Pollen Development and Stainability in Vicia faba L. and Lupinus angustifolius L.
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Growth Conditions
2.2. Anatomical Examination of Anthers
2.3. 4′,6-Diamidino-2-phenylindole (DAPI) Staining
2.4. Cytological Staining of Microspores and Pollen
2.4.1. Acetocarmine Staining
2.4.2. Aceto-Orcein Staining
2.4.3. Alexander’s Staining
2.4.4. Aniline Blue in Lactophenol Staining
2.4.5. Calcein Acetoxymethyl (Calcein AM) Staining
2.4.6. Fluorescein Diacetate (FDA) Staining
2.4.7. Lugol’s Iodine Staining
2.4.8. 2,5-Diphenyl Tetrazolium Bromide (MTT) Staining
2.4.9. 2,3,5-Triphenyl Tetrazolium Chloride (TTC) Staining
2.5. In Vitro Pollen Germination
2.6. Statistical Analysis
3. Results
3.1. Anatomical Examination of Anthers and Tracking of Pollen Development
3.1.1. Vicia faba
3.1.2. Lupinus angustifolius
3.2. Nuclear Stain (DAPI) for Determination of the Stage of Pollen Development
3.2.1. Vicia faba
3.2.2. Lupinus angustifolius
3.3. Cytological Staining of Microspores and Pollen
3.3.1. Vicia faba
3.3.2. Lupinus angustifolius
3.4. In Vitro Pollen Germination
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- FAOSTAT. Access Protocol. 2021. Available online: https://www.fao.org/faostat/en/#data/QCL/visualize (accessed on 4 September 2023).
- Shavanov, M.V. The Role of Food Crops within the Poaceae and Fabaceae Families as Nutritional Plants. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2021; Volume 624, p. 012111. [Google Scholar] [CrossRef]
- Bangar, S.P.; Kajla, P. Introduction: Global Status and Production of Faba-Bean. In Faba Bean: Chemistry, Properties and Functionality; Springer International Publishing: Berlin/Heidelberg, Germany, 2022; pp. 1–15. [Google Scholar]
- Smýkal, P.; Coyne, C.J.; Ambrose, M.J.; Maxted, N.; Schaefer, H.; Blair, M.W.; Berger, J.; Greene, S.L.; Nelson, M.N.; Besharat, N.; et al. Legume crops phylogeny and genetic diversity for science and breeding. Crit. Rev. Plant Sci. 2015, 34, 43–104. [Google Scholar] [CrossRef]
- Farooq, M.; Gogoi, N.; Hussain, M.; Barthakur, S.; Paul, S.; Bharadwaj, N.; Hussein, M.; Migdadi, S.S.; Alghamdi, K.H.M. Siddique. Effects, tolerance mechanisms and management of salt stress in grain legumes. Plant Physiol. Biochem. 2017, 118, 199–217. [Google Scholar] [CrossRef] [PubMed]
- Erdemoglu, N.; Ozkan, S.; Tosun, F. Alkaloid profile and antimicrobial activity of Lupinus angustifolius L. alkaloid extract. Phytochem. Rev. 2007, 6, 197–201. [Google Scholar] [CrossRef]
- Kohajdová, Z.; Karovičová, J.; Schmidt, Š. Lupin composition and possible use in bakery-a review. Czech J. Food Sci. 2011, 29, 203–211. [Google Scholar] [CrossRef]
- Di Cenzo, G.C.; Tesi, M.; Pfau, M.A.; Fondi, M. Genome-scale metabolic reconstruction of the symbiosis between a leguminous plant and a nitrogen-fixing bacterium. Nat. Commun. 2020, 11, 2574. [Google Scholar] [CrossRef]
- Lassoued, R.; Macall, D.M.; Smyth, S.J.; Phillips, P.W.; Hesseln, H. How should we regulate products of new breeding techniques? Opinion of surveyed experts in plant biotechnology. Biotechnol. Rep. 2020, 26, e00460. [Google Scholar] [CrossRef] [PubMed]
- Żur, I.; Adamus, A.; Cegielska-Taras, T.; Cichorz, S.; Dubas, E.; Gajecka, M.; Juzoń-Sikora, K.; Kiełkowska, A.; Malicka, M.; Oleszczuk, S.; et al. Doubled Haploids: Contributions of Poland’s Academies in recognizing the mechanism of gametophyte cell reprogramming and their utilization in breeding of agricultural and vegetable species. Acta Soc. Bot. Pol. 2022, 91, 9128. [Google Scholar] [CrossRef]
- Kiełkowska, A.; Kiszczak, W. History and current status of haploidization in carrot (Daucus carota L.). Agronomy 2023, 13, 676. [Google Scholar] [CrossRef]
- Małuszyński, M.; Kasha, K.J.; Forster, B.P.; Szarejko, I. (Eds.) Doubled Haploid Production in Crop Plants. A Manual; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2003; p. 428. [Google Scholar]
- Germanà, M.A. Doubled haploid production in fruit crops. Plant Cell Tiss. Organ. Cult. 2006, 86, 131–146. [Google Scholar] [CrossRef]
- Kiełkowska, A.; Adamus, A.; Barański, R. An improved protocol for carrot haploid and doubled haploid plant production using induced parthenogenesis and ovule excision in vitro. Vitr. Cell Dev. Biol. Plant 2014, 50, 376–383. [Google Scholar] [CrossRef]
- Paratasilpin, T. Vegetative development of field bean pollen grain cultured in vitro. J. Sci. Soc. Thai 1978, 4, 139–145. [Google Scholar]
- Skrzypek, E.; Czyczyło-Mysza, I.; Marcińska, I.; Wędzony, M. Prospects of androgenetic induction in Lupinus spp. Plant Cell Tiss. Organ. Cult. 2008, 94, 131–137. [Google Scholar] [CrossRef]
- Kozak, K.; Galek, R.; Waheed, M.T.; Sawicka-Sienkiewicz, E. Anther culture of Lupinus angustifolius: Callus formation and the development of multicellular and embryo-like structures. Plant Growth Regul. 2012, 66, 145–153. [Google Scholar] [CrossRef]
- Shlahi, S.A.; Majeed, D.M.; Ismail, E.N. Effect of the developmental stage of microspores, growth regulator and medium type on callus indication from broad bean Vicia faba anthers culture. Res. J. Biotechnol. 2012, 6, 81–90. [Google Scholar] [CrossRef]
- Vizintin, L.; Bohanec, B. In vitro manipulation of cucumber (Cucumis sativus L.) pollen and microspores: Isolation procedures, viability tests, germination, maturation. Acta Biol. Cracov Ser. Bot. 2004, 46, 177–183. [Google Scholar]
- Impe, D.; Reitz, J.; Köpnick, C.; Rolletschek, H.; Börner, A.; Senula, A.; Nagel, M. Assessment of pollen viability for wheat. Front. Sci. 2020, 10, 1588. [Google Scholar] [CrossRef]
- Beyhan, N.; Serdar, U. Assessment of pollen viability and germinability in some European chestnut genotypes (Castanea sativa L.). Hortic. Sci. 2008, 35, 171–178. [Google Scholar] [CrossRef]
- Hauser, E.J.P.; Morrison, J.H. The cytochemical reduction of nitroblue tetrazolium as an index of pollen viability. Am. J. Bot. 1964, 51, 748–752. [Google Scholar] [CrossRef]
- Stern, W.L.; Curry, K.J.; Pridgeon, A.M. Osmophores of Stanhopea (Orchidaceae). Am. J. Bot. 1987, 74, 1323–1331. [Google Scholar] [CrossRef]
- Nassar, N.M.A.; Santos, E.D.; David, S.R.O. The transference of apomixis genes from Manihot neusana Nassar to cassava, M. eculenta Crantz. Hereditas 2000, 132, 167–170. [Google Scholar] [CrossRef]
- Rodriguez-Riano, T.; Dafni, A. A new procedure to assess pollen viability. Sex. Plant Reprod. 2000, 12, 241–244. [Google Scholar] [CrossRef]
- Norton, J.D. Testing of plum pollen viability with tetrazolium salts. Proc. Am. Soc. Hort. Sci. 1966, 89, 132–134. [Google Scholar]
- Heslop-Harrison, J.; Heslop-Harrison, Y.; Shivanna, K.R. The evaluation of pollen quality and a further appraisal of the fluorochromatic (FCR) test procedure. Theor. Appl. Genet. 1984, 67, 367–375. [Google Scholar] [CrossRef] [PubMed]
- Kiełkowska, A.; Dziurka, M. Changes in polyamine pattern mediates sex differentiation and unisexual flower development in monoecious cucumber (Cucumis sativus L.). Physiol. Plant 2021, 171, 48–65. [Google Scholar] [CrossRef] [PubMed]
- Barrow, J.R. Comparisons among pollen viability measurement methods in cotton 1. Crops Sci. 1983, 23, 734–736. [Google Scholar] [CrossRef]
- Rathod, V.; Behera, T.K.; Munshi, A.D.; Durgesh, K.; Jat, G.S.; Krishnan, B.G.; Sharma, N. Pollen viability and in vitro pollen germination studies in Momordica species and their intra and interspecific hybrids. Int. J. Chem. Stud. 2018, 6, 32–40. [Google Scholar]
- Rossel, P.; Herrero, M.; Galan Sauco, V. Pollen germination of cherimoya (Annona cherimola Mill). In vivo characterization and optimization of in vitro germination. Sci. Hortic. 1999, 81, 251–265. [Google Scholar] [CrossRef]
- Adaniya, S. Optimal pollination environment of tetraploid ginger (Zingiber officinale Roscoe) evaluated by in vitro pollen germination and pollen tube growth in styles. Sci. Hortic. 2001, 90, 219–226. [Google Scholar] [CrossRef]
- Alexander, M.P. Differential staining of aborted and nonaborted pollen. Biotech. Histochem. 1969, 44, 117–122. [Google Scholar] [CrossRef]
- Gamborg, O.L.; Miller, R.A.; Ojima, K. Nutrient requirements of suspension cultures of soybean root cells. Exp. Cell Res. 1968, 50, 151–158. [Google Scholar] [CrossRef]
- Johnson, S.; Nguyen, V.; Coder, D. Assessment of cell viability. Curr. Protoc. Cytom. 2013, 64, 9.2.1–9.2.26. [Google Scholar] [CrossRef] [PubMed]
- Steward, N.; Martin, R.; Engasser, J.; Goergen, J.L. A new methodology for plant cell viability assessment using intracellular esterase activity. Plant Cell Rep. 1999, 19, 171–176. [Google Scholar] [CrossRef]
- Brewbaker, J.L.; Kwack, B.H. The Essential role of calcium ion in pollen germination and pollen tube growth. Am. J. Bot. 1963, 50, 859. [Google Scholar] [CrossRef]
- Gaaliche, B.; Majdoub, A.; Trad, M.; Mars, M. Assessment of pollen viability, germination, and tube growth in eight Tunisian caprifig (Ficus carica L.) cultivars. ISRN Agron. 2013, 13, 1–4. [Google Scholar] [CrossRef]
- Feng, X.; Zilberman, D.; Dickinson, H. A conversation across generations: Soma-germ cell crosstalk in plants. Dev. Cell 2013, 24, 215–225. [Google Scholar] [CrossRef] [PubMed]
- Honys, D.; Renák, D.; Twell, D. Male Gametophyte Development and Function. In Floriculture, Ornamental and Plant Biotechnology: Advances and Topical Issues; Silva, J.T., Ed.; Global Science Books: London, UK, 2006; Volume 1, pp. 76–87. [Google Scholar]
- Albertsen, M.C.; Palmer, R.G. A comparative light—And electron-microscopic study of microsporogenesis in male sterile (ms1) and male fertile soybeans (Glycine max (L.) merr.). Am. J. Bot. 1979, 66, 253–265. [Google Scholar] [CrossRef]
- Biddle, J.A. Anther and pollen development in garden pea and cultivated lentil. Can. J. Bot. 1979, 57, 1883–1900. [Google Scholar] [CrossRef]
- Myers, J.R.; Gritton, E.T.; Struckmeyer, B.E. Genetic male sterility in the pea (Pisum sativum L.). Euphytica 1992, 63, 245–256. [Google Scholar] [CrossRef]
- Kumar, G.; Chaudhary, N. Induced cytomictic variations and syncyte formation during microsporogenesis in Phaseolus vulgaris L. Cytol. Genet. 2016, 50, 121–127. [Google Scholar] [CrossRef]
- Tavoletti, S.; Mariani, A.; Veronesi, F. Cytological analysis of macro- and microsporogenesis of a diploid alfalfa clone producing male and female 2n gametes. Crops Sci. 1991, 31, 1258–1263. [Google Scholar] [CrossRef]
- Mitchell, J.P. Megasporogenesis and microsporogenesis in Vicia faba. Can. J. Bot. 1975, 53, 2804–2812. [Google Scholar] [CrossRef]
- Haroun, S.A.; Al Shehri, A.M.; Al Wadie, H.M. Cytomixis in the microsporogenesis of Vicia faba L. (Fabaceae). Cytologia 2004, 69, 7–11. [Google Scholar] [CrossRef]
- Mursalimov, S.; Deineko, E. Cytomixis in plants: Facts and doubts. Protoplasma 2018, 255, 719–731. [Google Scholar] [CrossRef] [PubMed]
- Gottschalk, W. Chromosome and nucleus migration during microsporogenesis of Pisum sativum. Nucleus 1970, 13, 1–9. [Google Scholar]
- Bellucci, M.; Roscini, C.; Mariani, A. Cytomixis in pollen mother cells of Medicago sativa L. J. Hered. 2003, 94, 512–516. [Google Scholar] [CrossRef] [PubMed]
- Marciniak, K.; Przedniczek, K. Anther dehiscence is regulated by gibberellic acid in yellow lupine (Lupinus luteus L.). BMC Plant Biol. 2021, 21, 314. [Google Scholar] [CrossRef] [PubMed]
- Wojciechowska, W. The development rhythm of the flower bud in some Papilionaceae species. Gametogenesis in L. elegans (H.B.K.) nad Lupinus mutabilis (Sweet.) in reference to flower bud development. Acta Soc. Bot. Pol. 1976, 45, 251–262. [Google Scholar] [CrossRef]
- Papini, A.; Mosti, S.; Brighigna, L. Programmed-cell-death events during tapetum development of angiosperms. Protoplasma 1999, 207, 213–221. [Google Scholar] [CrossRef]
- Furness, C.A.; Rudall, P.J. The tapetum in basal angiosperms: Early diversity. Int. J. Plant Sci. 2001, 162, 375–392. [Google Scholar] [CrossRef]
- Guerra, M.; Carvalheira, G. Occurrence of polytene chromosomes in the anther tapetum of Vigna unguiculata L. (Walp.). J. Hered. 1994, 85, 43–46. [Google Scholar]
- Carvalheira, G.; Guerra, M. The polytene chromosomes of anther tapetum of some Phaseolus species. Cytologia 1994, 59, 211–217. [Google Scholar] [CrossRef]
- Cecchetti, V.; Altamura, M.M.; Brunetti, P.; Petrocelli, V.; Falasca, G.; Ljung, K.; Costantino, P.; Cardarelli, M. Auxin controls Arabidopsis anther dehiscence by regulating endothecium lignification and jasmonic acid biosynthesis. Plant J. 2013, 74, 411–422. [Google Scholar] [CrossRef] [PubMed]
- Kostryco, M.; Chwil, M. Structure of Anther Epidermis and Endothecium, Production of Pollen, and Content of Selected Nutrients in Pollen Grains from Six Rubus idaeus L. Cultivars. Agronomy 2021, 11, 1723. [Google Scholar] [CrossRef]
- Grigg, F.D.; Smith, P.R.; Stenersen, M.A.; Murray, B.G. Variable pollen fertility and abnormal chromosome behavior in the pepino (Solanum muricatum Ait., Solanaceae). Sci. Hortic. 1988, 35, 259–268. [Google Scholar] [CrossRef]
- Shivanna, K.R.; Linskens, H.F.; Cresti, M. Pollen viability and pollen vigor. Theor. Appl. Genet. 1991, 81, 38–42. [Google Scholar] [CrossRef] [PubMed]
- Gibernau, M.; Macquart, D.; Diaz, A.; House, D.; Fern-Barrow, P.; Dorset, B. Pollen viability and longevity in two species of Arum. Aroideana 2003, 26, 58–62. [Google Scholar]
- Dafni, A.; Firmage, D. Pollen viability and longevity: Practical, ecological and evolutionary implications. Pollen Pollinat. 2000, 113–132. [Google Scholar] [CrossRef]
- Bareke, T. Biology of seed development and germination physiology. Adv. Plants Agric. Res. 2018, 8, 336–346. [Google Scholar] [CrossRef]
- Stanley, R.G.; Linskens, H.F. Pollen: Biology, Biochemistry and Management; Springer: New York, NY, USA, 1974. [Google Scholar] [CrossRef]
- Patel, R.G.; Mankad, A.U. In vitro pollen germination—A review. Int. J. Sci. Res. 2014, 3, 304–307. [Google Scholar]
- Seguí-Simarro, J.M.; Nuez, F. Embryogenesis induction, callogenesis, and plant regeneration by in vitro culture of tomato isolated microspores and whole anthers. J. Exp. Bot. 2007, 58, 1119–1132. [Google Scholar] [CrossRef]
- Dutta, S.K.; Srivastav, M.; Chaudhary, R.; Lal, K.; Patil, P.; Singh, S.K.; Singh, A.K. Low temperature storage of mango (Mangifera indica L.) pollen. Sci. Hortic. 2013, 161, 193–197. [Google Scholar] [CrossRef]
- Kelen, M.; Demirtas, I. Pollen viability, germination capability and pollen production of some grape varieties (Vitis vinifera L.). Acta Physiol. Plant 2003, 25, 229–233. [Google Scholar] [CrossRef]
- Słomka, A.; Kawalec, P.; Kellner, K.; Jedrzejczyk-Korycińska, M.; Rostański, A.; Kuta, E. Was reduced pollen viability in Viola tricolor L. the result of heavy metal pollution or rather the tests applied? Acta Biol. Crac. Ser. Bot. 2010, 52, 123–127. [Google Scholar] [CrossRef]
- Ozcan, A.; Sutyemez, M.; Bukucu, S.B.; Ergun, M. Pollen viability and germinability of walnut: A comparison between storage at cold and room temperatures. Fresenius Environ. Bull. 2019, 28, 111–115. [Google Scholar]
- Pinillos, V.; Cuevas, J. Standardization of the flourochromatic reaction test to assess pollen viability. Biotech. Histochem. 2008, 83, 15–21. [Google Scholar] [CrossRef] [PubMed]
- Lord, E.M.; Kohorn, L.U. Gynoecial development, pollination, and the path of pollen tube growth in the tepary bean, Phaseolus acutifolius. Am. J. Bot. 1986, 73, 70–78. [Google Scholar] [CrossRef]
- Fang, X.; Turner, N.C.; Yan, G.; Li, F.; Siddique, K.H.M. Flower numbers, pod production, pollen viability, and pistil function are reduced and flower and pod abortion increased in chickpea (Cicer arietinum L.) under terminal drought. J. Exp. Bot. 2010, 61, 335–345. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Lahlali, R.; Karunakaran, C.; Warkentin, T.D.; Davis, A.R.; Bueckert, R.A. Pollen, ovules, and pollination in pea: Success, failure, and resilience in heat. Plant Cell Environ. 2019, 42, 354–372. [Google Scholar] [CrossRef]
- Clarke, G.C.S.; Kupicha, F.K. The relationships of the genus Cicer, L. (Leguminosae): The evidence from pollen morphology. Bot. J. Linn. Soc. 1976, 72, 35–44. [Google Scholar] [CrossRef]
- Kahraman, A.; Binzat, O.K.; Doğan, M. Pollen morphology of some taxa of Vicia, L. subgenus Vicia (Fabaceae) from Turkey. Plant Syst. Evol. 2013, 299, 1749–1760. [Google Scholar] [CrossRef]
- Jiang, Y.; Lahlali, R.; Karunakaran, C.; Kumar, S.; Davis, A.R.; Bueckert, R.A. Seed set, pollen morphology and pollen surface composition response to heat stress in field pea. Plant Cell Environ. 2015, 38, 2387–2397. [Google Scholar] [CrossRef] [PubMed]
- Srinivasan, A.; Saxena, N.P.; Johansen, C. Cold tolerance during early reproductive growth of chickpea (Cicer arietinum L.): Genetic variation in gamete development and function. Field Crops Res. 1999, 60, 209–222. [Google Scholar] [CrossRef]
- Jayaprakash, P.; Sarla, N. Development of an improved medium for germination of Cajanus cajan (L.) Millsp. pollen in vitro. J. Exp. Bot. 2001, 52, 851–855. [Google Scholar] [CrossRef] [PubMed]
- Perveen, A. Pollen germination capacity, viability and Maintanence of Pisum sativum L. papilionaceae. Middle East. J. Sci. Res. 2007, 2, 79–81. [Google Scholar]
- Jayalakshmi, M.; Sreekala, A.K.; Theresa, M. Floral biology of Humboldtia sanjappae Sasidh. & Sujanapal (Fabaceae). J. Palynol. 2016, 52, 1–13. [Google Scholar]
- Zulkarnain, Z.; Eliyanti, E.; Swari, E.I. Pollen viability and stigma receptivity in Swainsona formosa (G. Don) J. Thompson (Fabaceae), an ornamental legume native to Australia. Ornam. Hortic. 2019, 25, 158–167. [Google Scholar] [CrossRef]
Staining Method | Viability (% ± SEM) | |
---|---|---|
Microspores | Pollens | |
Acetocarmine | 94.57 ± 0.79 a | 84.28 ± 1.61 bc |
Alexander’s dye | 80.05 ± 2.78 b | 82.84 ± 1.74 c |
Aniline blue in lactophenol | - | 96.30 ± 0.62 a |
Calcein | 16.28 ± 3.12 c | 31.78 ± 2.32 d |
FDA | 20.35 ± 1.65 c | 38.81 ± 2.19 d |
Lugol’s iodine | - | 85.57 ± 1.28 bc |
MTT | - | 93.67 ± 0.89 a |
TTC | - | 86.38 ± 1.38 bc |
Aceto-orcein | - | 90.80 ± 1.26 ab |
Total | 66.21 ± 2.43 | 80.55 ± 0.77 |
Staining Method | Viability (% ± SEM) | |
---|---|---|
Microspores | Pollens | |
Acetocarmine | 65.91 ± 1.94 a | 85.18 ± 1.13 ab |
Alexander’s dye | 54.83 ± 2.69 b | 79.53 ± 1.71 b |
Aniline blue in lactophenol | 66.51 ± 2.77 a | 92.93 ± 0.93 a |
Calcein | 9.71 ± 1.72 c | 33.42 ± 2.56 d |
FDA | 5.73 ± 0.75 c | 34.82 ± 2.15 d |
Lugol’s iodine | - | 83.44 ± 1.62 ab |
MTT | - | 68.77 ± 2.91 c |
TTC | 64.92 ± 3.62 a | 69.00 ± 3.86 c |
Aceto-orcein | - | 85.46 ± 1.71 ab |
Total | 55.61 ± 1.52 | 72.29 ± 1.03 |
Germination Media | Pollen Grain Germination (% ± SEM) | |
---|---|---|
V. faba | L. angustifolius | |
Sucrose 5% | 16.90 ± 2.04 c | 59.23 ± 3.69 b |
Sucrose 10% | 10.84 ± 2.13 c | 74.22 ± 2.76 a |
G medium | 43.30 ± 2.09 b | 70.50 ± 2.38 a |
BK medium | 61.27 ± 2.23 a | 68.03 ± 2.49 ab |
Total | 35.93 ± 1.88 | 67.99 ± 1.47 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Skrzypkowski, W.; Galek, R.; Adamus, A.; Kiełkowska, A. Pollen Development and Stainability in Vicia faba L. and Lupinus angustifolius L. Agriculture 2023, 13, 2065. https://doi.org/10.3390/agriculture13112065
Skrzypkowski W, Galek R, Adamus A, Kiełkowska A. Pollen Development and Stainability in Vicia faba L. and Lupinus angustifolius L. Agriculture. 2023; 13(11):2065. https://doi.org/10.3390/agriculture13112065
Chicago/Turabian StyleSkrzypkowski, Wiktor, Renata Galek, Adela Adamus, and Agnieszka Kiełkowska. 2023. "Pollen Development and Stainability in Vicia faba L. and Lupinus angustifolius L." Agriculture 13, no. 11: 2065. https://doi.org/10.3390/agriculture13112065
APA StyleSkrzypkowski, W., Galek, R., Adamus, A., & Kiełkowska, A. (2023). Pollen Development and Stainability in Vicia faba L. and Lupinus angustifolius L. Agriculture, 13(11), 2065. https://doi.org/10.3390/agriculture13112065