Alley Cropping and Organic Compost: An Efficient and Sustainable Agro-Ecological Strategy for Improving Turmeric (Curcuma longa L.) Growth and Attributes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Growth and Yield Parameters
2.3. Chemical Analysis
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gutzler, C.; Helming, K.; Balla, D.; Dannowski, R.; Deumlich, D.; Glemnitz, M.; Knierim, A.; Mirschel, W.; Nendel, C.; Paul, C.; et al. Agricultural land use changes e a scenario-based sustainability impact assessment for Brandenburg, Germany. Ecol. Indicat. 2015, 48, 505–517. [Google Scholar] [CrossRef] [Green Version]
- Centre, W.A. Annual Report 2010–2011 of World Agroforestry Centre: Wicked Challenges Today, Wicked Solutions Tomorrow; World Agroforestry Centre: Nairobi, Kenya, 2011; pp. 6–7. [Google Scholar]
- Mosquera-Losada, M.R.; McAdam, J.H.; Romero-Franco, R.; Santiago-Freijanes, J.J.; Rigueiro-Rodróguez, A. Definitions and components of agroforestry practices in Europe. Agroforestry in Europe: Current Status and Future Prospects; Rigueiro-Rodróguez, A., McAdam, J., Mosquera-Losada, M.R., Eds.; Springer: Dordrecht, The Netherlands, 2009; pp. 3–19. ISBN 978-1-4020-8272-6. [Google Scholar]
- Kay, S.; Rega, C.; Moreno, G.; den Herder, M.; Palma, J.H.N.; Borek, R.; Crous-Duran, J.; Freese, D.; Giannitsopoulos, M.; Graves, A.; et al. Agroforestry creates carbon sinks whilst enhancing the environment in agricultural landscapes in Europe. Land Use Policy 2019, 83, 581–593. [Google Scholar] [CrossRef]
- Quinkenstein, A.; Wöllecke, J.; Böhm., C.; Grünewald, H.; Freese, D.; Schneider, B.U.; Hüttl, R.F. Ecological benefits of the alley cropping agroforestry system in sensitive regions of Europe. Environ. Sci. Policy 2009, 12, 1112–1121. [Google Scholar] [CrossRef]
- Gold, M.A.; Garrett, H.E. Agroforestry Nomenculature, Concepts and Practices. North American Agroforestry: An Integrated Science and Practice, 2nd ed.; American Society of Agronomy, Inc.: Madison, WI, USA, 2009; pp. 45–56. [Google Scholar]
- Fahrig, L.; Baudry, J.; Brotons, L.; Burel, F.G.; Crist, T.O.; Fuller, R.J.; Sirami, C.; Siriwardena, G.M.; Martin, J.-L. Functional landscape heterogeneity and animal biodiversity in agricultural andscapes. Ecol. Lett. 2011, 14, 101–112. [Google Scholar] [CrossRef]
- Torralba, M.; Fagerholm, N.; Burgess, P.J.; Moreno, G.; Plieninger, T. Do European agroforestry systems enhance biodiversity and ecosystem services? A meta-analysis. Agric. Ecosyst. Environ. 2016, 230, 150–161. [Google Scholar] [CrossRef] [Green Version]
- Wolz, K.J.; Lovell, S.T.; Branham, B.E.; Eddy, W.C.; Keeley, K.; Revord, R.S.; Wander, M.M.; Yang, W.H.; DeLucia, E.H. Frontiers in alley cropping: Transformative solutions for temperate agriculture. Glob. Chang. Biol. 2018, 24, 883–894. [Google Scholar] [CrossRef] [Green Version]
- Jose, S.; Williams, R.; Zamora, D. Belowground ecological interactions in mixed-species forest plantations. For. Ecol. Manag. 2006, 233, 231–239. [Google Scholar] [CrossRef]
- Nerlich, K.; Graeff-Hönninger, S.; Claupein, W. Erratum to: Agroforestry in Europe: A review of the disappearance of traditional systems and development of modern agroforestry practices, with emphasis on experiences in Germany. Agrofor. Syst. 2013, 87, 1211. [Google Scholar] [CrossRef] [Green Version]
- Singh, B.; Bishnoi, M.; Baloch, M.R.; Singh, G. Tree biomass, resource use and crop productivity in agri-horti-silvicultural systems in the dry region of Rajasthan, India. Arch. Agron. Soil Sci. 2014, 60, 1031–1049. [Google Scholar] [CrossRef]
- Razouk, R.; Daoui, K.; Ramdani, A.; Chergaoui, A. Optimal distance between olive trees and annual crops in rainfed intercropping system in northern Morocco. Crop Sci. Res. 2016, 1, 23–32. [Google Scholar]
- Nasielski, J.; Furze, J.R.; Tan, J.; Bargaz, A.; Thevathasan, N.V.; Isaac, M.E. Agroforestry promotes soybean yield stability and N2-fixation under water stress. Agron. Sustain. Dev. 2015, 35, 1541–1549. [Google Scholar] [CrossRef]
- Mantino, A.; Volpi, I.; Micci, M.; Pecchioni, G.; Bosco, S.; Dragoni, F.; Mele, M.; Ragaglini, G. Effect of tree presence and soil characteristics on soybean yield and quality in an innovative alley-cropping system. Agronomy 2020, 10, 52. [Google Scholar] [CrossRef] [Green Version]
- Xu, H.; Bi, H.; Gao, L.; Yun, L. Alley cropping increases land use efficiency and economic profitability across the combination cultivation period. Agronomy 2019, 9, 34. [Google Scholar] [CrossRef] [Green Version]
- Chauhan, S.K.; Singh, A.; Sikka, S.S.; Tiwana, U.S.; Sharma, R.; Saralch, H.S. Yield and quality assessment of annual and perennial fodder intercrops in Leucaena alley farming system. Range Mgmt. Agrofor. 2014, 35, 230–235. [Google Scholar]
- Kang, B.T.; Grimme, H.; Lawson, T.L. Alley cropping sequentially cropped maize and cowpea with Leucaena on a sandy soil in southern Nigeria. Plant Soil 1985, 85, 267–276. [Google Scholar] [CrossRef]
- Kang, B.T.; Reynolds, L.; Atta-Krah, A.N. Alley farming. Adv. Agron. 1990, 43, 315–359. [Google Scholar]
- Tsvetkov, I.; Atanassov, A.; Vlahova, M.; Carlier, L.; Christov, N.; Lefort, F.; Rusanov, K.; Badjakov, I.; Dincheva, I.; Tchamitchian, M.; et al. Plant organic farming research—Current status and opportunities for future development. Biotechnol. Biotechnol. Equip. 2018, 32, 241–260. [Google Scholar] [CrossRef] [Green Version]
- Prasad, K.; Khare, A.; Rawat, P. Quality and yield performance of turmeric (Curcuma longa Linn.) in response to glycoprotein producing arbuscular mycorrhizal fungal biostimulant and traditional fertilizers utilization. Curr. Investig. Agric. Curr. Res. 2021, 9, 1292–1298. [Google Scholar]
- Mohamed, M.A.; Wahba, H.E.; Ibrahim, M.E.; Yousef, A.A. Effect of irrigation intervals on growth and chemical composition of some Curcuma spp. Plants. Nusant. Biosci. 2014, 6, 140–145. [Google Scholar] [CrossRef]
- ASTA (American Spice Trade Association). A Concise Guide to Spices, Herbs, Seeds and Extractives; American Spice Trade Association: Washington, DC, USA, 2002. [Google Scholar]
- Manjunath, M.N.; Sattigeri, V.D.; Nagaraj, K.V. Curcumin in turmeric. Spice India 1991, 12, 7–9. [Google Scholar]
- Jackson, M.L. Soil Chemical Analysis; Prentice Hall of India, Private Limited: New Delhi, India, 1967. [Google Scholar]
- Murphy, J.; Riley, J.P.A. Modified single-solution method for the determination of phosphorus in natural water. Anal. Chim. Acta 1962, 27, 31–36. [Google Scholar] [CrossRef]
- Wilde, S.A.; Corey, R.B.; Lyer, J.G.; Voight, G.K. Soil and Plant Analysis for Tree Culture, 3rd ed.; Oxford and IBM Puplishing Co: New Delhi, India, 1985. [Google Scholar]
- Snedecor, G.W.; Cochran, W.G. Statistical Methods, 8th ed.; Iow State University Press: Iowa City, IA, USA, 1989. [Google Scholar]
- Garrity, D. Agroforestry and the Future of Global Land Use. In Agroforestry-The Future of Global Land Use; Springer: Dordrecht, The Netherlands, 2012; Volume 9, pp. 21–27. [Google Scholar]
- Ashraf, M.; Sanusi, R.; Zulkifli, R.; Tohiran, K.A.; Moslim, R.; Ashton-Butt, A.; Azhar, B. Alley-cropping system increases vegetation heterogeneity and moderates extreme microclimates in oil palm plantations. Agric. For. Meteorol. 2019, 276–277, 107632. [Google Scholar] [CrossRef]
- Purnomo, D.; Budiastuti, M.S.; Sakya, A.T.; Cholid, M.I. The potential of turmeric (Curcuma xanthorrhiza) in agroforestry system based on silk tree (Albizia chinensis). IOP Conf. Ser. Earth Environ. Sci. 2018, 142, 012034. [Google Scholar] [CrossRef]
- Wilson, G.F.; Kang, B.T. Developing stable and productive biological cropping systems for the tropics. In Biological Husbandry. A Scientific Approach to Organic Farming; Stonehouse, B., Ed.; Butterworths: London, UK, 1981. [Google Scholar]
- Kang, B.T.; Wilson, G.F.; Lawson, T.L. Alley Cropping: A Stable Alternative to Shifting Cultivation; International Institute of Tropical Agriculture: Ibadan, Nigeria, 1984. [Google Scholar]
- Brewbaker, J.L. Leguminous trees and shrubs for Southeast Asia and the South Pacific. In Forages in Southeast Asia and South Pacific Agriculture, Proceedings of An International Workshop Held at Cisarua, Indonesia, 19–23 August 1986; Blair, G.J., Ivory, D.A., Evans, T.R., Eds.; Australian Centre for International Agricultural Research: Bruce, Australia, 1986; Volume 12, pp. 43–50. [Google Scholar]
- Whitehead, M.; Marney, I.E. Effects of Shade on Nitrogen and Phosphorus Acquisition in Cereal-Legume Intercropping Systems. Agriculture 2012, 2, 12–24. [Google Scholar] [CrossRef] [Green Version]
- Amin, M.R.; Ikbal, T.M.T.; Miah, M.M.U.; Hakim, M.A.; Amanullah, A.S.M. Performance of ginger under agroforestry system. Bangladesh Res. Publ. J. 2010, 4, 208–217. [Google Scholar]
- Srikrishnah, S.; Sutharsan, S. Effect of different shade level on growth and tuber yield of turmeric (Curcuma longa L.) in the Batticaloa district of Sri Lanka. Am.-Eurasian J Agric. Environ. Sci. 2015, 15, 813–816. [Google Scholar]
- Kittur, B.H.; Sudhakara, K.; Kumar, B.M.; Kunhamu, T.K.; Sureshkumar, P. Bamboo based agroforestry systems in Kerala, India: Performance of turmeric (Curcuma longa L.) in the subcanopy of differentially spaced seven year-old bamboo stand. Agroforest Syst. 2016, 90, 237–250. [Google Scholar] [CrossRef]
- Kumar, A.; Tewari, S.; Singh, H.; Singh, I.; Anand, R.; Kumar, D.; Pandey, R. Impact of different agro-forestry systems on growth and yield of turmeric at Tarai region of Uttarakhand, India. J. Plant Dev. Sci. 2018, 10, 156–162. [Google Scholar]
- Painkra, D.S.; Toppo, P.; Tuteja, S.S. Effect of nutrients on performance of turmeric [Curcuma longa (L.)] under Karanj (Pongamia pinnata) based agroforestry system. J. Rural. Agric. Res. 2020, 20, 48–51. [Google Scholar]
- Ebeid, A.F.A.; Ali, E.F.; Mostafa, M.M.A. Impact of alley cropping system amended with Sesbania and/or nitrogenous fertilizer on growth and yield of Cymbopogon citratus (DC) Stapf. J. Med. Plants Stud. 2015, 3, 07–13. [Google Scholar]
- Chowdhury, M.M.A.A.; Miah, M.M.U.; Amin, M.H.A.; Akter, M.M.; Hanif, M.A. Effect of fertilizer and lime on the performance of turmeric-ghora neem based agroforestry system. J. Agrofor. Environ. 2010, 3, 69–72. [Google Scholar]
- Sinclair, T.R.; Gardner, F.P. Invironment Limit to Plant Production in Principles of Ecology in Plant Production; CAB International: Wallingford, UK, 1998; pp. 63–78. [Google Scholar]
- Mattera, L.A.; Romero, L.A.; Cuatrin, A.L.; Cornaglia, P.S.; Grimoldi, A.A. Yield component, light interception and radiation used efficiency of Lucerne (Medicago sativa L.) in response to row spacing. Europ. J. Agron. 2013, 45, 87–95. [Google Scholar] [CrossRef]
Texture Class | Particle Size Distribution | CaCO3 % | EC dSm−1 | pH (1:5) | |||
---|---|---|---|---|---|---|---|
Sand % | Silt % | Clay % | |||||
Sandy | 83.3 | 11.7 | 5.0 | 12.50 | 3.03 | 8.05 | |
Cations (meq L−1) | Anions (meq L−1) | ||||||
Na+ | K+ | Ca++ | Mg++ | CO3− | HCO3− | Cl− | SO4− |
29.02 | 0.75 | 12.0 | 6.2 | 0.0 | 0.82 | 30.6 | 17.9 |
TDS mg L−1 | pH | EC (dSm−1) | Soluble Cations (mg L−1) | Soluble Anions (mg L−1) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Ca++ | Mg++ | Na+ | K+ | CO3−− | HCO3− | SO4−− | Cl− | |||
220.5 | 7.50 | 321.3 | 25.5 | 7.8 | 30.6 | 5.2 | 23.7 | 105.5 | 40.6 | 30.2 |
Character | pH | EC (dSm−1) | OM % | N % | P % | K % | C/N Ratio | Moisture Content % | O.C % | Ca % |
---|---|---|---|---|---|---|---|---|---|---|
Value | 7.2 | 4.6 | 47.3 | 1.2 | 1.3 | 1.7 | 1:16 | 27.7 | 20.2 | 5.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Soliman, Y.M.; Soliman, W.S.; Abbas, A.M. Alley Cropping and Organic Compost: An Efficient and Sustainable Agro-Ecological Strategy for Improving Turmeric (Curcuma longa L.) Growth and Attributes. Agriculture 2023, 13, 149. https://doi.org/10.3390/agriculture13010149
Soliman YM, Soliman WS, Abbas AM. Alley Cropping and Organic Compost: An Efficient and Sustainable Agro-Ecological Strategy for Improving Turmeric (Curcuma longa L.) Growth and Attributes. Agriculture. 2023; 13(1):149. https://doi.org/10.3390/agriculture13010149
Chicago/Turabian StyleSoliman, Yassin M., Wagdi S. Soliman, and Ahmed M. Abbas. 2023. "Alley Cropping and Organic Compost: An Efficient and Sustainable Agro-Ecological Strategy for Improving Turmeric (Curcuma longa L.) Growth and Attributes" Agriculture 13, no. 1: 149. https://doi.org/10.3390/agriculture13010149
APA StyleSoliman, Y. M., Soliman, W. S., & Abbas, A. M. (2023). Alley Cropping and Organic Compost: An Efficient and Sustainable Agro-Ecological Strategy for Improving Turmeric (Curcuma longa L.) Growth and Attributes. Agriculture, 13(1), 149. https://doi.org/10.3390/agriculture13010149