Efficient Utilization Mechanism of Soil Moisture and Nutrients with Ridge Film Furrow Seeding Technology of Sloping Farmlands in Semi-Arid and Rain-Fed Areas
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experiment Field
2.2. Experimental Design
2.3. Measurement and Analytical Methods
2.3.1. Measurement of Maize Yield
2.3.2. Water Use Efficiency
2.3.3. Measurement of Partial Factor Productivity
2.3.4. The Spatial Distribution of Soil Water, Nutrients, and Roots
2.3.5. Measurement of Soil Moisture and Nutrient Availability
2.3.6. Measurement of the Centroid of Soil Water, Nutrients, and Roots
2.3.7. Visual Representation of Analytic Data Using Radar Chart
3. Results
3.1. Effects of Ridge Film and Furrow Seeding on Crop Yields
3.2. Effects of Ridge Film and Furrow Seeding on Water Use Efficiency
3.3. Effects of Ridge Film and Furrow Seeding on Partial Factor Productivity
3.4. Effects of Ridge Film and Furrow Seeding on Soil Moisture and Nutrient Efficiency
3.5. Effects of Ridge Film and Furrow Seeding on the Centroid of Soil Water, Nutrients, and Roots
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Guo, M.; Xie, N. Research and application of variable frequency drip irrigation technology mode for pumped wells in sloping fields in western Liaoning Province. Hydro Sci. Cold Zone Eng. 2019, 2, 33–36. (In Chinese) [Google Scholar]
- Zhang, X.B.; Lei, L.; Lai, J.S.; Zhao, H.M.; Song, W.B. Effects of drought stress and water, recovery on physiological responses and gene expression in maize seedlings. BMC Plant Biol. 2018, 18, 68. [Google Scholar] [CrossRef] [PubMed]
- Xiao, J.B.; Liu, Z.; Xin, Z.X.; Li, J.Z.; Chen, G.Q.; Zhu, X.D.; Sun, Z.X. Identification of drought tolerance in foxtail millet during its entire growth period based on principal component analysis and membership function. Agric. Res. Arid Areas 2022, 40, 34–44. (In Chinese) [Google Scholar]
- Feng, C.; Feng, L.S.; Sun, Z.X.; Zheng, J.M.; Du, G.J.; Zhang, D.S.; Zhang, Y.; Gao, Y.L. Effect of N amount on nodulation of peanut in maize‖peanut intercropping system of semi-arid area in west Liaoning. Soil Fert. Sci. China 2019, 4, 127–131. (In Chinese) [Google Scholar]
- Guo, S.; Zhu, Z.; Lyu, L. Effects of climate change and human activities on soil erosion in the Xihe River Basin, China. Water 2018, 10, 1085. [Google Scholar] [CrossRef]
- Yang, X.; Zhang, X.; Lv, D.; Yin, S.; Zhang, M.; Zhu, Q.; Yu, Q.; Liu, B. Remote sensing estimation of the soil erosion cover-management factor over China’s Loess Plateau. Land Degrad. Dev. 2020, 31, 1942–1995. [Google Scholar] [CrossRef]
- Bao, Y.H.; He, X.B.; Wen, A.B.; Gao, P.; Tang, Q.; Yan, D.C.; Long, Y. Dynamic changes of soil erosion in a typical disturbance zone of China’s Three Gorges Reservoir. Catena 2018, 169, 128–139. [Google Scholar] [CrossRef]
- Zhang, M.L.; Yang, H.; Zhou, J.; Xu, L.; Sui, Z.L. Effects of Soil Erosion on Soil Quality in the Rocky Mountain Areas of Northern China. J. Soil Water Conserv. 2011, 25, 218–221. (In Chinese) [Google Scholar]
- Guo, Q.; Hao, Y.; Liu, B. Rates of soil erosion in China: A study based on runoff plot data. Catena 2015, 124, 68–76. [Google Scholar] [CrossRef]
- Ketema, H.; Yimer, F. Soil property variation under agroforestry based conservation tillage and maize based conventional tillage in Southern Ethiopia. Soil Tillage Res. 2014, 141, 25–31. [Google Scholar] [CrossRef]
- Mangalassery, S.; Mooney, S.J.; Sparkes, D.L.; Fraser, W.T.; Sjogersten, S. Impacts of zero tillage on soil enzyme activities, microbial characteristics and organic matter functional chemistry in temperate soils. Eur. J. Soil Biol. 2015, 68, 9–17. [Google Scholar] [CrossRef]
- Xin, X.T.; Sun, Z.X.; Xiao, J.B.; Feng, L.S.; Yang, N.; Liu, Y. Ridge-furrow rainfall harvesting planting and its effect on soil erosion and soil quality in sloping farmland. Agron. J. 2021, 113, 863–877. [Google Scholar] [CrossRef]
- Li, G.F.; Zheng, F.L.; Lu, J.; Xu, X.M.; Hu, W.; Yong, H. Inflow rate impact on hillslope erosion processes and flow hydrodynamics. Soil Sci. Soc. Am. J. 2016, 80, 711–719. [Google Scholar] [CrossRef]
- Zhao, C.; Gao, J.E.; Huang, Y.F.; Wang, G.Q.; Zhang, M.J. Effects of vegetation stems on hydraulics of overland flow under varying water discharges. Land Degrad. Dev. 2016, 27, 748–757. [Google Scholar] [CrossRef]
- Pannell, D.J.; Llewellyn, R.S.; Corbeels, M. The farm-level economics of conservation agriculture for resource-poor farmers. Agric. Ecosyst. Environ. 2014, 187, 52–64. [Google Scholar] [CrossRef]
- Prosdocimi, M.; Tarolli, P.; Cerda, A. Mulching practices for reducing soil water erosion: A review. Earth-Sci. Rev. 2016, 161, 191–203. [Google Scholar] [CrossRef]
- Xiao, J.B.; Sun, Z.X.; Jiang, C.G.; Liu, Z.; Zheng, J.M.; Feng, L.S. Effect of Ridge Film Mulching Technique and Furrow Seeding of Spring Corn on Water Use and Yield in Semi-Arid Region in Liaoxi Area. Sci. Agric. Sin. 2014, 47, 1917–1928. (In Chinese) [Google Scholar]
- Liu, G.; Zuo, Y.; Zhang, Q.; Yang, L.; Zhao, E.; Liang, L.; Tong, Y.A. Ridge-furrow with plastic film and straw mulch increases water availability and wheat production on the Loess Plateau. Sci. Rep. 2018, 8, 6503. [Google Scholar] [CrossRef]
- Du, Y.D.; Sun, J.; Wang, Z.; Zhang, Q.; Cui, B.J.; Niu, W.Q. Effect of ridge film mulching and nitrogen application rate on seed quality, oil yield and nitrogen-use efficiency of winter oilseed rape in northwest China. Arch. Agron. Soil Sci. 2022, 68, 1385–1397. [Google Scholar] [CrossRef]
- Dong, F.; Yan, Q.Y.; Yang, F.; Zhang, J.C.; Wang, J.L. Yield structure and water use efficiency of summer maize (Zea mays L.) under wide ridge-furrow planting in the furrow irrigation process. Arch. Agron. Soil Sci. 2023, 69, 228–242. [Google Scholar] [CrossRef]
- Paul PL, C.; Bell, R.W.; Barrett-Lennard, E.G.; Kabir, E. Straw mulch and irrigation affect solute potential and sunflower yield in a heavy textured soil in the Ganges Delta. Agric. Water Manag. 2020, 239, 106211. [Google Scholar] [CrossRef]
- Zhang, X.; Zhao, J.; Yang, L.; Kamran, M.; Xue, X.; Dong, Z.; Jia, Z.; Han, Q. Ridge-furrow mulching system regulates diurnal temperature amplitude and wetting-drying alternation behavior in soil to promote maize growth and water use in a semiarid region. Field Crops Res. 2019, 233, 121–130. [Google Scholar] [CrossRef]
- Kalyuzhny, E.R.; Poteryaeva, A.V.; Shpakovsky, G.A.; Bykreev, L.V.; Zarikovskaya, N. Implementing a visual representation of analytic data using a radar chart. J. Phys. Conf. Ser. 2022, 2291, 012001. [Google Scholar] [CrossRef]
- Jiang, L.L.; Wu, Y.X.; Wang, J.J.; Wang, Z.L.; Jiang, Q.X. Scenario simulation and comprehensive assessment of water footprint sustainability system in Heilongjiang Province, China: A model combining system dynamics with improved radar chart approach. Ecol. Indic. 2023, 154, 110527. [Google Scholar] [CrossRef]
- Li, Q.F.; Wang, M.Y.; Guo, H.; Zhao, G.M. Comprehensive Evaluation of Green Bridge Construction Based on a Game Theory–Radar Chart Combination. Sustainability 2023, 15, 11383. [Google Scholar] [CrossRef]
- Maes, M.; Almulla, A.F. Research and Diagnostic Algorithmic Rules (RADAR) and RADAR Plots for the First Episode of Major Depressive Disorder: Effects of Childhood and Recent Adverse Experiences on Suicidal Behaviors, Neurocognition and Phenome Features. Brain Sci. 2023, 13, 714. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Li, Z.X.; Gao, R.X.; Wang, W.; Cao, T.T.; Ma, S.H. Acupuncture treatment of glaucoma based on radar plots: A protocol for an overview of systematic reviews. Medicine 2021, 100, e27261. [Google Scholar] [CrossRef] [PubMed]
- Castagna, C.; Consorti, G.; Turinetto, M.; Lunghi, C. Osteopathic Models Integration Radar Plot: A Proposed Framework for Osteopathic Diagnostic Clinical Reasoning. J. Chiropr. Humanit. 2021, 28, 49–59. [Google Scholar] [CrossRef]
- Yuan, X.Q.; You, J.; Li, J.H.; Jin, G.Y.; Chen, M.; Shen, B. Research on Quality Effect Evaluation of Medical Device Management in Shanghai Based on Radar Chart Method. Chin. J. Med. Instrum. 2023, 47, 233–236. [Google Scholar]
- Feng, C.; Feng, L.S.; Liu, Q.; Li, H.R.; Zheng, J.M.; Yang, N.; Bai, W.; Zhang, Z.; Sun, Z.X. The Degradation Characteristics of Different Plastic Films and Their Effects on Maize Yield in Semi-Arid Area in Western Liaoning. Sci. Agric. Sin. 2021, 54, 1869–1880. [Google Scholar]
- Chattaraj, S.; Chakraborty, D.; Garg, R.N.; Singh, G.P.; Gupta, V.K.; Singh, S.; Singh, R. Hyperspectral remote sensing for growth-stage-specific water use in wheat. Field Crops Res. 2013, 144, 179–191. [Google Scholar] [CrossRef]
- Zhang, G.Q.; Liu, C.W.; Xiao, C.H.; Xie, R.Z.; Ming, B.; Hou, P.; Liu, G.Z.; Xu, W.J.; Shen, D.P.; Wang, K.R.; et al. Optimizing water use efficiency and economic return of super high yield spring maize under drip irrigation and plastic mulching in arid areas of China. Field Crops Res. 2017, 211, 137–146. [Google Scholar] [CrossRef]
- Mu, X.Y.; Pang, G.B.; Zhang, L.Z.; Cong, X.; Zhao, D.L.; Feng, Y.M.; Xing, H.B. Effect of Water and Fertilizer on the distribution of Nitrogen and Phosphorus in soil and Partial factor Productivity. IOP Conf. Ser. Earth Environ. Sci. 2019, 330, 042064. [Google Scholar] [CrossRef]
- Feng, L.S. Mechanism Research for Improving Water and Nutrient Use Efficience in Peanut and Foxtail Millet Intercroping. Ph.D. Thesis, Shenyang Agricultural University, Shenyang, China, 2013. (In Chinese). [Google Scholar]
- Fu, T.; Ni, J.; Wei, C.; Xie, D. Research on the nutrient loss from purple soil under different rainfall intensities and slopes. Plant Nutr. Fert. Sci. 2003, 1, 71–74+101. (In Chinese) [Google Scholar]
- Schreiber, J.D.; Rebich, R.A.; Cooper, C.M. Dynamics of diffuse pollution from US southern watersheds. Water Res. 2001, 35, 2534–2542. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.J.; Zhang, H.Y.; An, J.; Wu, Y.Z. Soil erosion processes on row side slopes within contour ridging systems. Catena 2014, 115, 11–18. [Google Scholar] [CrossRef]
- Stevens, C.J.; Quinton, J.N.; Bailey, A.P.; Deasy, C.; Silgram, M.; Jackson, D.R. The effects of minimal tillage, contour cultivation and in-field vegetative barriers on soil erosion and phosphorus loss. Soil Tillage Res. 2009, 106, 145–151. [Google Scholar] [CrossRef]
- Amoah, J.K.; Amatya, D.M.; Nnaji, S. Quantifying watershed surface depression storage: Determination and application in a hydrologic model. Hydrol. Processes 2003, 27, 2401–2413. [Google Scholar] [CrossRef]
- Che, M.X.; Gong, Y.B.; Khan, M.N.; Chen, Z.L.; Zeng, Q.; Lan, Y.Y. Effects of Different Rainfall Intensities and Slope Gradients on Water and Soil Conservation of Straw Mulch. J. Soil Water Conserv. 2016, 30, 131–135+142. (In Chinese) [Google Scholar]
- Gomez, J.A.; Guzman, M.G.; Giraldez, J.V.; Fereres, E. The influence of cover crops and tillage on water and sediment yield, and on nutrient, and organic matter losses in an olive orchard on a sandy loam soil. Soil Tillage Res. 2009, 106, 137–144. [Google Scholar] [CrossRef]
- Wen, L.L.; Zheng, F.L.; Shen, H.O.; Gao, Y. Effects of corn straw mulch buffer in the gully head on gully erosion of sloping cropland in the black soil region of Northeast China. J. Sediment. Res. 2014, 6, 73–80. (In Chinese) [Google Scholar]
- Fu, Y.L.; Wang, S.S.; Li, Y.B. Effects of Straw Mulching and Water Control on Growth and Yield of Summer Maize Under Ridge and Furrow Irrigation. Water Sav. Irrig. 2021, 11, 74–82. (In Chinese) [Google Scholar]
- Zhang, Y.; Sun, H.M. The Effect of Straw Mulching Coupled with Furrow Irrigation on Root Distribution and Yield of Summer Maize. J. Irrig. Drain. Div. 2021, 40, 16–21. (In Chinese) [Google Scholar]
- Chen, Y.; Liu, T.; Tian, X.; Wang, X.; Li, M.; Wang, S.; Wang, Z. Effects of plastic film combined with straw mulch on grain yield and water use efficiency of winter wheat in Loess Plateau. Field Crops Res. 2015, 172, 53–58. [Google Scholar] [CrossRef]
- Ren, X.; Chen, X.; Cai, T.; Wei, T.; Wu, Y.; Ali, S.; Jia, Z. Effects of ridge-furrow system combined with different degradable mulching materials on soil water conservation and crop production in semi-humid areas of China. Front. Plant Sci. 2017, 8, 1877. [Google Scholar] [CrossRef] [PubMed]
- Doring, T.F.; Brandt, M.; He, B.J.; Finckh, M.R.; Saucke, H. Effects of straw mulch on soil nitrate dynamics, weeds, yield and soil erosion in organically grown potatoes. Field Crops Res. 2005, 94, 238–249. [Google Scholar] [CrossRef]
- Wang, Z.W.; Hao, W.P.; Gong, D.Z.; Mei, X.R.; Wang, C.T. Effect of Straw Mulch Amount on Dynamic Changes of Soil Moisture and Temperature in Farmland. Chin. J. Agrometeorol. 2010, 31, 244–250. (In Chinese) [Google Scholar]
Planting Pattern | ||||
---|---|---|---|---|
CK | RSM | RM | ||
Slope value | 5° | T1 | T2 | T3 |
10° | T4 | T5 | T6 |
Treatment | Moisture | Alkaline Nitrogen | Available Phosphorus | Available Potassium | ||||
---|---|---|---|---|---|---|---|---|
Relative Efficiency | Effective Content (%) | Relative Efficiency | Effective Content (mg/kg) | Relative Efficiency | Effective Content (mg/kg) | Relative Efficiency | Effective Content (mg/kg) | |
T1 | — | 11.34 | — | 41.08 | — | 27.60 | — | 142.54 |
T2 | 2.27 | 13.17 | 2.49 | 51.69 | 3.65 | 50.51 | 2.54 | 184.85 |
T3 | 1.28 | 12.39 | 1.33 | 45.77 | 1.55 | 35.60 | 1.36 | 165.84 |
T4 | — | 9.77 | — | 21.15 | — | 24.90 | — | 93.20 |
T5 | 1.99 | 12.66 | 2.76 | 38.48 | 2.09 | 34.63 | 2.44 | 151.47 |
T6 | 1.30 | 12.05 | 1.55 | 32.04 | 1.20 | 28.03 | 1.53 | 139.77 |
Treatment | Arable Slope | Farming Mode | Moisture | Alkaline Nitrogen | Available Phosphorus | Available Potassium |
---|---|---|---|---|---|---|
Arable Slope | 1 | |||||
Farming mode | 0.000 | 1 | ||||
Moisture | −0.089 | 0.950 ** | 1 | |||
Alkaline nitrogen | 0.152 | 0.954 ** | 0.946 ** | 1 | ||
Available phosphorus | −0.324 | 0.830 * | 0.944 ** | 0.787 | 1 | |
Available potassium | 0.049 | 0.973 ** | 0.983 ** | 0.987 ** | 0.868 * | 1 |
Treatment | Root (cm) | Soil Water (cm) | Alkaline Nitrogen (cm) | Available Phosphorus (cm) | Available Potassium (cm) |
---|---|---|---|---|---|
T1 | 29.51 | 39.65 | 34.76 | 31.71 | 35.69 |
T2 | 34.93 | 39.95 | 35.43 | 31.93 | 36.83 |
T3 | 34.21 | 39.58 | 35.26 | 32.69 | 35.89 |
T4 | 26.48 | 39.71 | 33.70 | 30.35 | 33.76 |
T5 | 32.95 | 39.30 | 34.39 | 29.34 | 34.49 |
T6 | 30.68 | 39.35 | 34.23 | 28.75 | 34.41 |
Treatment | S (cm2) | L (cm) | Y | Rank |
---|---|---|---|---|
T1 | 740.59 | 339.85 | 501.68 | 3 |
T2 | 812.82 | 355.21 | 537.33 | 1 |
T3 | 799.96 | 352.35 | 530.91 | 2 |
T4 | 676.58 | 325.34 | 469.17 | 6 |
T5 | 736.58 | 338.15 | 499.07 | 4 |
T6 | 708.59 | 332.11 | 485.11 | 5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xin, X.; Sun, Z.; Xiao, J.; Bai, W.; Zhang, Z.; Yan, H. Efficient Utilization Mechanism of Soil Moisture and Nutrients with Ridge Film Furrow Seeding Technology of Sloping Farmlands in Semi-Arid and Rain-Fed Areas. Agriculture 2023, 13, 1940. https://doi.org/10.3390/agriculture13101940
Xin X, Sun Z, Xiao J, Bai W, Zhang Z, Yan H. Efficient Utilization Mechanism of Soil Moisture and Nutrients with Ridge Film Furrow Seeding Technology of Sloping Farmlands in Semi-Arid and Rain-Fed Areas. Agriculture. 2023; 13(10):1940. https://doi.org/10.3390/agriculture13101940
Chicago/Turabian StyleXin, Xiaotong, Zhanxiang Sun, Jibing Xiao, Wei Bai, Zhe Zhang, and Han Yan. 2023. "Efficient Utilization Mechanism of Soil Moisture and Nutrients with Ridge Film Furrow Seeding Technology of Sloping Farmlands in Semi-Arid and Rain-Fed Areas" Agriculture 13, no. 10: 1940. https://doi.org/10.3390/agriculture13101940