Easily Pyrolyzable Biomass Components Significantly Affect the Physicochemical Properties and Water-Holding Capacity of the Pyrolyzed Biochar
Abstract
:1. Introduction
2. Material and Methods
2.1. Preparation of the Biochar Sample
2.2. Characterizations of the Biomass and Biochar
2.3. Measurement of the Water-Holding Capacity of Biochar-SS Mixture
2.4. Statistical Analysis
3. Results and Discussion
3.1. Compositions of the Easily Pyrolyzable Components
3.2. Thermogravimetric Characteristics of the Biomass
3.3. Yield and Elemental Analyses of the Biochars
3.4. Functional Groups in Biochar
3.5. Surface Characteristics of the Biochar
3.6. Water-Holding Capacity of the Biochar–SS Mixture
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Zhao, C.; Jiang, E.; Chen, A. Volatile production from pyrolysis of cellulose, hemicellulose and lignin. J. Energy Inst. 2017, 90, 902–913. [Google Scholar] [CrossRef]
- Singh, C.; Tiwari, S.; Rai, P.K.; Singh, J.S. Sustainable management of paddy crop residues: Effects on methanotrophs diversity and value for soil health restoration. Land Degrad. Dev. 2021, 32, 4121–4131. [Google Scholar] [CrossRef]
- Fodah, A.E.M.; Ghosal, M.K.; Behera, D. Microwave-assisted pyrolysis of agricultural residues: Current scenario, challenges, and future direction. Int. J. Environ. Sci. Technol. 2022, 19, 2195–2220. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, J.; Liu, R. Effects of pyrolysis temperature and heating time on biochar obtained from the pyrolysis of straw and lignosulfonate. Bioresour. Technol. 2015, 176, 288–291. [Google Scholar] [CrossRef]
- Yuan, J.-H.; Xu, R.-K.; Zhang, H. The forms of alkalis in the biochar produced from crop residues at different temperatures. Bioresour. Technol. 2011, 102, 3488–3497. [Google Scholar] [CrossRef]
- Shaaban, A.; Se, S.-M.; Dimin, M.; Juoi, J.M.; Husin, M.H.M.; Mitan, N.M.M. Influence of heating temperature and holding time on biochars derived from rubber wood sawdust via slow pyrolysis. J. Anal. Appl. Pyrolysis 2014, 107, 31–39. [Google Scholar] [CrossRef]
- Mukherjee, A.; Zimmerman, A.; Harris, W. Surface chemistry variations among a series of laboratory-produced biochars. Geoderma 2011, 163, 247–255. [Google Scholar] [CrossRef]
- Blanco-Canqui, H. Biochar and Soil Physical Properties. Soil Sci. Soc. Am. J. 2017, 81, 687–711. [Google Scholar] [CrossRef]
- Jindo, K.; Mizumoto, H.; Sawada, Y.; Sanchez-Monedero, M.A.; Sonoki, T. Physical and chemical characterization of biochars derived from different agricultural residues. Biogeosciences 2014, 11, 6613–6621. [Google Scholar] [CrossRef]
- Tag, A.T.; Duman, G.; Ucar, S.; Yanik, J. Effects of feedstock type and pyrolysis temperature on potential applications of biochar. J. Anal. Appl. Pyrolysis 2016, 120, 200–206. [Google Scholar] [CrossRef]
- Sohi, S.P.; Krull, E.; Lopez-Capel, E.; Bol, R. Chapter 2—A review of biochar and its use and function in soil. Adv. Agron. 2010, 105, 47–82. [Google Scholar] [CrossRef]
- Gray, M.; Johnson, M.G.; Dragila, M.I.; Kleber, M. Water uptake in biochars: The roles of porosity and hydrophobicity. Biomass Bioenergy 2014, 61, 196–205. [Google Scholar] [CrossRef]
- Mao, J.; Zhang, K.; Chen, B. Linking hydrophobicity of biochar to the water repellency and WHC of biochar-amended soil. Environ. Pollut. 2019, 253, 779–789. [Google Scholar] [CrossRef] [PubMed]
- Basso, A.S.; Miguez, F.E.; Laird, D.A.; Horton, R.; Westgate, M. Assessing potential of biochar for increasing water-holding capacity of sandy soils. GCB Bioenergy 2013, 5, 132–143. [Google Scholar] [CrossRef]
- Qin, C.-C.; Abdalkarim, S.Y.H.; Zhou, Y.; Yu, H.-Y.; He, X. Ultrahigh water-retention cellulose hydrogels as soil amendments for early seed germination under harsh conditions. J. Clean. Prod. 2022, 370. [Google Scholar] [CrossRef]
- Werdin, J.; Fletcher, T.D.; Rayner, J.P.; Williams, N.S.; Farrell, C. Biochar made from low density wood has greater plant available water than biochar made from high density wood. Sci. Total Environ. 2020, 705, 135856. [Google Scholar] [CrossRef]
- Li, H.; Tan, Z. Preparation of high water-retaining biochar and its mechanism of alleviating drought stress in the soil and plant system. Biochar 2021, 3, 579–590. [Google Scholar] [CrossRef]
- Zhang, J.; You, C. Water Holding Capacity and Absorption Properties of Wood Chars. Energy Fuels 2013, 27, 2643–2648. [Google Scholar] [CrossRef]
- Shoulaifar, T.K.; DeMartini, N.; Ivaska, A.; Fardim, P.; Hupa, M. Measuring the concentration of carboxylic acid groups in torrefied spruce wood. Bioresour. Technol. 2012, 123, 338–343. [Google Scholar] [CrossRef]
- Ciolkosz, D.; Wallace, R. A review of torrefaction for bioenergy feedstock production. Biofuels Bioprod. Biorefin. 2011, 5, 317–329. [Google Scholar] [CrossRef]
- Brewer, C.E.; Chuang, V.J.; Masiello, C.A.; Gonnermann, H.; Gao, X.; Dugan, B.; Driver, L.E.; Panzacchi, P.; Zygourakis, K.; Davies, C.A. New approaches to measuring biochar density and porosity. Biomass Bioenergy 2014, 66, 176–185. [Google Scholar] [CrossRef]
- Weber, K.; Quicker, P. Properties of biochar. Fuel 2018, 217, 240–261. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, X.; Chen, W.; Yang, H.; Chen, H. The structure evolution of biochar from biomass pyrolysis and its correlation with gas pollutant adsorption performance. Bioresour. Technol. 2017, 246, 101–109. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Yi, B.; Hu, H.; Zong, Z.; Chen, M.; Yuan, Q. The relationship of structure and organic matter adsorption characteristics by magnetic cattle manure biochar prepared at different pyrolysis temperatures. J. Environ. Chem. Eng. 2020, 8, 104112. [Google Scholar] [CrossRef]
- Gezahegn, S.; Sain, M.; Thomas, S.C. Variation in Feedstock Wood Chemistry Strongly Influences Biochar Liming Potential. Soil Syst. 2019, 3, 26. [Google Scholar] [CrossRef]
- Berglund, J.; Mikkelsen, D.; Flanagan, B.M.; Dhital, S.; Gaunitz, S.; Henriksson, G.; Lindström, M.E.; Yakubov, G.E.; Gidley, M.J.; Vilaplana, F. Wood hemicelluloses exert distinct biomechanical contributions to cellulose fibrillar networks. Nat. Commun. 2020, 11, 4692. [Google Scholar] [CrossRef]
- Yang, H.; Yan, R.; Chen, H.; Lee, D.H.; Zheng, C. Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 2007, 86, 1781–1788. [Google Scholar] [CrossRef]
- van der Stelt, M.J.C.; Gerhauser, H.; Kiel, J.H.A.; Ptasinski, K.J. Biomass upgrading by torrefaction for the production of biofuels: A review. Biomass Bioenergy 2011, 35, 3748–3762. [Google Scholar] [CrossRef]
- Chen, W.-H.; Kuo, P.-C. Torrefaction and co-torrefaction characterization of hemicellulose, cellulose and lignin as well as torrefaction of some basic constituents in biomass. Energy 2011, 36, 803–811. [Google Scholar] [CrossRef]
- Zhang, K.; Chen, B.; Mao, J.; Zhu, L.; Xing, B. Water clusters contributed to molecular interactions of ionizable organic pollutants with aromatized biochar via π-PAHB: Sorption experiments and DFT calculations. Environ. Pollut. 2018, 240, 342–352. [Google Scholar] [CrossRef]
- Keiluweit, M.; Nico, P.S.; Johnson, M.G.; Kleber, M. Dynamic Molecular Structure of Plant Biomass-Derived Black Carbon (Biochar). Environ. Sci. Technol. 2010, 44, 1247–1253. [Google Scholar] [CrossRef] [PubMed]
- Ghani, W.A.W.A.K.; Mohd, A.; da Silva, G.; Bachmann, R.T.; Taufiq-Yap, Y.H.; Rashid, U.; Al-Muhtaseb, A.H. Biochar production from waste rubber-wood-sawdust and its potential use in C sequestration: Chemical and physical characterization. Ind. Crop. Prod. 2013, 44, 18–24. [Google Scholar] [CrossRef]
- Van Soest, P.J.; Wine, R.H. Use of Detergents in the Analysis of Fibrous Feeds. IV. Determination of Plant Cell-Wall Constituents. J. AOAC Int. 1967, 50, 50–55. [Google Scholar] [CrossRef]
- Rouquerol, J.G.; Baron, R.; Denoyel, H.; Giesche, J.; Groen, P.; Klobes, P.; Levitz, A.V.; Neimark, S.; Rigby, R.; Skudas, K.; et al. Liquid intrusion and alternative methods for the characterization of macroporous materials (IUPAC Technical Report). Pure Appl. Chem. 2012, 84, 107–136. [Google Scholar] [CrossRef]
- Torkzaban, S.; Tazehkand, S.S.; Walker, S.L.; Bradford, S.A. Transport and fate of bacteria in porous media: Coupled effects of chemical conditions and pore space geometry. Water Resour. Res. 2008, 44. [Google Scholar] [CrossRef]
- Wang, H.; Wang, X.; Cui, Y.; Xue, Z.; Ba, Y. Slow pyrolysis polygeneration of bamboo (Phyllostachys pubescens): Product yield prediction and biochar formation mechanism. Bioresour. Technol. 2018, 263, 444–449. [Google Scholar] [CrossRef]
- Tian, H.; Wei, Y.; Cheng, S.; Huang, Z.; Qing, M.; Chen, Y.; Yang, H.; Yang, Y. Optimizing the gasification reactivity of biochar: The composition, structure and kinetics of biochar derived from biomass lignocellulosic components and their interactions during gasification process. Fuel 2022, 324, 124709. [Google Scholar] [CrossRef]
- Grafmüller, J.; Böhm, A.; Zhuang, Y.; Spahr, S.; Müller, P.; Otto, T.N.; Bucheli, T.D.; Leifeld, J.; Giger, R.; Tobler, M.; et al. Wood Ash as an Additive in Biomass Pyrolysis: Effects on Biochar Yield, Properties, and Agricultural Performance. ACS Sustain. Chem. Eng. 2022, 10, 2720–2729. [Google Scholar] [CrossRef]
- Fan, M.; Li, C.; Shao, Y.; Zhang, S.; Gholizadeh, M.; Hu, X. Pyrolysis of cellulose: Correlation of hydrophilicity with evolution of functionality of biochar. Sci. Total Environ. 2022, 825, 153959. [Google Scholar] [CrossRef]
- Hu, J.; Song, Y.; Liu, J.; Evrendilek, F.; Buyukada, M.; Yan, Y. Synergistic effects, gaseous products, and evolutions of NOx precursors during (co-)pyrolysis of textile dyeing sludge and bamboo residues. J. Hazard. Mater. 2021, 401, 123331. [Google Scholar] [CrossRef]
- Xin, S.; Yang, H.; Chen, Y.; Yang, M.; Chen, L.; Wang, X.; Chen, H. Chemical structure evolution of char during the pyrolysis of cellulose. J. Anal. Appl. Pyrolysis 2015, 116, 263–271. [Google Scholar] [CrossRef]
- Zeng, K.; Wang, B.; Xia, S.; Cui, C.; Wang, C.; Zheng, A.; Zhao, K.; Zhao, Z.; Li, H. Isobaev Towards directional pyrolysis of xylan: Understanding the roles of alkali/alkaline earth metals and pyrolysis temperature. Energy 2022, 254, 124245. [Google Scholar] [CrossRef]
- Guo, D.; Wu, S.; Lyu, G.; Guo, H. Effect of molecular weight on the pyrolysis characteristics of alkali lignin. Fuel 2017, 193, 45–53. [Google Scholar] [CrossRef]
- Pei, Z.; Li, L.; Sun, L.; Zhang, S.; Shan, X.-Q.; Yang, S.; Wen, B. Adsorption characteristics of 1,2,4-trichlorobenzene, 2,4,6-trichlorophenol, 2-naphthol and naphthalene on graphene and graphene oxide. Carbon 2013, 51, 156–163. [Google Scholar] [CrossRef]
- Zhao, N.; Lv, Y.; Yang, X.; Huang, F.; Yang, J. Characterization and 2D structural model of corn straw and poplar leaf biochars. Environ. Sci. Pollut. Res. 2018, 25, 25789–25798. [Google Scholar] [CrossRef]
- Chen, D.; Cen, K.; Zhuang, X.; Gan, Z.; Zhou, J.; Zhang, Y.; Zhang, H. Insight into biomass pyrolysis mechanism based on cellulose, hemicellulose, and lignin: Evolution of volatiles and kinetics, elucidation of reaction pathways, and characterization of gas, biochar and bio-oil. Combust. Flame 2022, 242, 112142. [Google Scholar] [CrossRef]
- Mimmo, T.; Panzacchi, P.; Baratieri, M.; Davies, C.; Tonon, G. Effect of pyrolysis temperature on miscanthus (Miscanthus × giganteus) biochar physical, chemical and functional properties. Biomass Bioenergy 2014, 62, 149–157. [Google Scholar] [CrossRef]
- Lawal, A.A.; Hassan, M.A.; Zakaria, M.R.; Yusoff, M.Z.M.; Norrrahim, M.N.F.; Mokhtar, M.N.; Shirai, Y. Effect of oil palm biomass cellulosic content on nanopore structure and adsorption capacity of biochar. Bioresour. Technol. 2021, 332, 125070. [Google Scholar] [CrossRef]
- Das, O.; Sarmah, A.K. The love–hate relationship of pyrolysis biochar and water: A perspective. Sci. Total Environ. 2015, 512–513, 682–685. [Google Scholar] [CrossRef]
- Li, J.; Liang, N.; Jin, X.; Zhou, D.; Li, H.; Wu, M.; Pan, B. The role of ash content on bisphenol A sorption to biochars derived from different agricultural wastes. Chemosphere 2017, 171, 66–73. [Google Scholar] [CrossRef]
- Abel, S.; Peters, A.; Trinks, S.; Schonsky, H.; Facklam, M.; Wessolek, G. Impact of biochar and hydrochar addition on water retention and water repellency of sandy soil. Geoderma 2013, 202–203, 183–191. [Google Scholar] [CrossRef]
- Hardie, M.; Clothier, B.; Bound, S.; Oliver, G.; Close, D. Does biochar influence soil physical properties and soil water availability? Plant Soil 2014, 376, 347–361. [Google Scholar] [CrossRef]
- Cao, X.; Harris, W. Properties of dairy-manure-derived biochar pertinent to its potential use in remediation. Bioresour. Technol. 2010, 101, 5222–5228. [Google Scholar] [CrossRef] [PubMed]
- Suliman, W.; Harsh, J.B.; Abu-Lail, N.I.; Fortuna, A.-M.; Dallmeyer, I.; Garcia-Pérez, M. The role of biochar porosity and surface functionality in augmenting hydrologic properties of a sandy soil. Sci. Total Environ. 2017, 574, 139–147. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Li, C.; Fan, M.; Shao, Y.; Sun, Y.; Zhang, L.; Zhang, S.; Huang, Y.; Li, B.; Wang, S.; et al. Investigation of property of biochar in staged pyrolysis of cellulose. J. Anal. Appl. Pyrolysis 2023, 172, 105999. [Google Scholar] [CrossRef]
Biomass | Label | Cellulose (%) | Hemicellulose (%) | Lignin (%) | Ash (%) |
---|---|---|---|---|---|
Poplar wood sawdust | PT | 66.13 | 19.96 | 13.20 | 0.71 |
Pinewood sawdust | PS | 48.86 | 10.70 | 38.39 | 2.05 |
Cotton stalk | CS | 56.31 | 19.77 | 22.49 | 1.43 |
Wheat straw | WS | 53.24 | 34.51 | 8.84 | 3.42 |
Biochar | Yield (%) | Ash Content (%) | C (%) | N (%) | H (%) | O (%) | H/C | O/C |
---|---|---|---|---|---|---|---|---|
PT250 | 61.905 | 2.00 | 59.39 ± 0.05 | 0.30 ± 0.01 | 5.03 ± 0.01 | 35.29 ± 0.06 | 0.085 | 0.59 |
PT350 | 29.38 | 1.60 | 73.55 ± 0.04 | 0.35 ± 0.03 | 3.32 ± 0.04 | 22.78 ± 0.10 | 0.045 | 0.31 |
PT450 | 20.924 | 1.05 | 78.79 ± 0.05 | 0.44 ± 0.01 | 2.96 ± 0.03 | 17.81 ± 0.09 | 0.038 | 0.23 |
PT550 | 19.079 | 1.95 | 87.26 ± 0.05 | 0.57 ± 0.01 | 2.51 ± 0.05 | 9.66 ± 0.11 | 0.029 | 0.11 |
PT650 | 16.374 | 1.65 | 89.93 ± 0.04 | 0.67 ± 0.01 | 1.49 ± 0.03 | 7.90 ± 0.01 | 0.017 | 0.09 |
PS250 | 72.127 | 2.79 | 59.62 ± 0.03 | 0.31 ± 0.00 | 4.91 ± 0.02 | 35.16 ± 0.01 | 0.082 | 0.59 |
PS350 | 37.758 | 4.04 | 73.83 ± 0.04 | 0.32 ± 0.01 | 3.90 ± 0.03 | 21.95 ± 0.03 | 0.053 | 0.30 |
PS450 | 29.76 | 6.19 | 81.20 ± 0.07 | 0.36 ± 0.01 | 3.22 ± 0.02 | 15.22 ± 0.04 | 0.040 | 0.19 |
PS550 | 25.663 | 6.39 | 87.54 ± 0.05 | 0.50 ± 0.02 | 2.46 ± 0.04 | 9.50 ± 0.03 | 0.028 | 0.11 |
PS650 | 23.358 | 6.25 | 92.06 ± 0.07 | 0.58 ± 0.05 | 1.55 ± 0.03 | 5.81 ± 0.06 | 0.017 | 0.06 |
CS250 | 54.364 | 5.85 | 62.51 ± 0.04 | 1.32 ± 0.04 | 4.30 ± 0.03 | 31.84 ± 0.10 | 0.069 | 0.51 |
CS350 | 35.098 | 12.50 | 73.06 ± 0.11 | 1.75 ± 0.02 | 3.98 ± 0.03 | 21.18 ± 0.16 | 0.054 | 0.29 |
CS450 | 30.848 | 15.34 | 77.89 ± 0.06 | 1.88 ± 0.03 | 3.04 ± 0.01 | 17.15 ± 0.10 | 0.039 | 0.22 |
CS550 | 27.293 | 16.13 | 80.99 ± 0.04 | 1.82 ± 0.03 | 2.05 ± 0.04 | 15.07 ± 0.03 | 0.025 | 0.19 |
CS650 | 25.737 | 16.33 | 81.93 ± 0.02 | 2.33 ± 0.01 | 1.48 ± 0.06 | 14.19 ± 0.06 | 0.018 | 0.17 |
WS250 | 59.832 | 11.59 | 60.23 ± 0.03 | 0.75 ± 0.06 | 4.22 ± 0.04 | 34.77 ± 0.04 | 0.070 | 0.58 |
WS350 | 36.599 | 19.07 | 71.69 ± 0.03 | 0.94 ± 0.01 | 3.51 ± 0.05 | 23.81 ± 0.10 | 0.049 | 0.33 |
WS450 | 30.951 | 21.28 | 77.95 ± 0.06 | 0.91 ± 0.03 | 2.85 ± 0.05 | 18.22 ± 0.13 | 0.037 | 0.23 |
WS550 | 28.304 | 22.92 | 82.55 ± 0.06 | 0.99 ± 0.03 | 2.09 ± 0.03 | 14.30 ± 0.05 | 0.025 | 0.17 |
WS650 | 24.234 | 24.94 | 87.73 ± 0.08 | 1.12 ± 0.04 | 1.52 ± 0.02 | 9.54 ± 0.09 | 0.017 | 0.11 |
Biochar Properties | Correlation Coefficient | p Value |
---|---|---|
Surface area (N2) | 0.608 | 0.004 |
Mesopore volume | 0.611 | 0.004 |
Surface area (CO2) | 0.597 | 0.005 |
Micropore volume | 0.566 | 0.009 |
Aromaticity (H/C) | −0.489 | 0.029 |
Polarity (O/C) | −0.390 | 0.089 |
Thermal residual mass of biomass | −0.547 | 0.012 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, K.; Zhang, K.; Li, Y.; Kang, Q.; Wang, Y.; Wang, J.; Yang, K.; Mao, J. Easily Pyrolyzable Biomass Components Significantly Affect the Physicochemical Properties and Water-Holding Capacity of the Pyrolyzed Biochar. Agriculture 2023, 13, 2053. https://doi.org/10.3390/agriculture13112053
Zhang K, Zhang K, Li Y, Kang Q, Wang Y, Wang J, Yang K, Mao J. Easily Pyrolyzable Biomass Components Significantly Affect the Physicochemical Properties and Water-Holding Capacity of the Pyrolyzed Biochar. Agriculture. 2023; 13(11):2053. https://doi.org/10.3390/agriculture13112053
Chicago/Turabian StyleZhang, Kaizhao, Kun Zhang, Yaoming Li, Qilin Kang, Yaofeng Wang, Jing Wang, Kai Yang, and Jiefei Mao. 2023. "Easily Pyrolyzable Biomass Components Significantly Affect the Physicochemical Properties and Water-Holding Capacity of the Pyrolyzed Biochar" Agriculture 13, no. 11: 2053. https://doi.org/10.3390/agriculture13112053
APA StyleZhang, K., Zhang, K., Li, Y., Kang, Q., Wang, Y., Wang, J., Yang, K., & Mao, J. (2023). Easily Pyrolyzable Biomass Components Significantly Affect the Physicochemical Properties and Water-Holding Capacity of the Pyrolyzed Biochar. Agriculture, 13(11), 2053. https://doi.org/10.3390/agriculture13112053