Methods
2.1. Growth Conditions
2.2. Materials and Design
2.3. Harvest and Measurement of Parameters
2.4. Statistical Analysis
3. Results
3.1. Yield and Seed Quality
3.2. Aboveground Nitrogen Accumulation
3.3. Nitrogen Fertilizer Use Efficiency
3.4. Correlation Analysis
4. Discussion
4.1. Response of the Seed Yield and Quality to Different Fertilizer Treatments
4.2. Effects of Different Fertilizer Treatments on Nitrogen Fertilizer Use Efficiency
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Li, C.; Hoffland, E.; Kuyper, T.W.; Yu, Y.; Zhang, C.; Li, H.; Zhang, F.; Van Der Werf, W. Syndromes of production in intercropping impact yield gains. Nat. Plants 2020, 6, 653–660. [Google Scholar] [CrossRef] [PubMed]
- Xiao, J.; Yin, X.; Ren, J.; Zhang, M.; Tang, L.; Zheng, Y. Complementation drives higher growth rate and yield of wheat and saves nitrogen fertilizer in wheat and faba bean intercropping. Field Crop. Res. 2018, 221, 119–129. [Google Scholar] [CrossRef]
- Zhao, Y.; Liu, X.; Tong, C.; Wu, Y. Effect of root interaction on nodulation and nitrogen fixation ability of alfalfa in the simulated alfalfa/triticale intercropping in pots. Sci. Rep. 2020, 10, 4269. [Google Scholar] [CrossRef] [PubMed]
- Geetha, P.; Tayade, A.S.; Chandrasekar, C.A.; Selvan, T.; Kumar, R. Agronomic Response, Weed Smothering Efficiency and Economic Feasibility of Sugarcane and Legume Intercropping System in Tropical India. Sugar Tech 2019, 21, 838–842. [Google Scholar] [CrossRef]
- Lowry, C.J.; Brainard, D.C. Strip Intercropping of Rye–Vetch Mixtures: Effects on Weed Growth and Competition in Strip-Tilled Sweet Corn. Weed Sci. 2019, 67, 114–125. [Google Scholar] [CrossRef]
- Chen, P.; Du, Q.; Liu, X.; Zhou, L.; Hussain, S.; Lei, L.; Song, C.; Wang, X.; Liu, W.; Yang, F.; et al. Effects of reduced nitrogen inputs on crop yield and nitrogen use efficiency in a long-term maize-soybean relay strip intercropping system. PLoS ONE 2017, 12, e0184503. [Google Scholar] [CrossRef]
- Dong, N.; Tang, M.-M.; Zhang, W.-P.; Bao, X.-G.; Wang, Y.; Christie, P.; Li, L. Temporal Differentiation of Crop Growth as One of the Drivers of Intercropping Yield Advantage. Sci. Rep. 2018, 8, 3110. [Google Scholar] [CrossRef]
- Tamta, A.; Kumar, R.; Ram, H.; Meena, R.K.; Kumar, U.; Yadav, M.R.; Subrahmanya, D.J.; Pandey, A.K. Nutritional portfolio of maize and cowpea fodder under various intercropping ratio and balanced nitrogen fertilization. Indian J. Anim. Sci. 2019, 89, 276–280. [Google Scholar]
- Chai, Q.; Yin, W. Research advances in water competition and complementary interaction of intercropping agroecosystems. Chin. J. Ecol. 2017, 36, 233–239. [Google Scholar]
- Fan, Z.; Zhao, Y.; Chai, Q.; Zhao, C.; Yu, A.; Coulter, J.A.; Gan, Y.; Cao, W. Synchrony of nitrogen supply and crop demand are driven via high maize density in maize/pea strip intercropping. Sci. Rep. 2019, 9, 10954. [Google Scholar] [CrossRef]
- Lian, T.; Mu, Y.; Jin, J.; Ma, Q.; Cheng, Y.; Cai, Z.; Nian, H. Impact of intercropping on the coupling between soil microbial community structure, activity, and nutrient-use efficiencies. PeerJ 2019, 7, e6412. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Zhou, Y.; Chen, P.; Du, Q.; Zheng, B.C.; Pu, T.; Wen, J.; Yang, W.Y.; Yong, T.W. Effects of maize-legume intercropping on nutrient absorption and utilization and yield advantage. J. Crops 2022, 48, 12. [Google Scholar]
- Jiang, Y.Y.; Zheng, Y.; Tang, L.; Xiao, J.X.; Zeng, J.; Zhang, K.X. Research progress on rhizosphere biological processes of Leguminosae intercropping. J. Agric. Resour. Environ. 2016, 5, 407–415. [Google Scholar]
- Zhang, F.; Li, L. Using competitive and facilitative interactions in intercropping systems enhances crop productivity and nutrient-use efficiency. Plant Soil 2003, 248, 305–312. [Google Scholar] [CrossRef]
- Zhao, H.X.; Bian, S.F.; Sun, N.; Cai, H.M.; Yang, H.L.; Qiu, J.; Yuan, J.P. Effects of nitrogen application on nitrogen dynamic changes and nitrogen utilization in maize. Corn Sci. 2012, 3, 122–129. [Google Scholar]
- Ma, L.; Wang, F.; Zhang, W.; Ma, W.; Velthof, G.; Qin, W.; Oenema, O.; Zhang, F. Environmental Assessment of Management Options for Nutrient Flows in the Food Chain in China. Environ. Sci. Technol. 2013, 47, 7260–7268. [Google Scholar] [CrossRef]
- Garnett, T.; Plett, D.; Conn, V.; Conn, S.; Rabie, H.; Rafalski, J.A.; Dhugga, K.; Tester, M.A.; Kaiser, B.N. Variation for N Uptake System in Maize: Genotypic Response to N Supply. Front. Plant Sci. 2015, 6, 936. [Google Scholar] [CrossRef]
- Xia, H.-Y.; Wang, Z.-G.; Zhao, J.-H.; Sun, J.-H.; Bao, X.-G.; Christie, P.; Zhang, F.-S.; Li, L. Contribution of interspecific interactions and phosphorus application to sustainable and productive intercropping systems. Field Crop. Res. 2013, 154, 53–64. [Google Scholar] [CrossRef]
- Kong, D.N.; Kang, G.D.; Li, P.; Shen, X.S.; Liu, M.Q.; Li, H.X.; Hu, F.; Jiao, J.G. Effect of combined application of organic fertilizer on organic carbon active components in dryland purple soil under the condition of reduced application of chemical fertilizer. J. Ecol. 2021, 40, 1073–1080. [Google Scholar]
- Chadwick, D.; Wei, J.; Tong, Y.; Yu, G.; Shen, Q.; Chen, Q. Improving manure nutrient management towards sustainable agricultural intensification in China. Agric. Ecosyst. Environ. 2015, 209, 34–46. [Google Scholar] [CrossRef]
- Han, S.; Wu, J.; Zhang, X.-M.; Hu, P.; Yang, Y.B.; Li, M.; Wang, H.; Tang, S. Effects of increasing application of organic fertilizer on subsoil fertility betterment in paddy field. J. Agric. Resour. Environ. 2018, 35, 334–341. [Google Scholar]
- Sheoran, S.; Raj, D.; Antil, R.; Mor, V.; Dahiya, D. Productivity, seed quality and nutrient use efficiency of wheat (Triticum aestivum) under organic, inorganic and integrated nutrient management practices after twenty years of fertilization. Cereal Res. Commun. 2017, 45, 315–325. [Google Scholar] [CrossRef]
- Li, S.; Li, T.L.; He, B.; Jiao, H.; Li, Y.; Lv, Z.C.; Zhang, J.F. Effects of organic fertilizer instead of chemical fertilizer on water and nitrogen utilization and economic benefit of dryland wheat. Shanxi Agric. Sci. 2019, 8, 1359–1365. [Google Scholar]
- Yu, G.; Chen, F.; Xie, Y.H.; Hou, J.W. Effects of reduced application of chemical fertilizer and combined application of organic fertilizer on yield and quality of hot pepper. North. Hortic. 2020, 4, 47–53. [Google Scholar]
- Liu, Z.J.; Xie, J.G.; Zhang, K.A.; Wang, X.F.; Hou, Y.P.; Yin, C.X.; Li, S.T. Effects of different nitrogen fertilizer management on growth and nutrient uptake of spring maize in Jilin province. J. Plant Nutr. Fertil. 2011, 1, 38–47. [Google Scholar]
- Li, Y.Q.; Wen, Y.C.; Lin, Z.A.; Zhao, B.Q. Effects of combined application of different organic fertilizers and chemical fertilizers on nitrogen use efficiency and soil fertility. J. Plant Nutr. Fertil. 2019, 10, 1669–1678. [Google Scholar]
- Zhu, X.T.; Chen, J.Q.; Qiang, X.M.; Dong, Y.C.; Zheng, M.J.; Li, X.W.; Yang, C.J. The present situation of soybean production in Guizhou and the demand and countermeasures of industrial technology. Guizhou Agric. Sci. 2012, 10, 208–213. [Google Scholar]
- He, J.; Jin, Y.; Du, Y.-L.; Wang, T.; Turner, N.C.; Yang, R.-P.; Siddique, K.H.M.; Li, F.-M. Genotypic Variation in Yield, Yield Components, Root Morphology and Architecture, in Soybean in Relation to Water and Phosphorus Supply. Front. Plant Sci. 2017, 8, 1499. [Google Scholar] [PubMed]
- He, J.; Jin, Y.; Turner, N.; Chen, Z.; Liu, H.-Y.; Wang, X.-L.; Siddique, K.; Li, F.-M. Phosphorus application increases root growth, improves daily water use during the reproductive stage, and increases grain yield in soybean subjected to water shortage. Environ. Exp. Bot. 2019, 166, 103816. [Google Scholar] [CrossRef]
- Bao, S.D. Soil Agrochemical Analysis; China Agricultural Press: Beijing, China, 1999. [Google Scholar]
- Zhang, Y.; Li, L.Y.; Shu, X.; Cui, G.L. Determination of soluble sugar and starch of Pueraria lobata from different producing areas, varieties and harvest time. Chin. Med. Mater. 2013, 36, 1751–1754. [Google Scholar]
- Dahal, N.M.; Xiong, D.; Neupane, N.; Zhang, B.; Liu, B.; Yuan, Y.; Fang, Y.; Koirala, S.; Rokaya, M.B. Factors affecting maize, rice and wheat yields in the Koshi River Basin, Nepal. J. Agric. Meteorol. 2021, 77, 179–189. [Google Scholar] [CrossRef]
- Yang, J.-X.; Richards, R.A.; Jin, Y.; He, J. Both biomass accumulation and harvest index drive the yield improvements in soybean at high and low phosphorus in south-west China. Field Crop. Res. 2022, 277, 108426. [Google Scholar] [CrossRef]
- Zhang, Z.H.; Palta, J.A.; Lu, P.; Ren, M.J.; Zhu, X.T.; He, J. Traditional soybean (Glycine max) breeding increases seed yield but reduces yield stability under non-phosphorus supply. Funct. Plant Biol. 2022, 49, 132–144. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Xie, Z.; Zhou, M.; Liu, C.; Yu, Z.; Wu, J.; Jin, J.; Chen, Y.; Zhang, X.; Liu, X. Soybean yield and quality relative to Mollisols fertility with 7-year consecutive cattle manure application under maize-soybean rotation. Land Degrad. Dev. 2021, 32, 4740–4754. [Google Scholar] [CrossRef]
- Zhang, J.; Dang, J.Y.; Zhang, D.Y.; Pei, X.X.; Wang, J.A.; Cheng, M.F.; Yan, C.P. Effects of water-saving irrigation and reduced application of phosphorus and potassium fertilizer on wheat yield, quality and water and fertilizer use efficiency. J. Soil Water Conserv. 2020, 34, 166–171. [Google Scholar]
- Liu, Y.; Evans, S.E.; Friesen, M.L.; Tiemann, L.K. Root exudates shift how N mineralization and N fixation contribute to the plant-available N supply in low fertility soils. Soil Biol. Biochem. 2022, 165, 108541. [Google Scholar] [CrossRef]
- Feng, Y.-Y.; He, J.; Turner, N.; Siddique, K.; Li, F.-M. Phosphorus Supply Increases Internode Length and Leaf Characteristics, and Increases Dry Matter Accumulation and Seed Yield in Soybean under Water Deficit. Agronomy 2021, 11, 930. [Google Scholar] [CrossRef]
- He, J.; Du, Y.-L.; Wang, T.; Turner, N.; Yang, R.-P.; Jin, Y.; Xi, Y.; Zhang, C.; Cui, T.; Fang, X.-W.; et al. Conserved water use improves the yield performance of soybean (Glycine max (L.) Merr.) under drought. Agric. Water Manag. 2017, 179, 236–245. [Google Scholar] [CrossRef]
- Hua, W.; Luo, P.; An, N.; Cai, F.; Zhang, S.; Chen, K.; Yang, J.; Han, X. Manure application increased crop yields by promoting nitrogen use efficiency in the soils of 40-year soybean-maize rotation. Sci. Rep. 2020, 10, 14882. [Google Scholar] [CrossRef]
- Hu, X.P.; Wang, Z.Q.; Qi, N.; Guo, T.; Liu, Z.T.; Zhang, R.C. Application of Grey dynamic Model GM in the Prediction of Soybean yield. Heilongjiang Agric. Sci. 1998, 6, 20–23. [Google Scholar]
- Fontana, M.B.; Novelli, L.E.; Sterren, M.A.; Uhrich, W.G.; Benintende, S.M.; Barbagelata, P.A. Long-term fertilizer application and cover crops improve soil quality and soybean yield in the Northeastern Pampas region of Argentina. Geoderma 2021, 385, 114902. [Google Scholar] [CrossRef]
- Feng, J.; Hu, X.B.; He, Z.Z.; Wang, H.; Wan, H.Y. The effect of organic fertilizer nitrogen instead of chemical fertilizer nitrogen on the yield and quality of sweet corn. Anhui Agric. Sci. 2020, 48, 157–159. [Google Scholar]
- Zhu, B.G. Study on the Effect of Combined Application of Organic Fertilizer and Chemical Fertilizer on Yield and Quality of Soybean; Northeast Agricultural University: Harbin, China, 2010. [Google Scholar]
- Wang, S.Y.; Li, G.H.; Lu, W.P.; Lu, D.L. Effect of application period of slow-release fertilizer on yield and grain quality of spring sowing fresh waxy corn. J. Nucl. Agric. 2020, 35, 2136–2144. [Google Scholar]
- Ma, X.; Liu, M.L.; He, X.; Wang, F.; Zhang, Q.P. Effects of chemical fertilizer reduction combined with organic fertilizer on yield formation and rapeseed quality of rapeseed. Crop Res. 2020, 34, 518–524. [Google Scholar]
- Kundel, D.; Bodenhausen, N.; Jørgensen, H.B.; Truu, J.; Birkhofer, K.; Hedlund, K.; Mäder, P.; Fliessbach, A. Effects of simulated drought on biological soil quality, microbial diversity and yields under long-term conventional and organic agriculture. FEMS Microbiol. Ecol. 2020, 96, fiaa205. [Google Scholar] [CrossRef]
- Studnicki, M.; Wijata, M.; Sobczyński, G.; Samborski, S.; Gozdowski, D.; Rozbicki, J. Effect of genotype, environment and crop management on yield and quality traits in spring wheat. J. Cereal Sci. 2016, 72, 30–37. [Google Scholar] [CrossRef]
- Dong, X.L.; Hou, H.Y.; Zhang, J.F.; Zhou, H.; Zhang, M.L.; Wei, L.X.; Zhu, D.F. Effects of combined application of slow-release fertilizer and inorganic fertilizer on growth and eating quality of rice in coastal saline-alkali soil. China Agric. Bull. 2021, 37, 1–7. [Google Scholar]
- Sharifi, M.; Zebarth, B.J.; Burton, D.L.; Grant, C.A.; Porter, G.A. Organic Amendment History and Crop Rotation Effects on Soil Nitrogen Mineralization Potential and Soil Nitrogen Supply in a Potato Cropping System. Agron. J. 2008, 100, 1562–1572. [Google Scholar] [CrossRef]
- Shen, S.Z.; Wan, C.; Ma, X.J.; Hu, Y.K.; Wang, F.; Zhang, K.Q. Nitrogen mineralization characteristics of organic fertilizer in livestock and poultry under the condition of flood-drought rotation. J. Agric. Environ. Sci. 2021, 40, 2513–2520. [Google Scholar]
Years | Treatments | PC/% | OC/% | TP-OC/% |
---|---|---|---|---|
2020 | CK | 38 ± 1 b | 19 ± 0 a | 57 ± 1 a |
ChemF | 39 ± 0 ab | 19 ± 0 a | 57 ± 1 a | |
ChemF + OrgF | 38 ± 0 b | 19 ± 1 a | 57 ± 1 a | |
OrgF | 40 ±1 a | 18 ± 1 a | 59 ± 1 a | |
2021 | CK | 43 ± 0 a | 20 ± 0 a | 63 ± 0 a |
ChemF | 42 ± 0 a | 20 ± 1 ab | 62 ± 1 a | |
ChemF + OrgF | 43 ± 0 a | 19 ± 1 b | 61 ± 1 a | |
OrgF | 43 ± 2 a | 18 ± 1 b | 62 ± 1 a |
Years | Treatments | PC (%) | SC (%) | SSC (%) |
---|---|---|---|---|
2020 | CK | 10 ± 0 b | 23 ± 0 c | 7 ± 0 a |
ChemF | 10 ± 0 b | 25 ± 1 b | 8 ± 1 a | |
ChemF + OrgF | 12 ± 1 a | 28 ± 2 a | 7 ± 1 a | |
OrgF | 10 ± 0 ab | 26 ± 1 b | 7 ± 0 a | |
2021 | CK | 13 ± 1 a | 24 ± 1 c | 9 ± 1 a |
ChemF | 14 ± 1 a | 25 ± 1 bc | 10 ± 1 a | |
ChemF + OrgF | 14 ± 0 a | 27 ± 1 a | 9 ± 2 a | |
OrgF | 13 ± 0 a | 26 ± 1 ab | 8 ± 1 a |
Years | Treatments | NHI (%) | NPP (kg kg−1) | NAE (kg kg−1) | NFRR (%) | |
---|---|---|---|---|---|---|
Soybean | 2020 | CK | 89 ± 2 a | — | — | — |
ChemF | 89 ± 1 a | 7 ± 0 a | 2 ± 0 a | 20 ± 2 a | ||
ChemF + OrgF | 88 ± 0 a | 6 ± 0 b | 1 ± 0 b | 11 ± 2 b | ||
OrgF | 88 ± 2 a | 5 ± 0 c | 1 ± 0 c | 8 ± 2 b | ||
2021 | CK | 91 ± 1 a | — | — | — | |
ChemF | 88 ± 1 a | 7 ± 1 a | 2 ± 1 a | 21 ± 3 a | ||
ChemF + OrgF | 87± 1 a | 6 ± 1 b | 1 ± 0 b | 11 ± 1 b | ||
OrgF | 88 ± 3 a | 5 ± 0 c | 0 ± 0 c | 3 ± 1 c | ||
Maize | 2020 | CK | 72 ± 0 a | — | — | — |
ChemF | 71 ± 3 a | 60 ± 4 a | 28 ± 4 a | 63 ± 8 a | ||
ChemF + OrgF | 75 ± 6 a | 50 ± 4 b | 18 ± 4 b | 56 ± 14 a | ||
OrgF | 72 ± 5 a | 35 ± 1 c | 3 ± 1 c | 12 ± 5 b | ||
2021 | CK | 79 ± 2 a | — | — | — | |
ChemF | 77 ± 5 a | 65 ± 5 a | 36 ± 5 a | 119 ± 20 a | ||
ChemF + OrgF | 78 ± 3 a | 57 ± 3 a | 27 ± 3 b | 91 ± 15 a | ||
OrgF | 74 ± 5 a | 37 ± 7 b | 10 ± 3 c | 28 ± 14 b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, S.; Pi, Y.; Long, D.; Duan, J.; Zhu, X.; Wang, X.; He, J.; Zhu, Y. Impact of Organic and Chemical Nitrogen Fertilizers on the Crop Yield and Fertilizer Use Efficiency of Soybean–Maize Intercropping Systems. Agriculture 2022, 12, 1428. https://doi.org/10.3390/agriculture12091428
Lin S, Pi Y, Long D, Duan J, Zhu X, Wang X, He J, Zhu Y. Impact of Organic and Chemical Nitrogen Fertilizers on the Crop Yield and Fertilizer Use Efficiency of Soybean–Maize Intercropping Systems. Agriculture. 2022; 12(9):1428. https://doi.org/10.3390/agriculture12091428
Chicago/Turabian StyleLin, Shifang, Yijun Pi, Dayong Long, Jianjun Duan, Xingtao Zhu, Xiaoli Wang, Jin He, and Yonghe Zhu. 2022. "Impact of Organic and Chemical Nitrogen Fertilizers on the Crop Yield and Fertilizer Use Efficiency of Soybean–Maize Intercropping Systems" Agriculture 12, no. 9: 1428. https://doi.org/10.3390/agriculture12091428
APA StyleLin, S., Pi, Y., Long, D., Duan, J., Zhu, X., Wang, X., He, J., & Zhu, Y. (2022). Impact of Organic and Chemical Nitrogen Fertilizers on the Crop Yield and Fertilizer Use Efficiency of Soybean–Maize Intercropping Systems. Agriculture, 12(9), 1428. https://doi.org/10.3390/agriculture12091428