Developing an Evaluation Framework for Circular Agriculture: A Pathway to Sustainable Farming
Abstract
:1. Introduction
- (1)
- The evolution of research interests across the years;
- (2)
- Who the countries, organizations, and authors are that have worked towards setting up a framework for the evaluation of circular agriculture;
- (3)
- The thematic axes that have been established, their evolution, and the updated reference framework.
2. Materials and Methods
2.1. Research Methodology
- Using the Web of Science database to reveal statistical information related to the framework evaluation of circular agriculture literature;
- Creating a graphical representation of the data for a general user-friendly visual overview;
- Presenting a thematic map of the research areas of the selected documents that are helpful for mapping a literature matrix;
- Scanning framework evaluation of circular agriculture literature matrix by analyzing the abstracts, keywords, key findings, and concluding remarks to properly filter and retain for further in depth analyses only the short-listed papers;
- Comprehensively review the remaining papers and add several other documents obtained by the snowball technique.
2.2. Literature Review
3. Results and Discussion
3.1. The Evolution of Research Interests across the Years
3.2. Countries, Organizations, and Authors That Worked towards Setting up a Framework for the Evaluation of Circular Agriculture
3.3. Thematic Axes Established, Their Evolution, and the Updated Reference Framework
- Energy-intensive activities in the agri-food sector were primarily related to the movement of agricultural machinery and transportation.
- Fuel consumption was a key consideration in energy-related analyses, with attention being given to its source, whether it was a fossil fuel or biological in origin.
- The use of clean energy sources was consistently recognized as a critical factor in assessing the sustainability of agri-food production.
3.4. Methods and Indicators Involved in the Circular Agriculture Evaluation
3.4.1. Methods for a Macro-Level Assessment
3.4.2. Methods Used for a Micro-Level Assessment
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ADP | Abiotic resource-depletion potential |
AP | Acidification potential |
CAFEI | Composite agri-food efficiency index |
CAP | Common agricultural policy |
CE | Circular economy |
CEIP | Circular economy indicator prototype |
CLS | Cumulative layout shift |
DEs | Author’s keywords |
DEA | Data envelopment analysis |
DPBT | Discounted payback time |
ECOGRAI | Name of method for developing performance indicators that comes from ECO: economy, GRAI: Groupe de Recherche en Automatisation Intégrée (Research Group for Integrated Automation) |
EP | Eutrophication potential |
EU | European Union |
FAETP | Freshwater aquatic eco-toxicity potential |
GDP | Gross domestic product |
GRAFS | Generalized representation of agro-food systems approach |
GWP | Global warming potential |
HTP | Human toxicity potential |
ID | Keywords plus |
IRR | Internal rate Of return |
K | Potassium |
LCA | Life cycle assessment |
MAETP | Marine aquatic eco-toxicity |
MCDA | Multi-criteria decision analysis |
MFA | Material flow analysis |
N | Nitrogen |
NFI | Net farm income |
NPV | Net present value |
NUE | Nitrogen use efficiency |
ODP | Ozone-layer-depletion potential |
P | Phosphorus |
PI | Profitability index |
PNB | Partial nitrogen balance |
POCP | Photochemical ozone-creation potential |
SDs | System dynamics |
TETP | Terrestrial eco-toxicity potential |
WoS | Web of Science |
References
- Tilman, D.; Fargione, J.; Wolff, B.; D’antonio, C.; Dobson, A.; Howarth, R.; Swackhamer, D. Forecasting agriculturally driven global environmental change. Science 2001, 292, 281–284. [Google Scholar] [CrossRef]
- Godfray, H.C.J.; Beddington, J.R.; Crute, I.R.; Haddad, L.; Lawrence, D.; Muir, J.F.; Toulmin, C. Food security: The challenge of feeding 9 billion people. Science 2010, 327, 812–818. [Google Scholar] [CrossRef]
- Schanes, K.; Jäger, J.; Drummond, P. Three scenario narratives for a resource-efficient and low-carbon Europe in 2050. Ecol. Econ. 2019, 155, 70–79. [Google Scholar] [CrossRef]
- Butu, A.; Vasiliu, C.D.; Rodino, S.; Brumă, I.-S.; Tanasă, L.; Butu, M. The Process of Ethnocentralizing the Concept of Ecological Agroalimentary Products for the Romanian Urban Consumer. Sustainability 2019, 11, 6226. [Google Scholar] [CrossRef]
- De Morais, L.H.L.; Pinto, D.C.; Cruz-Jesus, F. Circular economy engagement: Altruism, status, and cultural orientation as drivers for sustainable consumption. Sustain. Prod. Consum. 2021, 27, 523–533. [Google Scholar] [CrossRef]
- Brumă, I.S.; Vasiliu, C.D.; Rodino, S.; Butu, M.; Tanasă, L.; Doboș, S.; Butu, A.; Coca, O.; Stefan, G. The Behavior of Dairy Consumers in Short Food Supply Chains during COVID-19 Pandemic in Suceava Area, Romania. Sustainability 2021, 13, 3072. [Google Scholar] [CrossRef]
- Ferreira, J.; Pardini, R.; Metzger, J.P.; Fonseca, C.R.; Pompeu, P.S.; Sparovek, G.; Louzada, J. Towards environmentally sustainable agriculture in Brazil: Challenges and opportunities for applied ecological research. J. Appl. Ecol. 2021, 49, 535–541. [Google Scholar] [CrossRef]
- EMF (Ellen MacArthur Foundation). Towards the Circular Economy Volume 3: Accelerating the Scale up Across Global Supply Chains; Ellen MacArthur Foundation: Cowes, UK, 2014. [Google Scholar]
- EMF (Ellen MacArthur Foundation). Growth Within: A Circular Economy Vision for a Competitive Europe; Ellen MacArthur Foundation: Cowes, UK, 2016; Available online: http://www.ellenmacarthurfoundation.org/assets/downloads/publications/EllenMacArthurFoundation_Growth-Within_July15.pdf (accessed on 17 July 2016).
- European Commission. A new circular economy action plan for a cleaner and more competitive Europe. In Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions; European Commission: Brussels, Belgium, 2020. [Google Scholar]
- European Parliament. Circular Economy: Definition, Importance and Benefits. 2023. Available online: https://www.europarl.europa.eu/news/en/headlines/economy/20151201STO05603/circular-economy-definition-importance-and-benefits?&at_campaign=20234-Economy&at_medium=Google_Ads&at_platform=Search&at_creation=RSA&at_goal=TR_G&at_audience=circular%20economy&at_topic=Circular_Economy&at_location=RO&gclid=EAIaIQobChMIxtKYxquCggMVtGGRBR1nmgjDEAAYASAAEgICFPD_BwE (accessed on 28 September 2023).
- Kirchherr, J.; Reike, D.; Hekkert, M. Conceptualizing the circular economy: An analysis of 114 definitions. Resour. Conserv. Recycl. 2017, 127, 221–232. [Google Scholar] [CrossRef]
- Sverko Grdic, Z.; Krstinic Nizic, M.; Rudan, E. Circular economy concept in the context of economic development in EU countries. Sustainability 2020, 12, 3060. [Google Scholar] [CrossRef]
- Circularity Gap Reporting Initiative. Circularity Gap Report 2021; Ruparo: Amsterdam, The Netherlands, 2021. [Google Scholar]
- Kirchherr, J.; Yang, N.H.N.; Schulze-Spüntrup, F.; Heerink, M.J.; Hartley, K. Conceptualizing the Circular Economy (Revisited): An Analysis of 221 Definitions. Resour. Conserv. Recycl. 2023, 194, 107001. [Google Scholar] [CrossRef]
- Everest, B. Farmers’ adaptation to climate-smart agriculture (CSA) in NW Turkey. Environ. Dev. Sustain. 2021, 23, 4215–4235. [Google Scholar] [CrossRef]
- Yıldırım, M.; Everest, B. Adaptation to sustainable energy use: A case study on agricultural cooperatives. Kuwait J. Sci. 2022, 49, 11833. [Google Scholar] [CrossRef]
- Velasco-Muñoz, J.F.; Mendoza, J.M.F.; Aznar-Sánchez, J.A.; Gallego-Schmid, A. Circular economy implementation in the agricultural sector: Definition, strategies and indicators. Resour. Conserv. Recycl. 2021, 170, 105618. [Google Scholar] [CrossRef]
- Gollner, G.; Fedoseyenko, D.; Grausgruber-Groeger, S.; Grausgruber, H.; Friedel, J.K.; Freyer, B. Lucerne in arable cropping systems: Potential of different varieties on biomass production and nitrogen balance. Rom. Agric. Res. 2016, 33, 45–51. [Google Scholar]
- Pagotto, M.; Halog, A. Towards a Circular Economy in Australian Agri-food Industry: An Application of Input-Output Oriented Approaches for Analyzing Resource Efficiency and Competitiveness Potential. J. Ind. Ecol. 2016, 20, 1176–1186. [Google Scholar] [CrossRef]
- Kleinpeter, V.; Alvanitakis, M.; Vigne, M.; Wassenaar, T.; Seen, D.L.; Vayssières, J. Assessing the roles of crops and livestock in nutrient circularity and use efficiency in the agri-food-waste system: A set of indicators applied to an isolated tropical island. Resour. Conserv. Recycl. 2023, 188, 106663. [Google Scholar] [CrossRef]
- Aria, M.; Cuccurullo, C. bibliometrix: An R-tool for comprehensive science mapping analysis. J. Informetr. 2017, 11, 959–975. [Google Scholar] [CrossRef]
- Streimikis, J.; Saraji, M.K. Green productivity and undesirable outputs in agriculture: A systematic review of DEA approach and policy recommendations. Econ. Res. Ekon. Istraživanja 2022, 35, 819–853. [Google Scholar] [CrossRef]
- McDowall, W.; Geng, Y.; Huang, B.; Barteková, E.; Bleischwitz, R.; Türkeli, S.; Doménech, T. Circular economy policies in China and Europe. J. Ind. Ecol. 2017, 21, 651–661. [Google Scholar] [CrossRef]
- Hartley, K.; van Santen, R.; Kirchherr, J. Policies for transitioning towards a circular economy: Expectations from the European Union (EU). Resour. Conserv. Recycl. 2020, 155, 104634. [Google Scholar] [CrossRef]
- Corona, B.; Shen, L.; Reike, D.; Rosales Carreón, J.; Worrell, E. Towards Sustainable Development through the Circular Economy—A Review and Critical Assessment on Current Circularity Metrics. Resour. Conserv. Recycl. 2019, 151, 104498. [Google Scholar] [CrossRef]
- Silvestri, C.; Silvestri, L.; Piccarozzi, M.; Ruggieri, A. Toward a framework for selecting indicators of measuring sustainability and circular economy in the agri-food sector: A systematic literature review. Int. J. Life Cycle Assess. 2022, 2022, 1–39. [Google Scholar]
- Silvestri, L.; Silvestri, C.; Forcina, A.; De Luca, C. A review of energy-based indicators for assessing sustainability and circular economy in the agri-food production. Procedia Comput. Sci. 2022, 200, 1756–1765. [Google Scholar] [CrossRef]
- Priyadarshini, P.; Abhilash, P.C. An empirical analysis of resource efficiency and circularity within the agri-food sector of India. J. Clean. Prod. 2023, 385, 135660. [Google Scholar] [CrossRef]
- Constantinescu, M.; Rodino, S.; Butu, A.; Butu, M.; Todirică, C.; Popa, M.; Chetroiu, R.; Sima, N. Nitrogen management trends for agricultural and environmental science. Rom. Agric. Res. 2023, 40, 417–428. [Google Scholar] [CrossRef]
- Tadesse, S.T.; Oenema, O.; van Beek, C.; Ocho, F.L. Nitrogen allocation and recycling in peri-urban mixed crop–livestock farms in Ethiopia. Nutr. Cycl. Agroecosyst. 2019, 115, 281–294. [Google Scholar] [CrossRef]
- Rukundo, R.; Bergeron, S.; Bocoum, I.; Pelletier, N.; Doyon, M. A Methodological Approach to Designing Circular Economy Indicators for Agriculture: An Application to the Egg Sector. Sustainability 2021, 13, 8656. [Google Scholar] [CrossRef]
- Bentivoglio, D.; Chiaraluce, G.; Finco, A. Economic assessment for vegetable waste valorization through the biogas-biomethane chain in Italy with a circular economy approach. Front. Sustain. Food Syst. 2022, 6, 1035357. [Google Scholar] [CrossRef]
- Alba-Patino, D.; Carabassa, V.; Castro, H.; Gutiérrez-Briceño, I.; García-Llorente, M.; Giagnocavo, C.; Castro, A.J. Social indicators of ecosystem restoration for enhancing human wellbeing. Resour. Conserv. Recycl. 2021, 174, 105782. [Google Scholar] [CrossRef]
- Ulman, S.-R.; Mihai, C.; Cautisanu, C.; Brumă, I.-S.; Coca, O.; Stefan, G. Environmental Performance in EU Countries from the Perspective of Its Relation to Human and Economic Wellbeing. Int. J. Environ. Res. Public Health 2021, 18, 12733. [Google Scholar] [CrossRef]
- Ghisellini, P.; Ncube, A.; Rotolo, G.; Vassillo, C.; Kaiser, S.; Passaro, R.; Ulgiati, S. Evaluating Environmental and Energy Performance Indicators of Food Systems, within Circular Economy and “Farm to Fork” Frameworks. Energies 2023, 16, 1671. [Google Scholar] [CrossRef]
- Barros, M.V.; Salvador, R.; Gallego-Schmid, A.; Piekarski, C.M. Circularity measurement of external resource flows in companies: The circular flow tool. Waste Manag. 2023, 158, 136–145. [Google Scholar] [CrossRef] [PubMed]
- Cayzer, S.; Griffiths, P.; Beghetto, V. Design of indicators for measuring product performance in the circular economy. Int. J. Sustain. Eng. 2017, 10, 289–298. [Google Scholar] [CrossRef]
- Papangelou, A.; Mathijs, E. Assessing agro-food system circularity using nutrient flows and budgets. J. Environ. Manag. 2021, 288, 112383. [Google Scholar] [CrossRef] [PubMed]
- Guo, C.; Zhang, R.; Zou, Y. The Efficiency of China’s Agricultural Circular Economy and Its Influencing Factors under the Rural Revitalization Strategy: A DEA–Malmquist–Tobit Approach. Agriculture 2023, 13, 1454. [Google Scholar] [CrossRef]
- Fan, W.; Zhang, P.; Xu, Z.; Wei, H.; Lu, N.; Wang, X.; Dong, X. Life cycle environmental impact assessment of circular agriculture: A case study in Fuqing, China. Sustainability 2018, 10, 1810. [Google Scholar] [CrossRef]
- Romero-Perdomo, F.; González-Curbelo, M.Á. Integrating Multi-Criteria Techniques in Life-Cycle Tools for the Circular Bioeconomy Transition of Agri-Food Waste Biomass: A Systematic Review. Sustainability 2023, 15, 5026. [Google Scholar] [CrossRef]
- Zhai, X.J.; Shang, J. Integrated Evaluation PPC Model of Agricultural Circular Economy in the Perspective of Ecological Restoration. Adv. Mater. Res. 2010, 113, 750–756. [Google Scholar] [CrossRef]
- Sun, X.; Li, J.; Li, L. Estimating circular agricultural efficiency using dea methods. Agro Food Ind. Hi-Tech 2016, 27, 94–98. [Google Scholar]
- Havrysh, V.; Kalinichenko, A.; Pysarenko, P.; Samojlik, M. Sunflower Residues-Based Biorefinery: Circular Economy Indicators. Processes 2023, 11, 630. [Google Scholar] [CrossRef]
- Li, B.; Feng, Y.; Xia, X.; Feng, M. Evaluation of China’s circular agriculture performance and analysis of the driving factors. Sustainability 2021, 13, 1643. [Google Scholar] [CrossRef]
- Meng, X.; Liu, M.; Wang, M.; Wang, J.; Wu, Q. Fuzzy min-max neural network with fuzzy lattice inclusion measure for agricultural circular economy region division in heilongjiang province in china. IEEE Access 2020, 8, 36120–36130. [Google Scholar] [CrossRef]
- Rodias, E.; Aivazidou, E.; Achillas, C.; Aidonis, D.; Bochtis, D. Water-energy-nutrients synergies in the agrifood sector: A circular economy framework. Energies 2020, 14, 159. [Google Scholar] [CrossRef]
- Zou, F.; Li, T. The Impact of Agricultural Ecological Capital Investment on the Development of Green Circular Economy. Agriculture 2022, 12, 461. [Google Scholar] [CrossRef]
- Passaro, P.; Perchinunno, P.; Rotondo, F. Statistical analysis of the circular economy for the intervention policies of the NRRP. Br. Food J. 2023. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, Y.; Geng, Y.; Li, R.; Dong, H.; Xue, B.; Wang, S. Toward sustainable crop production in China: An emergy-based evaluation. J. Clean. Prod. 2019, 206, 11–26. [Google Scholar] [CrossRef]
- Fassio, F.; Chirilli, C. The Circular Economy and the Food System: A Review of Principal Measuring Tools. Sustainability 2023, 15, 10179. [Google Scholar] [CrossRef]
- Yazdani, M.; Gonzalez, E.D.; Chatterjee, P. A multi-criteria decision-making framework for agriculture supply chain risk management under a circular economy context. Manag. Decis. 2021, 59, 1801–1826. [Google Scholar] [CrossRef]
- Aznar-Sánchez, J.A.; Mendoza, J.M.F.; Ingrao, C.; Failla, S.; Bezama, A.; Nemecek, T.; Gallego-Schmid, A. Indicators for circular economy in the agri-food sector. Resour. Conserv. Recycl. 2020, 163, 105028. [Google Scholar]
- Waas, T.; Hugé, J.; Block, T.; Wright, T.; Benitez-Capistros, F.; Verbruggen, A. Sustainability Assessment and Indicators: Tools in a Decision-Making Strategy for Sustainable Development. Sustainability 2014, 6, 5512–5534. [Google Scholar] [CrossRef]
- Moraga, G.; Huysveld, S.; Mathieux, F.; Blengini, G.A.; Alaerts, L.; Van Acker, K.; de Meester, S.; Dewulf, J. Circular economy indicators: What do they measure? Resour. Conserv. Recycl. 2019, 146, 452–461. [Google Scholar] [CrossRef]
- European Commission. Measuring Progress Towards Circular Economy in the European Union—Key Indicators for a Monitoring Framework—SWD (2018) 17 Final; European Commission: Strasbourg, France, 2018. [Google Scholar]
- Brown, A.; Haas, W.; Laubscher, M.; Philips, R.; Pallecchi, A.; Reh, F.; Tno, E.R.; Soezer, A. The Circularity Gap Report; Circle Economy: Amsterdam, The Netherlands, 2018. [Google Scholar]
- Potting, J.; Hanemaaijer, A.; Delahaye, R.; Ganzevles, J.; Hoekstra, R.; Lijzen, J. Circular Economy: What We Want to Know and Can Measure—System and Baseline Assessment for Monitoring the Progress of the Circular Economy in the Netherlands; PBL Netherlands Environmental Assessment Agency: The Hague, The Netherlands, 2018. [Google Scholar]
- Magnier, C.; Auzanneau, M.; Calatayud, P.; Gauche, M.; Ghewy, X.; Granger, M.; Margontier, S.; Pautard, E. 10 Key Indicators for Monitoring the Circular Economy; The Monitoring and Statistics Directorate: Paris, France, 2017. [Google Scholar]
- Geng, Y.; Sarkis, J.; Ulgiati, S.; Zhang, P. Measuring China’s circular economy. Science 2013, 339, 1526–1527. [Google Scholar] [CrossRef] [PubMed]
- Xing, L.; Lin, T.; Hu, Y.; Lin, M.; Liu, Y.; Zhang, G.; Xue, X. Reducing food-system nitrogen input and emission through circular agriculture in montane and coastal regions. Resour. Conserv. Recycl. 2023, 188, 106726. [Google Scholar] [CrossRef]
- Bastan, M.; Khorshid-Doust, R.R.; Sisi, S.D.; Ahmadvand, A. Sustainable development of agriculture: A system dynamics model. Kybernetes 2017, 47, 142–162. [Google Scholar] [CrossRef]
- Walters, J.P.; Archer, D.W.; Sassenrath, G.F.; Hendrickson, J.R.; Hanson, J.D.; Halloran, J.M.; Alarcon, V.J. Exploring agricultural production systems and their fundamental components with system dynamics modelling. Ecol. Model. 2016, 333, 51–65. [Google Scholar] [CrossRef]
- Zadgaonkar, L.A.; Darwai, V.; Mandavgane, S.A. The circular agricultural system is more sustainable: Emergy analysis. Clean Techn Env. Policy 2022, 24, 1301–1315. [Google Scholar] [CrossRef]
- Rydberg, T.; Haden, A.C. Emergy evaluations of Denmark and Danish agriculture: Assessing the influence of changing resource availability on the organization of agriculture and society. Agric. Ecosyst. Environ. 2006, 117, 145–158. [Google Scholar] [CrossRef]
- Graedel, T.E. Material flow analysis from origin to evolution. Environ. Sci. Technol. 2019, 53, 12188–12196. [Google Scholar] [CrossRef]
- Barros, M.V.; Salvador, R.; de Francisco, A.C.; Piekarski, C.M. Mapping of research lines on circular economy practices in agriculture: From waste to energy. Renew. Sustain. Energy Rev. 2020, 131, 109958. [Google Scholar] [CrossRef]
- Prasad, M.N.V. Sustainable Water Use in Agriculture—Circular Economy Approach. In Water in Circular Economy; Advances in Science, Technology and Innovation; Smol, M., Prasad, M.N.V., Stefanakis, A.I., Eds.; Springer: Cham, Switzerland, 2023. [Google Scholar] [CrossRef]
- Rodríguez-Espinosa, T.; Papamichael, I.; Voukkali, I.; Gimeno, A.P.; Candel, M.B.A.; Navarro-Pedreño, J.; Lucas, I.G. Nitrogen management in farming systems under the use of agricultural wastes and circular economy. Sci. Total Environ. 2023, 876, 162666. [Google Scholar] [CrossRef]
- Lavallais, C.M.; Dunn, J.B. Developing product level indicators to advance the nitrogen circular economy. Resour. Conserv. Recycl. 2023, 198, 107167. [Google Scholar] [CrossRef]
- Rufí-Salís, M.; Petit-Boix, A.; Villalba, G.; Sanjuan-Delmás, D.; Parada, F.; Ercilla-Montserrat, M.; Gabarrell, X. Recirculating water and nutrients in urban agriculture: An opportunity towards environmental sustainability and water use efficiency? J. Clean. Prod. 2020, 261, 121213. [Google Scholar] [CrossRef]
- Yang, Z.; Li, H.Q.; Zhai, J.N.; Zhang, L.H.; Nan, Q. Review on the assessment model of nutrient recycling with agricultural residues treatment technologies. J. Appl. Ecol. 2022, 33, 3213–3219. [Google Scholar]
- Babazadeh, H.; Tabrizi, M.S.; Hoogenboom, G. Crop Production and Water Productivity Simultaneously Optimization of Soybean Plant Using Two Meta-Heuristic Algorithms. Rom. Agric. Res. 2022, 39, 311–325. [Google Scholar] [CrossRef]
- Wang, Y.; Wu, F.; Peng, X.; Tong, X. Analysis of economic efficiency and energy flow characteristics of a circular and integrated agriculture model in the Loess hilly region. Trans. Chin. Soc. Agric. Eng. 2016, 32, 199–206. [Google Scholar]
- Fan, T.L.; Li, S.Z.; Gang, Z.H.A.O.; Wang, S.Y.; Zhang, J.J.; Lei, W.A.N.G.; Cheng, W.L. Response of dryland crops to climate change and drought-resistant and water-suitable planting technology: A case of spring maize. J. Integr. Agric. 2023, 22, 2067–2079. [Google Scholar] [CrossRef]
- Cheruiyot, W.K.; Zhu, S.G.; Indoshi, S.N.; Wang, W.; Ren, A.T.; Cheng, Z.G.; Xiong, Y.C. Shallow-incorporated straw returning further improves rainfed maize productivity, profitability and soil carbon turnover on the basis of plastic film mulching. Agric. Water Manag. 2023, 289, 108535. [Google Scholar] [CrossRef]
- Ojara, M.A.; Yunsheng, L.; Babaousmail, H.; Sempa, A.K.; Ayugi, B.; Ogwang, B.A. Evaluation of drought, wet events, and climate variability impacts on maize crop yields in East Africa during 1981–2017. Int. J. Plant Prod. 2022, 16, 41–62. [Google Scholar] [CrossRef]
- Møller, H.; Lyng, K.A.; Röös, E.; Samsonstuen, S.; Olsen, H.F. Circularity indicators and added value to traditional LCA impact categories: Example of pig production. Int. J. Life Cycle Assess. 2023, 2023, 1–13. [Google Scholar] [CrossRef]
- van Loon, M.P.; Vonk, W.J.; Hijbeek, R.; van Ittersum, M.K.; ten Berge, H.F. Circularity indicators and their relation with nutrient use efficiency in agriculture and food systems. Agric. Syst. 2023, 207, 103610. [Google Scholar] [CrossRef]
Description | Results |
---|---|
Timespan | 2006:2023 |
Sources (journals, books, etc.) | 194 |
Documents | 425 |
Annual growth rate % | 29.96 |
Document average age | 2.03 |
Average citations per doc | 15.25 |
References | 29,937 |
DOCUMENT CONTENTS | |
Keywords plus (ID) | 1359 |
Author’s keywords (DE) | 1595 |
AUTHORS | |
Authors | 1817 |
Authors of single-authored docs | 22 |
AUTHORS COLLABORATION | |
Single-authored docs | 22 |
Co-authors per doc | 4.57 |
International co-authorships % | 36 |
DOCUMENT TYPES | |
Article | 325 |
Article; book chapter | 2 |
Article; early access | 10 |
Article; proceedings paper | 2 |
Proceedings paper | 18 |
Review | 64 |
Review; early access | 4 |
# | Indicator | Description | Method Used | Geographical Coverage | Sector | Reference |
---|---|---|---|---|---|---|
1 | Composite agri-food efficiency index (CAFEI) | CAFEI includes 38 indicators distributed across environmental, social, economic, and governance categories | DEA | India | Agri-food | [29] |
2 | Net present value (NPV), internal rate of return (IRR), discounted payback time (DPBT), and profitability index (PI) | Discounted cash flow | Italy | Vegetables | [33] | |
3 | Ecosystem service indicators | Survey, questionnaire, and scatter plots | Spain | Horticulture | [34] | |
4 | Midpoint LCA indicators (global warming potential, acidification potential, eutrophication potential, photochemical oxidant formation, abiotic-depletion potential, and water scarcity potential) | Energy and environmental indicators | Life cycle analysis, emergy accounting, and material flow accounting | Italy | Agrifood, organic farming | [36] |
5 | Circular flow | Tool for assessment | Online platform for calculations: onlineagrocirclewins.com.br | Brazil | Industrial agriculture production | [37] |
6 | Multiple indexes | Indicators for three pillars of sustainability | LCA systematic literature review | n/a | Agri-food | [27] |
7 | Energy-related indicators | Literature review | Overall agriculture | [28] | ||
8 | Circular economy indicator prototype—CEIP | Environmental performance of products from the CE | Questionnaire with 15 questions in five stages of the life cycle, from the extraction of raw materials to the end of life | n/a | General, all sectors | [38] |
9 | Indicators related to: - Closing resource-loops strategy - Regenerating strategy | Literature review | Overall agriculture | [18] | ||
10 | Multiple indicators | DEA–Malmquist–Tobit approach | China | Macro-level | [40] | |
11 | Reduction in resource input group index Resource recycling group index Ecological environment group index | Projection pursuit classification based on real-coded accelerating genetic algorithm | China | Overall agriculture | [43] | |
12 | An input and output evaluation index system | Input evaluation indexes include agricultural employees, chemical fertilizer consumption, energy consumption of agriculture, and sown area of crops, while the output evaluation indexes include total agricultural output, rate of cultivated area output, and output of major agricultural products | DEA | China | Overall agriculture | [44] |
13 | 1. Total raw material or resource consumption that consists of ADP elements and ADP fossil fuels 2. The impact of the atmosphere and water resources that consist of the acidification potential (AP), global warming potential (GWP), photochemical ozone-creation potential (POCP), and ozone-layer-depletion potential (ODP), and eutrophication potential (EP) 3. Toxicity, including freshwater aquatic eco-toxicity potential (FAETP), human toxicity potential (HTP), marine aquatic eco-toxicity potential (MAETP), and terrestrial eco-toxicity potential (TETP) | Life cycle assessment (LCA) | China | Pig-farming industry–dragon fruit planting–forage planting–fishery industry–mushroom planting–biogas generation–organic fertilizer production circular agriculture model | [41] | |
14 | Renewable energy share Carbon dioxide emissions savings Energy recoverability benefit rate Circular material use rate | Energy and environmental indicators | Statistical data | Ukraine | Sunflower | [45] |
15 | Comprehensive evaluation index | Entropy method | China | Overall agriculture sector | [46] | |
16 | n/a | MCDA, LCA description | Literature review | Agri-food waste biomass | [42] | |
17 | Nutrient flows | Nitrogen (N), phosphorus (P), and potassium (K) flows and soil balances; P circularity: total inputs, phosphorus use efficiency, share of reused to total input, recycling rate, and losses | GRAFS + Food and Feed + Waste | Belgium | Agro-food system, but more targeted towards food | [39] |
18 | Multi-criteria index based on resource dosage indexes, economic and social development indexes, area index, and population and labor indexes | Improved fuzzy min–max neural network with fuzzy lattice inclusion measure (FL-IFMM) | China | Grain crops—animal husbandry; rice—animal husbandry; vegetable and edible fungi—melons and fruits—animal husbandry; farming—forestry—animal husbandry | [47] | |
Water–energy–nutrients synergies | Water resources, energy resources, and nutrients | Literature review | n/a | Overall agriculture | [48] | |
Agricultural ecological capital investment | Coupling coordination analysis Regression analysis Robustness test Mechanism analysis Heterogeneity analysis | China | Overall agriculture | [49] | ||
Partial nitrogen balance (PNB), N-use efficiency (NUE), N-recycling index, and net farm income (NFI) | Crop–livestock ratio (CLS) index | Calculation of multi-criteria indices | Ethiopia | [41] | ||
Statistical indicators from national resilience plan related to the M2C1 component (circular economy and sustainable agriculture) | Statistical methodologies (totally fuzzy and relative methods) | Italy | Circular economy and sustainable agriculture | [50] | ||
(1) Locally renewable resource (R): sunlight, earth cycle; (2) Local non-renewable resource (N): net loss of the topsoil; (3) Purchased resource (F): mechanical equipment, purchased diesel, chemical fertilizers and pesticides, labor (L), irrigating water, and seeds | Combined emergy and decomposition analyses | China | Overall agriculture | [51] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodino, S.; Pop, R.; Sterie, C.; Giuca, A.; Dumitru, E. Developing an Evaluation Framework for Circular Agriculture: A Pathway to Sustainable Farming. Agriculture 2023, 13, 2047. https://doi.org/10.3390/agriculture13112047
Rodino S, Pop R, Sterie C, Giuca A, Dumitru E. Developing an Evaluation Framework for Circular Agriculture: A Pathway to Sustainable Farming. Agriculture. 2023; 13(11):2047. https://doi.org/10.3390/agriculture13112047
Chicago/Turabian StyleRodino, Steliana, Ruxandra Pop, Cristina Sterie, Andreea Giuca, and Eduard Dumitru. 2023. "Developing an Evaluation Framework for Circular Agriculture: A Pathway to Sustainable Farming" Agriculture 13, no. 11: 2047. https://doi.org/10.3390/agriculture13112047
APA StyleRodino, S., Pop, R., Sterie, C., Giuca, A., & Dumitru, E. (2023). Developing an Evaluation Framework for Circular Agriculture: A Pathway to Sustainable Farming. Agriculture, 13(11), 2047. https://doi.org/10.3390/agriculture13112047