Factors Affecting Farmers’ Environment-Friendly Fertilization Behavior in China: Synthesizing the Evidence Using Meta-Analysis
Abstract
:1. Introduction
2. Methodology
2.1. Calculation of Comprehensive Effect Size
2.2. Publication Bias Test and Correction
2.3. Cumulative Meta-Analysis
3. Data Sources and Variable Selection
3.1. Data Sources
3.2. Variable Description
4. Results and Discussion
4.1. Calculation of Comprehensive Effect Size
4.1.1. Individual Characteristics
4.1.2. Household Characteristics
4.1.3. Planting Characteristics
4.1.4. Cognitive Characteristics
4.1.5. External Conditions
4.2. Cumulative Meta-Analysis
4.2.1. Individual Characteristics
4.2.2. Household Characteristics
4.2.3. Planting Characteristics
4.2.4. Cognitive Characteristics
4.2.5. External Conditions
5. Conclusions and Policy Recommendations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Uri, N.D. Incorporating the environmental consequences in the fertilizer use decision. Sci. Total Environ. 1997, 201, 99–111. [Google Scholar] [CrossRef]
- Yazdanpanah, M.; Forouzani, M.; Abdeshahi, A.; Jafari, A. Investigating the effect of moral norm and self-identity on the intention toward water conservation among Iranian young adults. Water Policy 2016, 18, 73–90. [Google Scholar] [CrossRef] [Green Version]
- Tian, S.L.; Khan, A.; Zheng, W.N.; Song, L.; Liu, J.H.; Wang, X.Q.; Li, L. Effects of Chlorella extracts on growth of Capsicum annuum L. seedlings. Sci. Rep. 2022, 12, 15455. [Google Scholar] [CrossRef] [PubMed]
- Macgregor, C.J.; Warren, C.R. Adopting sustainable farm management practices within a Nitrate Vulnerable Zone in Scotland: The view from the farm. Agric. Ecosyst. Environ. 2006, 113, 108–119. [Google Scholar] [CrossRef]
- Liu, Y.S.; Zhou, Y. Reflections on China’s food security and land use policy under rapid urbanization. Land Use Pol. 2021, 109, 105699. [Google Scholar] [CrossRef]
- Shao, S.; Li, B.L.; Fan, M.T.; Yang, L.L. How does labor transfer affect environmental pollution in rural China? Evidence from a survey. Energy Econ. 2021, 102, 105515. [Google Scholar] [CrossRef]
- Zhan, X.S.; Shao, C.F.; He, R.; Shi, R.G. Evolution and efficiency assessment of pesticide and fertiliser inputs to cultivated land in China. Int. J. Environ. Res. Public Health 2021, 18, 3771. [Google Scholar] [CrossRef]
- Liu, Y.; Ruiz-Menjivar, J.; Zhang, L.; Zhang, J.B.; Swisher, M.E. Technical training and rice farmers’ adoption of low-carbon management practices: The case of soil testing and formulated fertilization technologies in Hubei, China. J. Clean Prod. 2019, 226, 454–462. [Google Scholar] [CrossRef]
- Zheng, W.L.; Luo, B.L.; Hu, X.Y. The determinants of farmers’ fertilizers and pesticides use behavior in China: An explanation based on label effect. J. Clean Prod. 2020, 272, 123054. [Google Scholar] [CrossRef]
- Zhang, Y.N.; Long, H.L.; Li, Y.R.; Ge, D.Z.; Tu, S.S. How does off-farm work affect chemical fertilizer application? Evidence from China’s mountainous and plain areas. Land Use Pol. 2020, 99, 104848. [Google Scholar] [CrossRef]
- Zhang, R.X.; Luo, L.; Liu, Y.Y.; Fu, X.H. Impact of labor migration on chemical fertilizer application of citrus growers: Empirical evidence from China. Sustainability 2022, 14, 7526. [Google Scholar] [CrossRef]
- Ju, X.T.; Gu, B.J.; Wu, Y.Y.; Galloway, J.N. Reducing China’s fertilizer use by increasing farm size. Glob. Environ. Chang. 2016, 41, 26–32. [Google Scholar] [CrossRef]
- Wu, J.Q.; Wen, X.; Qi, X.L.; Fang, S.L.; Xu, C.X. More land, less pollution? How land transfer affects fertilizer application. Int. J. Environ. Res. Public Health 2021, 18, 11268. [Google Scholar] [CrossRef] [PubMed]
- Hu, R.F.; Yang, Z.J.; Kelly, P.; Huang, J.K. Agricultural extension system reform and agent time allocation in China. China Econ. Rev. 2009, 20, 303–315. [Google Scholar] [CrossRef]
- Wang, X.B.; Huang, J.K.; Zhang, L.X.; Rozelle, S. The rise of migration and the fall of self employment in rural China’s labor market. China Econ. Rev. 2011, 22, 573–584. [Google Scholar] [CrossRef]
- Shelby, L.B.; Vaske, J.J. Understanding meta-analysis: A review of the methodological literature. Leis. Sci. 2008, 30, 96–110. [Google Scholar] [CrossRef]
- Grewal, D.; Puccinelli, N.; Monroe, K.B. Meta-analysis: Integrating accumulated knowledge. J. Acad. Mark. Sci. 2018, 46, 9–30. [Google Scholar] [CrossRef]
- Pigott, T.D.; Polanin, J.R. Methodological guidance paper: High-quality meta-analysis in a systematic review. Rev. Educ. Res. 2020, 90, 24–46. [Google Scholar] [CrossRef] [Green Version]
- Nelson, J.P. Meta-analysis of alcohol price and income elasticities–with corrections for publication bias. Health Econ. Rev. 2013, 3, 17. [Google Scholar] [CrossRef] [Green Version]
- Cooper, H.; Hedges, L.V.; Valentine, J.C. The Handbook of Research Synthesis and Meta-Analysis, 3rd ed.; Russell Sage Foundation: New York, NY, USA, 2019; pp. 207–243. [Google Scholar]
- Field, A.P. Meta-analysis of correlation coefficients: A Monte Carlo comparison of fixed-and random-effects methods. Psychol. Methods 2001, 6, 161–180. [Google Scholar] [CrossRef]
- Franco, A.; Malhotra, N.; Simonovits, G. Publication bias in the social sciences: Unlocking the file drawer. Science 2014, 345, 1502–1505. [Google Scholar] [CrossRef] [PubMed]
- Moreno, S.G.; Sutton, A.J.; Ades, A.E.; Stanley, T.D.; Abrams, K.R.; Peters, J.L.; Cooper, N.J. Assessment of regression-based methods to adjust for publication bias through a comprehensive simulation study. BMC Med. Res. Methodol. 2009, 9, 2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luo, C.L.; Marks-Anglin, A.; Duan, R.; Lin, L.F.; Hong, C.; Chu, H.T.; Chen, Y. Accounting for publication bias using a bivariate trim and fill meta-analysis procedure. Stat. Med. 2022, 41, 3466–3478. [Google Scholar] [CrossRef] [PubMed]
- Abebe, G.; Debebe, S. Factors affecting use of organic fertilizer among smallholder farmers in Sekela district of Amhara region, Northwestern Ethiopia. Cogent Food Agric. 2019, 5, 1669398. [Google Scholar] [CrossRef]
- Qiao, F.B.; Huang, J.K. Farmers’ risk preference and fertilizer use. J. Integr. Agric. 2021, 20, 1987–1995. [Google Scholar] [CrossRef]
- Wakeyo, M.B.; Gardebroek, C. Does water harvesting induce fertilizer use among smallholders? Evidence from Ethiopia. Agric. Syst. 2013, 114, 54–63. [Google Scholar] [CrossRef]
- Akpan, S.B.; Aya, A.E. Determinants of fertilizer use among small-holder farmers in wetland region of Cross River State. Glob. J. Agric. Sci. 2009, 8, 195–201. [Google Scholar] [CrossRef]
- Wu, Y.Y.; Xi, X.C.; Tang, X.; Luo, D.M.; Gu, B.J.; Lam, S.K.; Vitousek, P.M.; Chen, D.L. Policy distortions, farm size, and the overuse of agricultural chemicals in China. Proc. Natl. Acad. Sci. USA 2018, 115, 7010–7015. [Google Scholar] [CrossRef] [Green Version]
- Ragasa, C.; Chapoto, A. Moving in the right direction? The role of price subsidies in fertilizer use and maize productivity in Ghana. Food Secur. 2017, 9, 329–353. [Google Scholar] [CrossRef]
- Ma, W.L.; Abdulai, A.; Ma, C.B. The effects of off-farm work on fertilizer and pesticide expenditures in China. Rev. Dev. Econ. 2018, 22, 573–591. [Google Scholar] [CrossRef]
- Pandey, C.; Diwan, H. Assessing fertilizer use behaviour for environmental management and sustainability: A quantitative study in agriculturally intensive regions of Uttar Pradesh, India. Environ. Dev. Sustain. 2021, 23, 5822–5845. [Google Scholar] [CrossRef]
- Chi, L.; Han, S.Q.; Huan, M.L.; Li, Y.J.; Liu, J.F. Land fragmentation, technology adoption and chemical fertilizer application: Evidence from China. Int. J. Environ. Res. Public Health 2022, 19, 8147. [Google Scholar] [CrossRef] [PubMed]
- He, H.; Peng, M.W.; Lu, W.D.; Hou, Z.N.; Li, J.H. Commercial organic fertilizer substitution increases wheat yield by improving soil quality. Sci. Total Environ. 2022, 851, 158132. [Google Scholar] [CrossRef]
- Ma, L.H.; Ni, J.P.; Fleskens, L.; Wang, H.; Xuan, Y.Q. Modelling fertilizer use in relation to farmers’ household characteristics in three gorges reservoir area, China. Agriculture 2021, 11, 472. [Google Scholar] [CrossRef]
- Cui, G.; Liu, Z.C. The impact of environmental regulations and social norms on farmers’ chemical fertilizer reduction behaviors: An investigation of citrus farmers in southern China. Sustainability 2022, 14, 8157. [Google Scholar] [CrossRef]
- Baumgart-Getz, A.; Prokopy, L.S.; Floress, K. Why farmers adopt best management practice in the United States: A meta-analysis of the adoption literature. J. Environ. Manag. 2012, 96, 17–25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Emmanuel, D.; Owusu-Sekyere, E.; Owusu, V.; Jordaan, H. Impact of agricultural extension service on adoption of chemical fertilizer: Implications for rice productivity and development in Ghana. NJAS-Wagening. J. Life Sci. 2016, 79, 41–49. [Google Scholar] [CrossRef]
- Manda, J.; Khonje, M.G.; Alene, A.D.; Tufa, A.H.; Abdoulaye, T.; Mutenje, M.; Setimela, P.; Manyong, V. Does cooperative membership increase and accelerate agricultural technology adoption? Empirical evidence from Zambia. Technol. Forecast. Soc. Chang. 2020, 158, 120160. [Google Scholar] [CrossRef]
- Li, J.; He, R.Y.; de Voil, P.; Wan, S. Enhancing the application of organic fertilisers by members of agricultural cooperatives. J. Environ. Manag. 2021, 293, 112901. [Google Scholar] [CrossRef]
- Guo, L.L.; Li, H.J.; Cao, X.X.; Cao, A.D.; Huang, M.J. Effect of agricultural subsidies on the use of chemical fertilizer. J. Environ. Manag. 2021, 299, 113621. [Google Scholar] [CrossRef]
- Rahman, M.M.; Connor, J.D. Impact of agricultural extension services on fertilizer use and farmers’ welfare: Evidence from Bangladesh. Sustainability 2022, 14, 9385. [Google Scholar] [CrossRef]
- Zhou, Z.F.; Liu, J.H.; Zeng, H.X.; Zhang, T.; Chen, X.H. How does soil pollution risk perception affect farmers’ pro-environmental behavior? The role of income level. J. Environ. Manag. 2020, 270, 110806. [Google Scholar] [CrossRef] [PubMed]
- Gong, M.G.; Elahi, E. A nexus between farmland rights, and access, demand, and amount of agricultural loan under the socialist system of China. Land Use Pol. 2022, 120, 106279. [Google Scholar] [CrossRef]
- Zhou, W.F.; Qing, C.; Guo, S.L.; He, J.; Deng, X.; Song, J.H.; Xu, D.D. Labor off-farm employment and farmers’ cooking clean energy use: Evidence from rural China. Agriculture 2022, 12, 972. [Google Scholar] [CrossRef]
- Wu, Z.L.; Li, B.; Hou, Y. Adaptive choice of livelihood patterns in rural households in a farm-pastoral zone: A case study in Jungar, Inner Mongolia. Land Use Pol. 2017, 62, 361–375. [Google Scholar] [CrossRef]
- Yang, Q.Q.; Gao, Y.H.; Yang, X.J.; Zhang, J. Rural transformation driven by households’ adaptation to climate, policy, market, and urbanization: Perspectives from livelihoods–land use on Chinese loess plateau. Agriculture 2022, 12, 1111. [Google Scholar] [CrossRef]
- Li, L.F.; Khan, S.U.; Guo, C.H.; Huang, Y.F.; Xia, X.L. Non-agricultural labor transfer, factor allocation and farmland yield: Evidence from the part-time peasants in Loess Plateau region of Northwest China. Land Use Pol. 2022, 120, 106289. [Google Scholar] [CrossRef]
- Deng, L.; Chen, L.; Zhao, J.J.; Wang, R.M. Comparative analysis on environmental and economic performance of agricultural cooperatives and smallholder farmers: The case of grape production in Hebei, China. PLoS ONE 2021, 16, e0245981. [Google Scholar] [CrossRef]
- Lang, Y.X.; Song, T.C. Between advance and retreat: The process of the nationalization of rural areas in China since the reform and opening up. J. Cent. China Norm. Univ. 2022, 61, 15–24. (In Chinese) [Google Scholar]
- Niu, Z.H.; Chen, C.; Gao, Y.; Wang, Y.Q.; Chen, Y.S.; Zhao, K.J. Peer effects, attention allocation and farmers’ adoption of cleaner production technology: Taking green control techniques as an example. J. Clean Prod. 2022, 339, 130700. [Google Scholar] [CrossRef]
Explanatory Variables | Definition | Measurement Method |
---|---|---|
Individual characteristics | ||
Gender | Gender of household head | Binary variables |
Age | Age of household head | Continuous variables or ordinal categorical variables |
Education | Education level of head of household | Continuous variables, ordinal categorical variables or binary variables |
Health status | Health status of household heads | Binary variables or ordinal categorical variables |
Risk attitude | Risk preference, risk neutral, risk aversion | Continuous variables, ordinal categorical variables or binary variables |
Family characteristics | ||
Family size | Total family population | Continuous variables |
Agricultural labor force | Number of family agricultural labor force | Continuous variables |
Household income | Family annual total income | Continuous variables or ordinal categorical variables |
Proportion of agricultural income | Ratio of agricultural income to household annual total income | Continuous variables or ordinal categorical variables |
Part-time farming | Number of workforces engaged in non-agricultural activities | Continuous variables, ordinal categorical variables or binary variables |
Planting characteristics | ||
Farm size | Total crop planting area | Continuous variables or ordinal categorical variables |
Planting years | Years of agricultural production | Continuous variables |
Land fragmentation | Number of planting plots | Continuous variables or ordinal categorical variables |
Land quality | The degree of soil fertility | Continuous variables, ordinal categorical variables or binary variables |
Cognitive characteristics | ||
Environmental concern | Degree of concern for the environment | Ordinal categorical variables |
Environmental cognition | Cognition of environmental pollution | Continuous variables, ordinal categorical variables or binary variables |
Social norms | Perception and recognition of social norms | Ordinal categorical variables |
External condition | ||
Agricultural cooperative | Whether to join agricultural cooperative | Binary variables |
Cadre status | Whether there are village cadres in the family | Binary variables |
Technical training | Number of technical training sessions | Continuous variables or ordinal categorical variables |
Policy propaganda | The degree of government policy propaganda | Ordinal categorical variables or binary variables |
Government subsidies | Government agricultural subsidies | Continuous variables, ordinal categorical variables or binary variables |
Technical guidance | Whether it is guided by professional and technical personnel | Ordinal categorical variables or binary variables |
Social network | The frequency of communication with relatives and neighbors | Continuous variables, ordinal categorical variables or binary variables |
Variables | SE | Q | PQ | τ2 | ZB | PB | n | N | |
---|---|---|---|---|---|---|---|---|---|
Gender | 0.0259 ** | 0.0105 | 18.1662 | 0.9219 | 0.0005 | 1.8476 | 0.0756 | 29 | 37,657 |
Age | −0.0169 | 0.0243 | 484.2097 | 0.0001 | 0.0069 | −1.5863 | 0.1172 | 72 | 141,462 |
Education | −0.0010 | 0.0229 | 249.5609 | 0.0001 | 0.0055 | −0.3203 | 0.7496 | 81 | 145,062 |
Health status | 0.0881 * | 0.0498 | 572.3275 | 0.0001 | 0.0116 | −2.5787 | 0.0275 | 12 | 91,138 |
Risk attitude | −0.1019 ** | 0.0425 | 41.6546 | 0.0004 | 0.0097 | 0.8071 | 0.4322 | 17 | 11,942 |
Family size | 0.0558 *** | 0.0051 | 13.7533 | 0.4682 | 0.0004 | −1.1073 | 0.2882 | 15 | 87,500 |
Agricultural labor force | −0.0041 | 0.0165 | 67.6805 | 0.0072 | 0.0017 | 0.7973 | 0.4299 | 43 | 36,714 |
Household income | 0.0341 | 0.0372 | 69.7600 | 0.0001 | 0.0079 | 0.9099 | 0.3737 | 22 | 12,732 |
Proportion of agricultural income | 0.0322 | 0.0654 | 24.1191 | 0.0196 | 0.0163 | 1.3133 | 0.2158 | 13 | 5464 |
Part-time farming | −0.0138 | 0.0517 | 68.7650 | 0.0001 | 0.0135 | 1.3579 | 0.1922 | 19 | 12,619 |
Farm size | −0.0391 * | 0.0228 | 297.3803 | 0.0001 | 0.0002 | 1.3627 | 0.1793 | 50 | 34,887 |
Planting years | 0.0645 | 0.0618 | 98.4930 | 0.0001 | 0.0192 | 1.3009 | 0.2225 | 12 | 9613 |
Land fragmentation | 0.0584 | 0.0441 | 149.1745 | 0.0001 | 0.0110 | −0.2326 | 0.8190 | 18 | 14,782 |
Land quality | 0.0221 | 0.0373 | 127.7170 | 0.0001 | 0.0096 | −0.4475 | 0.6581 | 29 | 21,141 |
Environmental concern | 0.1420 *** | 0.0437 | 3.2244 | 0.9937 | 0.0071 | −1.1395 | 0.2787 | 13 | 6475 |
Environmental cognition | 0.1370 * | 0.0722 | 3.8930 | 0.9520 | 0.0222 | 2.1704 | 0.0581 | 11 | 8689 |
Social norms | 0.1676 * | 0.0983 | 1.6473 | 0.9491 | 0.0372 | 4.4456 | 0.0067 | 7 | 6491 |
Agricultural cooperative | 0.0103 | 0.0656 | 200.8154 | 0.0001 | 0.0287 | 0.0059 | 0.9954 | 29 | 20,591 |
Cadre status | 0.0943 *** | 0.0245 | 11.7942 | 0.6945 | 0.0021 | 0.7905 | 0.4424 | 16 | 8036 |
Technical training | −0.0101 | 0.0345 | 56.2926 | 0.0005 | 0.0064 | 2.0393 | 0.0521 | 27 | 24,561 |
Policy propaganda | 0.1756 *** | 0.0451 | 7.5441 | 0.8720 | 0.0146 | −0.1451 | 0.8871 | 14 | 5598 |
Government subsidies | 0.1363 ** | 0.0538 | 46.7072 | 0.0006 | 0.0140 | 3.0655 | 0.0064 | 21 | 12,238 |
Technical guidance | 0.0280 | 0.0816 | 6.8539 | 0.4442 | 0.0312 | 2.0236 | 0.0895 | 8 | 13,089 |
Social network | −0.0220 | 0.0712 | 48.0052 | 0.0001 | 0.0255 | 0.7966 | 0.4400 | 15 | 5586 |
Variables | SE | Q | PQ | τ2 | Direction | NS | SEN | |
---|---|---|---|---|---|---|---|---|
Gender | 0.0249 * | 0.0105 | 25.5937 | 0.7813 | 0.0005 | Left | 4 | 3.5815 |
Health status | 0.1153 ** | 0.0474 | 572.8488 | 0.0001 | 0.0114 | Right | 3 | 2.3406 |
Environmental cognition | 0.1036 | 0.0763 | 6.8475 | 0.9098 | 0.0276 | Left | 3 | 2.2327 |
Technical training | −0.0407 | 0.0332 | 77.3997 | 0.0001 | 0.0062 | Left | 10 | 3.2855 |
Government subsidies | 0.0610 | 0.0589 | 63.8818 | 0.0001 | 0.0206 | Left | 7 | 2.9542 |
Technical guidance | −0.0387 | 0.0625 | 13.4182 | 0.2012 | 0.0218 | Left | 3 | 1.8667 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, H.; Liu, H.; Chang, W.-Y.; Wang, C. Factors Affecting Farmers’ Environment-Friendly Fertilization Behavior in China: Synthesizing the Evidence Using Meta-Analysis. Agriculture 2023, 13, 150. https://doi.org/10.3390/agriculture13010150
Li H, Liu H, Chang W-Y, Wang C. Factors Affecting Farmers’ Environment-Friendly Fertilization Behavior in China: Synthesizing the Evidence Using Meta-Analysis. Agriculture. 2023; 13(1):150. https://doi.org/10.3390/agriculture13010150
Chicago/Turabian StyleLi, Hao, Huina Liu, Wei-Yew Chang, and Chun Wang. 2023. "Factors Affecting Farmers’ Environment-Friendly Fertilization Behavior in China: Synthesizing the Evidence Using Meta-Analysis" Agriculture 13, no. 1: 150. https://doi.org/10.3390/agriculture13010150
APA StyleLi, H., Liu, H., Chang, W. -Y., & Wang, C. (2023). Factors Affecting Farmers’ Environment-Friendly Fertilization Behavior in China: Synthesizing the Evidence Using Meta-Analysis. Agriculture, 13(1), 150. https://doi.org/10.3390/agriculture13010150